Waste Isolation Pilot Plant

Compliance Certification Application

Reference 516

Powers, D.W., J.M. Sigda, and R.M. Holt. 1996.

"Probability of Intercepting a Pressurized Brine Reservoir Under the WIPP." Unpublished report, July 10, 1996. Albuquerque, NM: Sandia National Laboratories. (Copy on file in the SWCF).

Submitted in accordance with 40 CFR §194.13, Submission of Reference Materials.

)HO199

Probability of Intercepting a Pressurized Brine

Reservoir Under the WIPP

Dennis W. Powers

John M. Sigda

Robert M. Holt

July 10, 1996

ABSTRACT

Twenty-seven drillholes in the Delaware Basin are accepted as showing intercepts of pressurized brine in the Permian Castile Formation. Using an indicator function (brine = 1, no brine = 0) and location data for these and other drillholes in the area around WIPP, semi-variograms were constructed. Parameters from selected semi-variograms were input to an ordinary kriging algorithm to estimate the probabilities of intercepting brine in a drillhole within the Castile Formation beneath the WIPP site. For the area of the disposal panels, the estimated probabilities at computational nodes range between 0.078 and 0.084. For the shaft and access area, probabilities at nodes range between 0.078 and 0.221. Nodes within the experimental area ranged from 0.078 to 0.371. An areally-weighted average for the waste panel area is 0.080.

Structure contour and isopach maps of selected stratigraphic contacts and intervals over part of the nine township area around WIPP show deformed evaporites in areas where most brine occurrences are mapped. No data were obtained from a few drillholes where brine was encountered. The Castile is deformed at WIPP 12, the nearest brine encounter to the WIPP. Stratigraphic data from the Castile are few at WIPP, but there appears to be no significant deformation in the vicinity of the waste panels. This is consistent with generally low probabilities for a drillhole encountering brine as calculated by geostatistical techniques. The estimated thickness from base of Castile to base of Cowden Anhydrite at ERDA 9 is considerably less than the minimum thickness for any known brine encounter, indicating there may be a threshold value for reservoir formation.

.

1.0 INTRODUCTION

A scenario for the Waste Isolation Pilot Plant (WIPP) includes a drillhole intercept of pressurized brine in the Permian Castile Formation below WIPP underground workings. The analysis of this scenario requires estimates of the probability that a drillhole at WIPP will encounter pressurized Castile brine.

2.0 PURPOSE

This report describes the process that was followed to estimate the probability that a drillhole will intercept brine in the Castile below the underground workings at WIPP. This report also describes how geological data were acquired and analyzed as complementary evidence of the distribution of pressurized Castile brine.

3.0 APPROACH

Several steps were followed to estimate the probabilities of encountering brine in a drillhole:

- 1) The reported encounters of pressurized brine were listed, including relevant information about location, depth, drillhole name, and stratigraphic basis for assigning the encounter to the Castile.
- 2) A file of locations of oil and gas drillholes penetrating the Castile compiled by the Compliance Department of Westinghouse was provided by Westinghouse as a database for analysis. AUTOCAD software was used to establish locations and prepare data files for use. (See Appendix A).
- The UNCERT geostatistics software package was used to prepare semi-variograms utilizing an indicator function (brine report = 1; no brine report =0) and location data for each drillhole. Rbase 5.5 and Excel 4.0 were used to format ASCII data files from AUTOCAD for use by UNCERT.
- 4) The semi-variograms were evaluated for sensitivity to data cluster effects and classification errors.
- 5) The ordinary kriging module of UNCERT was used to prepare comparable maps showing the estimated conditional probabilities of intercepting brine and to obtain nodal values for points within three defined areas including the underground workings at WIPP.
- 6) This analysis report was prepared to show data sources, techniques, estimated conditional probabilities, results and limitations.

Several steps were also followed to analyze how geological features or processes (mainly Castile deformation) are related to the distribution of Castile brine reservoirs:

- 1) Reported encounters of pressurized brine flow were listed to include information about location, depth, drillhole name, and stratigraphic basis for assigning the encounter to the Castile.
- 2) Stratigraphic data were derived from geophysical logs for many drillholes around the WIPP site where the geophysical logs were appropriate with respect to depth, location, and log coverage.
- From the stratigraphic data, subsidiary tables of unit elevations (for structure maps) and thicknesses (for isopach maps) were prepared. These tables were used to prepare maps of structure and thickness for various horizons and intervals, respectively.
- 4) A general relationship apparently exists between the location of most brine encounters and areas where the Castile evaporites have been significantly deformed from original position. The structure data for the WIPP site are meager for the Castile, though it appears that the area of the waste panel is not significantly deformed.
- 5) The statistical relationship or association of structure and brine encounters is still being examined, as appropriate data have just been drawn together.
- 6) This analysis report discusses data sources, techniques, maps, results, and limitations of the geological analysis of the relationship between brine reservoirs and deformation.

3.1 Responsible Staff

The analysis has been conducted by:

Dennis Powers, mainly conducting geological research;

John Sigda, mainly conducting geostatistical analysis; and

Robert Holt, contributing to both geological and geostatistical analyses.

3.2 Schedule and Deliverables

The analysis report includes:

- a) the estimated probabilities that a drillhole will encounter pressurized brine under 1) the waste panel area, 2) shaft and access areas, and 3) experimental area.
- b) a discussion of the apparent relationship between Castile brine and Castile deformation.

The first request for assistance on this issue came in early February, 1996. An initial approach was outlined and followed before developing the broader analysis approach in April. An initial report and supporting data were scheduled for June 18, with a "final" report and data package required by about July 10, 1996.

4.0 DATA TYPES AND SOURCES

4.1 Geostatistical Analysis

The geostatistical methods used in this analysis for estimating probabilities require two related data sets:

- a) a set of locations for drillholes, and
- b) an indication of whether each drillhole intercepted Castile brine or not.

The location data set needed to be relatively comprehensive for the area in which brine encounters have been reported. Most of the drillholes that penetrate through most or all of the Castile should be represented. In addition, the data set needed to have a consistent coordinate system (e.g., NM State Plane coordinates) for computational purposes. The coordinates for each drillhole needs to be reasonably accurate relative to nearby drillholes, but long-range accuracy (over several miles) is not expected to be important and was not examined.

Two sources of a location data set were found. Petroleum Information Corporation (PI) maintains a large drillhole data set available for lease/purchase; location coordinates were available as an extra service. Through discussions with the Compliance Department, Westinghouse Electric Corporation, it became apparent that a partial set of drillhole data from PI already been purchased and was being used. L. MadI and D. Hughes provided two subsets of this data set. D. Hughes converted the original PI location data for each drillhole into equivalents to the NM State Plane coordinates (see Appendix A). L. MadI provided files that provided common elements with the location (State Plane coordinates) data and the standard locations (Township/Range system) generally available for geophysical data. We added useful WIPP drillholes not in the database using coordinates provided in Gonzales (1989).

The data set for brine occurrences (Table 4.1-1) was compiled from several sources.

7/10/96

Original studies and reports include Griswold (1977), Register (1981), Popielak et al. (1982), and Chaturvedi (1985). More recent summaries have been provided in unpublished documents by Kehrman (1994) and Silva (1996). Silva obtained summary data from a number of petroleum exploration companies active in the area. In addition, Powers examined files at the Oil Conservation Department (NM) in Artesia and Hobbs, NM, to develop additional data and verify some occurrences. Of the total apparent occurrences, several were eliminated as unlikely, usually because of the combination of 1) insufficient evidence of significant volume and/or pressure, and 2) being in the wrong stratigraphic unit. Twenty-seven reports of brine occurrence were accepted as Castile brine intercepts. The analysis is based on this set of encounters, though we demonstrate later (Section 6.3.2) that it is rather insensitive to adding or dropping encounters in areas where they are more common.

The data set for brine occurrences consists of reports of brine intercepts, which is a proxy for actual occurrences, and "non-reports". There is no requirement that all brine intercepts be reported. Some of the earliest known reports of brine came before modern drilling practices and resulted in loss of control of the drillhole and substantial surface flows. We cannot know if some drillholes intercepted a brine reservoir that went undetected because substantial pressure was depleted by other drillholes. Some companies declined to respond to Silva's survey. Other intercepts may have been quickly controlled, and no report was made or required. We accept the reports accumulated as a reasonable representation of the actual history of brine intercepts. In later discussion, we address alternatives.

Tables 4.1-1 and 4.1-2 include basic information about the drillholes included in this analysis as encountering brine within the Castile. Some excluded drillholes are also reported with justification for deciding they should not be in the data set.

The map area was selected to encompass the locations of all 27 Castile brine occurrences. We tried to make the area as small as practical to minimize the number of drillholes for which there is no report of a brine intercept. For the geostatistical analysis, the total number of drillholes, including appropriate WIPP drillholes, is 354.

4.2 Geological Analysis

The geological methods used in this analysis for understanding the relationship between brine reservoirs and geological features or processes (mainly evaporite deformation) require two related data sets:

- a) stratigraphic and reference elevation data from drillholes (Appendix B), and
- b) a locations (including State Plane coordinates) for those drillholes.

For most petroleum exploration drillholes in the area around WIPP, one or more geophysical logs have been made that can be purchased or examined. They vary in

7/10/96

Table 4.1-1

Location Data for Drillholes Considered to have Castile Brine

IDnum	Т.	R.	Section	from section line (e.g.,n=north)		Drillhole Name	
1104	21	31	35	2152s	910e	ERDA 6	
1159	22	31	17	148s	84e	WIPP 12	
5014	22	31	2	2310s	330e	Pogo State "2" No. 3	
5128	23	30	1	1830n	1980w	Belco Hudson Federal No. 1	
5275	21	32	31	1980n	660w	Phillips Luke Federal No. 1	
5305	21	31	26	1980n	1 980w	Pogo Federal No. 1	
5306	21	31	35	660n	660w	Union Federal Fl No. 1	
5307	21	31	36	1980s	660e	Yates Lost Tank "AIS" State No. 1	
5308	21	31	36	1980s	1 980w	Yates Lost Tank "AIS" State No. 4	
5326	22	31	1	660n	1980w	Phillips Molly State No. 1	
5327	22	31	1	660n	660w	Phillips Molly State No. 3	
5328	22	31	1	660n	1980e	Yates Unocal "AHU" Federal No. 1	
5337	22	31	11	660s	1650e	Yates Martha "AlK" Federal No. 3	
5338	22	31	11	1980s	1650e	Yates Martha "AlK" Federal No. 4	
5339	22	31	12	330n	1650w	Pogo Federal 12 No. 8	
5340	22	31	13	1980n	1980w	Texaco Federal Neff 13 No. 5	
5348	22	32	5	660n	1580e	Getty Bilbrey Federal No. 1	
5365	22	32	15	660s	165 0w	Strata Lechuza Federal No. 4	
5366	22	32	16	330s	330e	Yates Kiwi "AKX" State No. 1	
5382	22	32	25	660n	1980w	Pogo Covington "A" Federal No. 1	
5392	22	32	34	660n	165 0e	Pogo Red Tank "34" Federal No. 1	
5394	22	32	36	330n	1980w	Shell Bootleg Ridge Unit No. 1	
5404	22	32	36	660n	660e	Richardson & Bass Tidewater No. 1	
5405	22	32	36	1 980 n	1980e	Culbertson & Irwin Culbertson No. 1	
5406	22	29	9	660s	660e	H & W Danford No. 1	
5407	22	33	20	660s	1980e	Yates Mascho Cloyd No. 2	
5408	22	33	20	660s	660e	Yates Mascho Cloyd No. 1	

Data sources for this table include Popielak et al (1983), Register (1981), Kehrman (1994), Silva (1996), and information developed by Powers through visits to OCD offices in Artesia and Hobbs, NM.

Table 4.2-2 Brine Occurrence Depths and Unit Assignments

lDnum	Drillhole Name	Brine Depth (ft)	Depth* Data Source	Unit at Brine depth	Notes
<u>~</u> 1104	ERDA 6	2711	1,6,8,9	A2?	Uppermost anhydrite; may be A3
1159	WIPP 12	3017	1,7	A3	
5014	Pogo State "2" No. 3	3083	.5	A3	May only be gas
5128	Belco Hudson Fed No. 1	2802	1	A3	
5275	Phillips Luke Fed No. 1	3050-57	3,4,5	A3	Lost Tank SWD#1-E
5305	Pogo Fed No. 1	3322	1	A2-A3?	A units coalesce?
5306	Union Fed Fl No. 1	2810	1	A3	
5307	Yates Lost Tank "AIS" State No. 1	2970	4	H2-A3	A3-H2 contact 2932
5308	Yates Lost Tank "AIS" State No. 4	3280	4	A2	Uppermost anhydrite? No A3?
5326	Phillips Molly State No. 1	3080	4	A3	
5327	Phillips Molly State No. 3	3023	4	A3	
5328	Yates Unocal "AHU" Fed No. 1	3068	3	A3	
5337	Yates Martha "AIK" Fed No. 3	3311	3,4	H2	A3-H2 contact 3267
5338	Yates Martha "AIK" Fed No. 4	3750, 3745	3,4	H1	H1 from 4170 to 3688
5339	Pogo Fed 12 No. 8	3050	3	A3	
5340	Texaco Fed Neff 13 No. 5	3340	4	A3	
5348	Getty Bilbrey Fed No. 1	3090; 2965- 3066	1,5; 4	А3	
5365	Strata Lechuza Fed No. 4	3500	4	H2	H2 from 3700 to 3371
5366	Yates Kiwi "AKX" State No 1	TD(4535) ; 3400; 3360	3;5;4	A3	A3-H2 contact 3430
5382	Pogo Covington "A" Fed No. 1	3600	1,5	A3?	A3 in #5208 from 3385 to ?3650

7/10/96

lDnum	Drillhole Name	Brine Depth (ft)	Depth* Data Source	Unit at Brine depth	Notes
5392	Pogo Red Tank "34" Fed No. 1	3590- 4489; 3000	3,5	A3-A1; Salado (3000)	
5394 ~	Shell Bootleg Ridge No. 1	3671	1	A3 probably	A3-H2 not interpreted top A3 at 3466
5404	Tichardson & Bass Tidewater No. 1	3730	1	A3?	Compared to #5397
5405	Culbertson & Irwin Culbertson No. 1	3515	1,5	A3	Compared to #5210
5406	H & W Danford No. 1	1930; 2208	1;5	Cowden? @ 1952; A3 2150-2380	Scout report & NMBMMR well log report interpreted for Castile anhydrites/salt
5407	Yates Mascho Cloyd No. 2	3298; 3362	1;5	A3?	Unit inferred from maps, nearby wells
5408	Yates Mascho Cloyd No. 1	3322; 3362	1;5	A3?	Unit inferred from maps, nearby wells
	BOREHOLES NOT				
5315	Collins & Ware Lincoln Fed. No. 1	2000	3	Upper Salado	MB109 base 1926; top Vaca Triste 2106
5094	Phillips James A No. 9	7529	4	nd	Castile-BC contact at 3658 ft
5276	AEC 7	3918?	2,10	nd	gas blowout after well reached TD 3918

*References for Data Sources of Depths (see Reference list for complete citation):

- 1. Popielak et al, 1983
- 2. Register, 1981
- 3. Kehrman, 1994
- 4. Silva, 1996
- 5. Powers notes from OCD offices in Artesia and Hobbs, NM
- 6. Sandia National Laboratories and US Geological Survey, 1983
- 7. D'Applonia Consulting Engineers, Inc., 1982
- 8. Anderson and Powers, 1978
- 9. Jones, 1981

10. Sandia National Laboratories and D'Appalonia Consulting Engineers, Inc., 1983

Note: All stratigraphic unit assignments were reviewed by Powers based on reexamination of geophysical logs or by inferring units from nearby drillholes and contour maps of relevant units.

type (e.g., acoustic or neutron), drillhole conditions (open/cased), logged interval, and quality, which can be affected by unknowns such as hole diameter behind casing or by equipment development and improvement over the years. Where the geophysical log covers the appropriate interval and is at least partially interpretable, the principal data for geological analysis includes the elevation of the log reference or beginning point (commonly KB or kelly bushing) and the depth from the reference point to various stratigraphic markers.

With these basic data, two additional kinds of useful information are calculated:

structure data - the elevation of any identifiable stratigraphic marker (Appendix C), obtained by subtracting the depth from the reference point elevation, and

isopach (thickness) data - the thickness between any two identifiable stratigraphic markers (Appendix D), obtained by subtracting the depth to the uppermost marker from the depth to the deeper marker.

Both kinds of data are generally plotted on maps and then the elevations of the horizon for structure or the interval thickness values are contoured. The evaporite beds are expected to have been deposited essentially horizontal, and the upper surface of each unit was probably about horizontal when the overlying unit began to be deposited. Many of the units are expected to be reasonably uniform in thickness across significant areas, but there can also be differences if there was differential subsidence during deposition across the area.

The stratigraphic information is interpretive. Geophysical logs obtain data about rock characteristics indirectly. An example is natural gamma, a measurement of the natural radiation of the rocks the drillhole penetrates. The instrument is calibrated to a standard for the industry, and the display is scaled such that 100 API units (one full log cycle) would be the response from a hypothetical average mid-continent North American black shale. In a drillhole through unknown rocks, the natural gamma indicates the total gamma radiation from all sources, and it would be tentatively interpreted in terms of general expectations of the natural gamma of different rock types. Cuttings, other geophysical logs, or cores might be used to supplement the interpretation. In the area of WIPP, the evaporite units are well known in general from many thousands of drillholes and previous studies (e.g. Bachman, 1985), and their geophysical log characteristics are also well known (e.g., Jones et al., 1960; Holt and Powers, 1988; Powers and Holt, 1990). There is little difference in interpretation of the geophysical logs for many studies (see analysis in Appendix C of Powers and Holt, 1995). For this work, the main problem is that most geophysical logs for the Castile were taken in open holes. (See Limitations discussion below - section 5.5.)

The location data in standard township/range form were used to plot drillhole locations on preliminary maps and post values for structure and isopach maps. Such data are available from the geophysical logs and from Midland Map Company ownership maps

9

• -

7/10/96

used as convenient base map. State Plane coordinates were also assigned to each drillhole with stratigraphic data to examine statistical relationships between structural properties at drillhole locations and reports/nonreports of Castile brine. The statistical studies of this relationship are incomplete at this time.

5.0 CASTILE DEFORMATION

Early in the history of the WIPP project, pressurized Castile brines were considered to be related to deformation of the Castile (e.g., Griswold, 1977; Anderson and Powers, 1978; Register, 1981; Popielak et al., 1983). Popielak et al. (1983) proposed that brine resides in fractures created within anhydrite by deformation and that fewer large fractures provide vigorous initial flow when hit with a drillhole. Borns et al. (1983) reviewed basic information on evaporite deformation in the northern Delaware Basin, considered five hypotheses on the origin of deformation, and concluded that gravity foundering (due to denser anhydrite overlying halite) and gravity sliding were the most likely explanations. Nonetheless, the physical conditions for either mechanism exist over broad areas while deformation is apparently not widespread. Borns et al. (1983) suggest intergranular water may have varied areally, changing rock strength somewhat locally and leading to deformation in these areas. Petrofabrics in the deformed Castile are also consistent with pressure solution and intergranular fluids (e.g., Borns, 1987). It is possible that intergranular fluids contribute directly to deformation and are also the source of the pressurized brines, but this has not been established.

The analysis by Register (1981) reported 10 brine encounters from the 62 drillholes (existing at that time) into the Castile near the WIPP and inferred that nine of the 10 were associated with known anticlinal structures. There has been considerable drilling since 1981; in this section we report structural information from a much larger data base and examine whether we can still conclude that brine reservoirs are associated with Castile deformation.

Our data around Danford well (T.22S., R.29E., sec. 9) are so limited that we draw no conclusions about structure. Our maps for this analysis do not extend to the Danford well.

We use two main forms of structure information: structure contours on selected stratigraphic contacts and maps of thickness (isopachs) of selected intervals. We assume that the evaporites were deposited on generally planar, horizontal surfaces, though we also recognize that there may have been differential subsidence or tilting during some of the deposition. We also begin with a working assumption that most of the units were deposited with a reasonably uniform thickness; regional and local trends can be depositional, compensating for synsedimentary subsidence or tilting.

While the focus is on Castile deformation, we have examined some of the effects on higher units as background. There are two reasons for this. The structure and thickness of higher units help delineate or bound the extent and age range for deformation. In addition, there are many more data points on mid-Salado to Rustler stratigraphic units across the WIPP site. If brine is associated with Castile structure, but the effects of that structure can also be seen in higher units, it may be possible to

better judge the possibilities that brine underlies parts of the WIPP. This possibility had not been adequately tested statistically at this time.

5.1 Methods

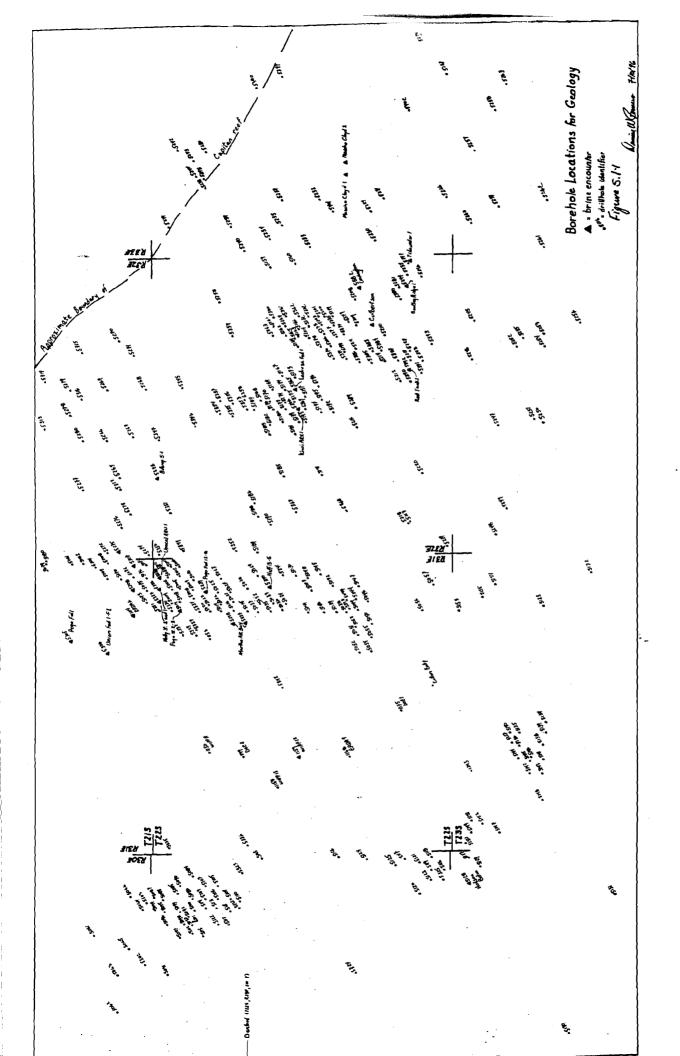
Data for structure and isopach maps were managed and computed using Rbase 5.5. Data were posted manually to maps and were contoured by Powers. All data were honored by contouring except some isolated points at the contour value (e.g., 1500) and some values at map edges, particularly along the northeast side of the map area where the Capitan reef underlies the area. Interpolation of values between data points is subjective but is generally roughly scaled. Dashes and dots for contour lines reflect decreasing confidence, generally in areas of fewer data points and at greater distance from data points.

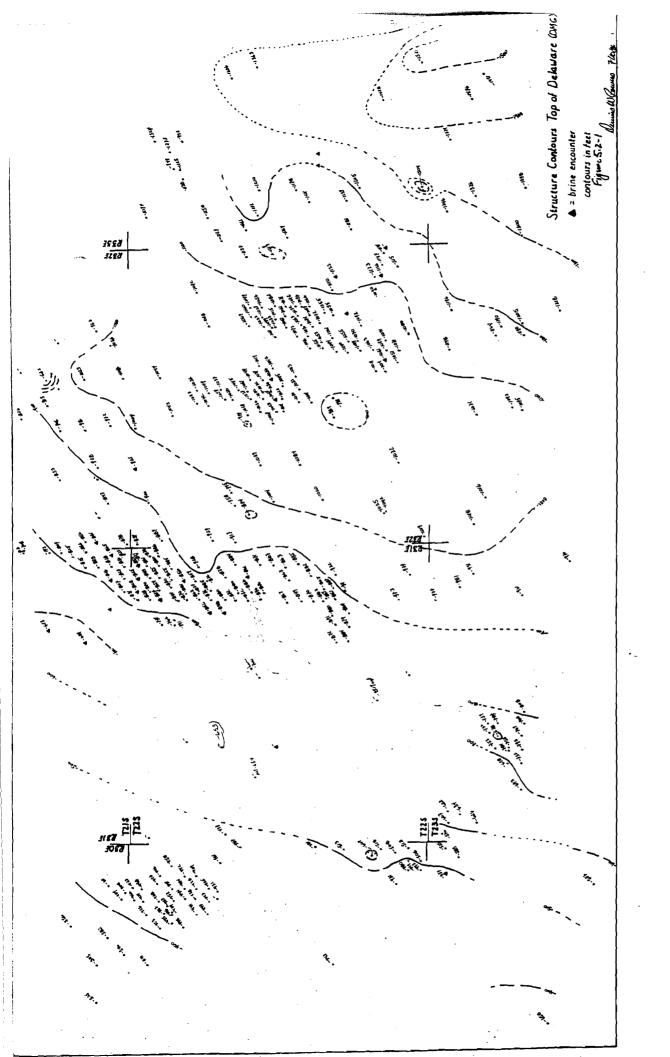
Single hole anomalies that remain generally have not been reconfirmed or resolved with available data. They should be treated with caution at this time.

5.2 Structure Contours

Drillhole locations are identified on Figure 5.1-1 with identification numbers tied to data tables (e.g. Table 4.2-2)

5.2.1 General


Over the area south of the study area, the top of the Delaware Mountain Group (DMG) displays relatively uniform strike slightly east of north and dips east about 75-100 ft/mile (about 1 degree) (Borns and Shaffer, 1985, fig. 16). This unit is the "basement" rock for our discussion.


For much of the study area, the DMG (Figure 5.2-1) continues the trends mapped by Borns and Shaffer (1985) for areas south of WIPP. Data for this contact are almost non-existent for the site area. We assume the NNE-SSW strike and modest east dip continues under the site.

In T.22S., R.32E., the contours indicate the DMG dips less than regional dip. Near the eastern edge of the map, some contours may be showing basin margin effects, though we include too few data to be certain.

While there are some differences from areas to the south, these are relatively minor. The structure of the DMG contrasts significantly with upper Castile horizons, as shown below.

Structure contours have been drawn for the top of the middle (A2) and upper A3) anhydrites of the Castile to demonstrate the main Castile features.

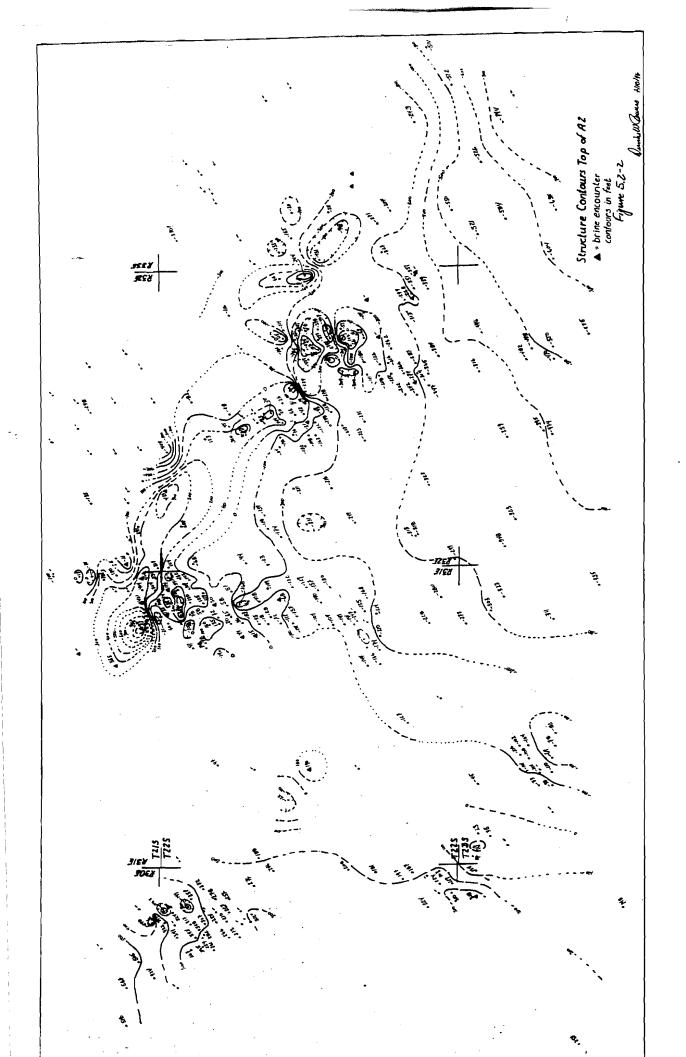
5.2.2 Anhydrite 2 (A2) (Figure 5.2-2)

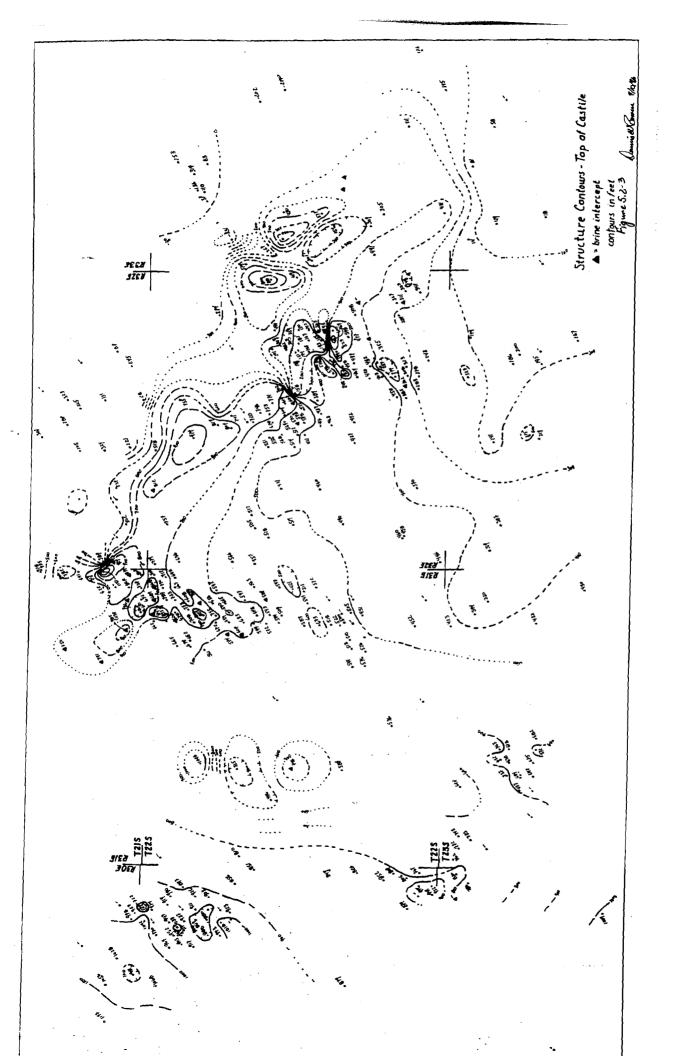
Over the area south of the study area, A2 has strike and dip similar to the DMG (see figure 13 of Borns and Shaffer, 1985). The southern margin of our map study area appears to be the transition area to more complex structure to the north in the study area.

The few data points at the site area show deformation in the northern area and approximately "normal" structure in the southeastern site area (the vicinity of DOE 1). Near the southwest corner of the site, this unit in the Hudson Belco well appears also to be structurally high, though no nearby wells exist west of the Belco well to confirm closure. Near the northwest corner of the WIPP, it appears that the attitude of A2 is changing to more east-west strike. Three holes, each somewhat isolated, indicate structure lows. There are no known brine encounters in the cluster of drillholes near the northwest corner of WIPP

East and northeast of WIPP, A2 has been deformed into a major anticline trending about NW-SE. At least half of the known brine encounters closely relate to this major anticline, and several others are located along subsidiary structures. A structural low in east-central T22S., R.32E., interrupts part of this trend. Along the southeast corner of the map area, structure contours run approximately east-west, normal to the strike further south and west. Three brine encounters are in this area, 200 - 300 ft above projected contours from the south. The Mascho 1 and 2 brine encounters in T.22S., R.33E., are near deformed areas, but data near these wells are few.

Nearly all the brine encounters on the map appear to be related to areas deformed at the A2 level. More than half appear in areas where structural closure is demonstrable or very likely. Most of the rest are in areas where A2 differs considerably from contours projected from the south into the area.


5.2.3 Anhydrite 3 (A3) (Figure 5.2-3)


In this area, the top of A3 is also the top of Castile. Most of the brine encounters are interpreted to flow from the lower part of this bed.

The major structures of A3 and associations with brine encounters are very similar to those described for A2. The top of A3 was uncertain in the Belco well, though other nearby wells indicate some local structure.

5.2.4 Comparison with Culebra Dolomite Member (Rustler Formation)

A recent structure contour map of the Culebra (Powers and Holt, 1995) shows that the main anticlinal structure north and east of WIPP persists to the level of the Culebra. Over the WIPP site, there are limited changes from regional trends that may be difficult to attribute to any process (Powers and Holt, 1995).

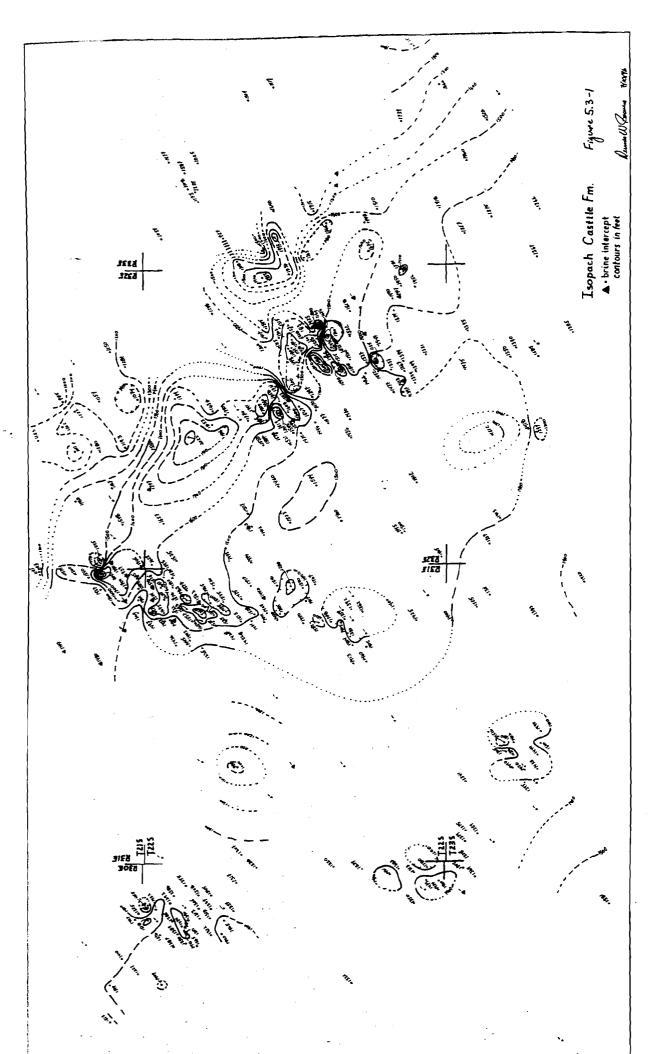
5.3 Isopach Information

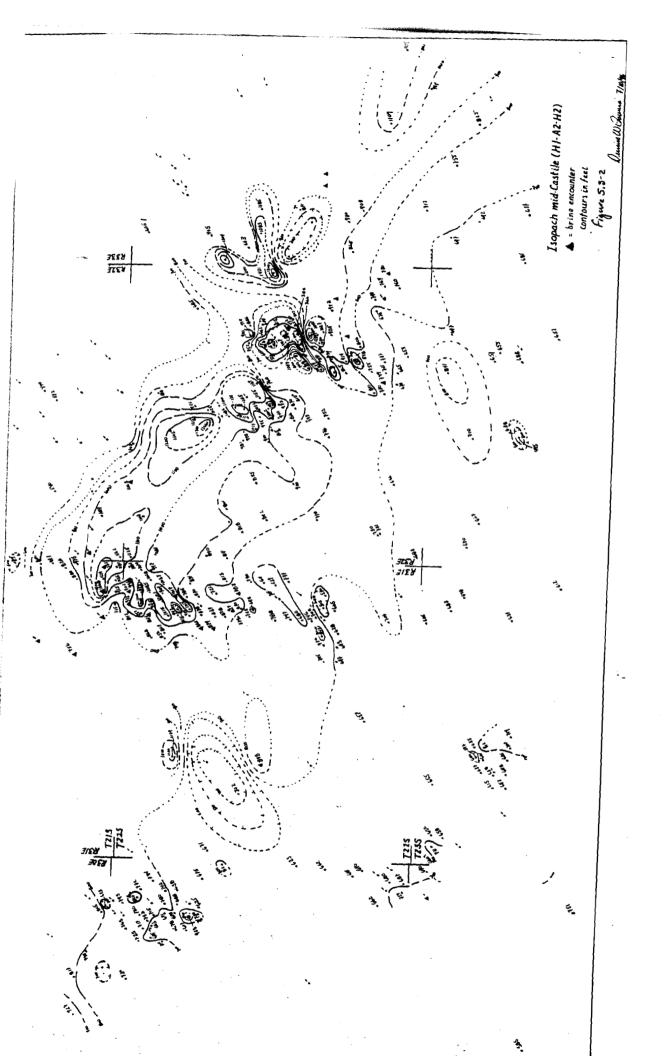
5.3.1 General

Three intervals were chosen to represent the main value of thickness maps: 1) Castile thickness, 2) the combined thickness of both halite numbers (H1, H2) and anhydrite (A2) between these halites, and 3) the thickness from base of Castile to base of the Cowden Anhydrite (of the Salado Formation). For simplicity, we call the third interval the IsoCowden.

5.3.2 Castile Thickness (Figure 5.3-1)

In areas near the southern margin of the site, the undeformed Castile is generally 1300-1400 ft thick. South and west of the site, isopach data are not very helpful. There may be local relative thickening and thinning near Hudson Belco, but the data are few. Over the site, DOE 2 shows thinning of the Castile; Borns (1987) described deformation features from Castile cores. While other WIPP drillholes at the site show structure, they do not go as deep as the DMG, and we have not inferred thickness in such drillholes for this analysis.


As expected, this map shows a strong thickening trend along the anticline north and east of WIPP. Just northeast of WIPP, there is an apparent minor thickening trend of about NNE-SSW. A localized thin area in east-central T.22S., R.32E. is consistent in location with a structural low along the anticline trend.


The apparent thickening of Castile northeast and east of WIPP is associated with many of the brine encounters. Nonetheless data are not available at several holes with brine, mainly because the DMG was not drilled or we cannot determine the stratigraphic contacts for the relevant beds. Some encounters east of WIPP are around areas of thickening or thinning, but thickness at the brine locations is not greatly different from undeformed areas.

5.3.3 Middle Castile (H1-A2-H2) Interval (Figure 5.3-2)

The main thickening and thinning trends and locations shown by the total Castile isopach are present in this map. There are more site details because more wells penetrated the relevant interval. Some local features show finer detail in this map compared to "smoother" contours for the thicker total Castile map. In "undeformed" areas south of the site, the thickness of the interval is about 600-700 ft.

In the northern part of the WIPP site a few drillholes are available that show the effects of deformation in the "disturbed zone" (see Powers et al., 1978). WIPP 12 and WIPP 11 show thickening, while WIPP 13 is much thinner. In the southeast part of WIPP, drillhole DOE 1 shows a "normal" thickness. The contours in these area are very approximate, and the thickness north of WIPP 12 is expected to be quite variable. While DOE 2 is difficult to interpret, there is almost no halite in the Castile at that location. If A2 was correctly identified, the thickness could be less than 150 ft.

7/10/96

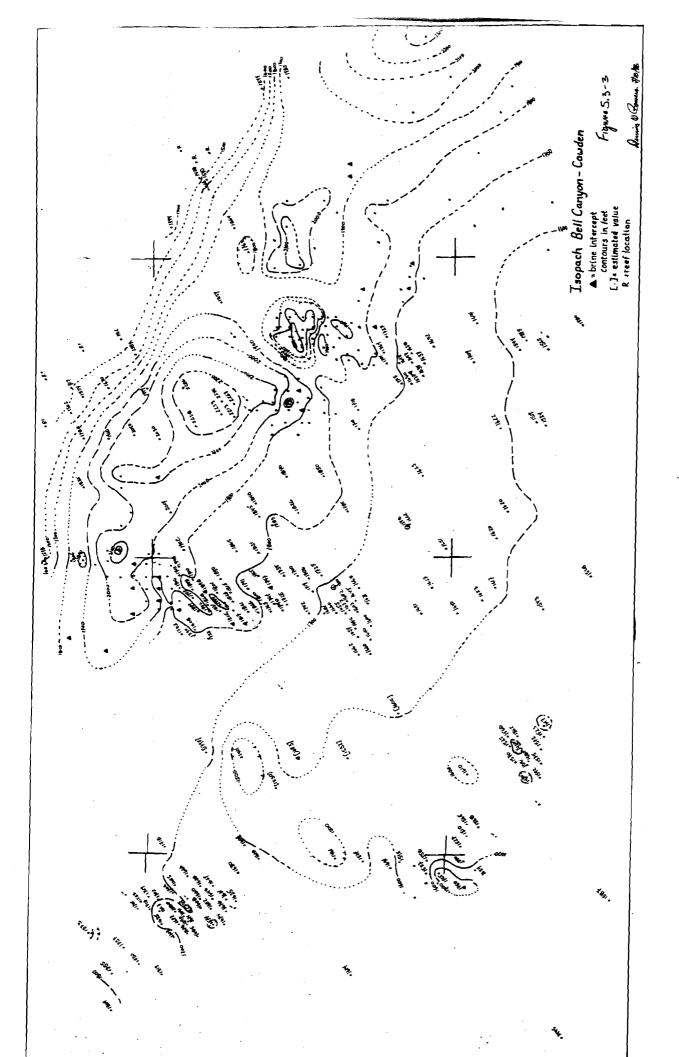
Off the southwest corner of WIPP, there are some limited indications of thickening, but the interval was not definable at Hudson Belco. Off the northwest corner of WIPP, there is northward thickening.

Northeast and east of the site, a thick area trends along the anticlinal structure and zone of thickening for the entire Castile. The thinner area in east-central T.22S., R.32E., displays some apparent "fabric" of local thin zones approximately normal to the trend of the thick zone.

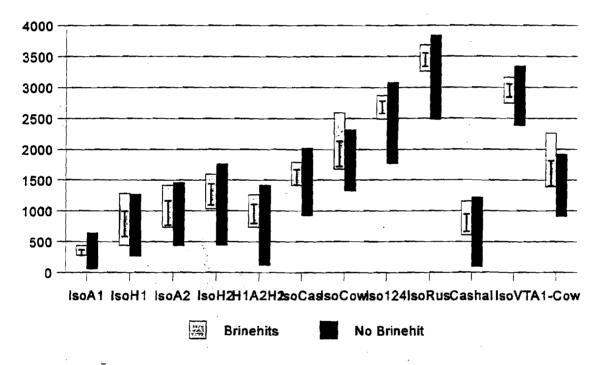
Most of the known brine occurrences can be associated with areas of thickening/thinning of this interval. There are several occurrences where data are inadequate and few where isopach changes are smaller or can be questioned.

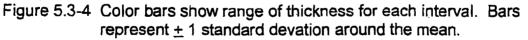
5.3.4 IsoCowden (Figure 5.3-3)

This interval is very similar to the total Castile isopach, and it should be because it is the Castile plus the salt (commonly called the InfraCowden) between Castile and Cowden Anhydrite. The main structures are present, though there is some broadening across the main structure of the ERDA 6 anticline.


This map includes some estimated values noted by []. The basis for the estimated values included on the map is provided in Appendix E. [Additional values for the thickness were generated from this map for later analysis in Section 8.0; only values that could be estimated independently from this map were included in this map.] The map was contoured in more detail than some others because this map has the most values, including estimates, of the thickness interval compared to other intervals.

While many of the brine intercepts occur in areas that are near the maximum thickness for the interval, some intercepts are not. While we think that most of the brine intercepts are in areas differing in thickness from regional trends, some are located in the mid-range of thickness for this map area.


5.3.5 Comparison of "Normal" and Thickened Zones


All three isopach maps show similar thickness differences between areas that are undeformed and deformed. This means that the thickening can principally be attributed to the halite members or the combined H1-A2-H2 interval. The basal (A1) and upper (A3) anhydrites included in the total Castile isopach differ much less from normal to deformed areas than does the interval with halite.

In order to examine further the relationship between various thickness intervals and the occurrence of brine, we plotted (Figure 5.3-4) the basic statistics (minimum, maximum, range of \pm 1 standard deviation around the mean) for a number of intervals for comparison. Those intervals are:

IsoA1	top of Bell Canyon to top of A1
lsoH1	top of Bell Canyon to top of H1
IsoA2	top of Bell Canyon to top of A2
IsoH2	top of Bell Canyon to top of H2
H1A2H2	base of H1 to top of H2
IsoCas	top of Bell Canyon to top of Castile (A3)
lsoCow	top of Bell Canyon to base of Cowden Anhydrite
lso124	top of Bell Canyon to base of MB 124
lsoRus	top of Bell Canyon to base of Rustler Formation
Cashal	sum to H1 and H2 thickness
lsoVT	top of Bell Canyon to base of Vaca Triste Sandstone Mbr
A1-Cow	top of A1 to base of Cowden Anhydrite

We see that the thickness associated with brinehits tends to be greater than for the other drillholes. Each Cowden interval shows greater thickness for brine hits. The minimum thickness of IsoCow associated with a brine reservoir is 1677 ft; at ERDA 9, near the waste panels, the estimated thickness of the IsoCow is $1532 (\pm 25)$ ft. This interval is the most reliable of all listed above with respect to largest number of data points with direct thickness information at any drillhole

This is because the Bell Canyon structure is reasonably well understood and considered to be best for interpolation and because the Cowden could be

interpreted reliably in more wells than the top of Castile. This interval is considered as a possible exclusionary indicator for brine reservoirs under the waste panel. The statistical data are further examined in Section 7.0.

5.4 Summary of Geological Relationship to Brine Encounters

The majority of reported occurrences of Castile brine are clearly associated with areas of deformed evaporites in the Castile. Geological information is too limited for one drillhole (Danford) to determine if the evaporites are deformed at that location. Several drillholes are located in the general area of deformation, but they are not on extreme features. Brine appears to be strongly related to structure in Castile.

Very limited data on the top of the Castile near the WIPP site indicate that there is little, if any, deformation under the waste panel area. From this, we would infer that there is low likelihood of intercepting a brine reservoir in a drillhole through the waste panel area. The thickness of some of the intervals, especially the IsoCowden (base Castile to base Cowden), at the waste panel is estimated to be about 145 ft less than the minimum thickness for this interval at any known brine encounter, suggesting there may be a threshold excluding the panel area as an area to expect brine encounters.

Though the association of brine to structure appears to be strong, we note that most drillholes in areas of structure do not report brine in the Castile. A drillhole that does not intercept brine is not a demonstration that brine does not exist within an area.

5.5 Limitations

Some of the limitations for the geological data are due to the nature of the data. The geophysical logs for this study are dominated by neutron and gamma logs taken through casing in the evaporite section. While many of the stratigraphic "picks" are relatively straightforward, some are not, requiring more subjective decisions based on experience. The posted values for the structure contour and isopach maps do not differentiate between such kinds of data. The contoured maps are themselves a means of checking the likelihood of any individual value by the surrounding values. Single hole anomalies should be reexamined regardless of the apparent quality of the original data.

Another limitation to the geological study is that several of the holes with brine encounters were drilled before modern geophysical logging and have such limited geological data available that we are unable to confidently interpret the stratigraphic horizons and structural features at the drillhole location. Because more reliable data from other drillholes demonstrates that the structure and isopachs can vary over short distances, we have limited our inferences/extrapolations about the structure at these hole locations.

Work has not been completed to examine possible statistical relationships between structure or isopachs and brine encounters. If there is found a relationship strong enough to be helpful, we expect to incorporate this later into a re-evaluation of the

kriging estimates of intercepting brine under the WIPP site (see section 7.0).

6.0 GEOSTATISTICAL ANALYSIS

6.1 INTRODUCTION

We utilize a geostatistical approach to estimate the conditional probability of a brine reservoir intercept within the Castile Formation because geostatistics permits quantification of a phenomenon's spatial correlation and it provides robust estimation algorithms in kriging. The data are first examined with a suite of geostatistical tools to estimate the phenomenon's covariance function and then test the covariance estimate's robustness. This function quantifies how the phenomenon's observed values are correlated in space, in time, or in both. We can gain a better understanding of the scale of the phenomenon from the correlation scale, the distance over which the observed values appear to be correlated, of most estimated covariance functions. The data and the estimated covariance function are then input into a kriging algorithm to give a "best" unbiased, minimized least-squares error estimate of the phenomenon's value at unsampled locations while honoring the data exactly. For a binary phenomenon, such as the presence or absence of a brine reservoir intercept, kriging provides a direct estimate of the probability of the phenomenon at an unsampled location conditioned on the data locations and on the estimated covariance function (Deutsch and Journel, 1992). We can test the validity or appropriateness of the probability estimates by comparing the estimated covariance with covariance functions estimated from related phenomena, particularly those which may have created or influenced the spatial distribution of interest.

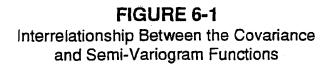
Our phenomenon of interest is whether a borehole will intercept a brine reservoir in the Castile Formation. We have observations of intercept/nointercept from 354 wells distributed across roughly 645 km² (252 mi²) of Delaware Basin. The WIPP site is roughly centered within this area. Taking on a value of either 1 or 0, binary variable observations are a type of categorical variable, which can represent phenomena such as rock types, counts of numbers of species, or whether a contaminant concentration exceeds a given threshold value. In contrast, continuous variables describe phenomena whose values vary more continuously than discretely; e.g., hydraulic conductivity, chemical concentration, temperature, etc. We seek the probability of a brine reservoir intercept at specific unsampled locations. Assuming the data set is representative and that classification errors are negligible, we can calculate a probability estimate for the unsampled locations which depends on the observed values: divide the 27 intercepts by 354, the total number of observations, to get a mean probability of 0.076. Although legitimate, this approach does not include information contributed by locations of the observed values relative to the

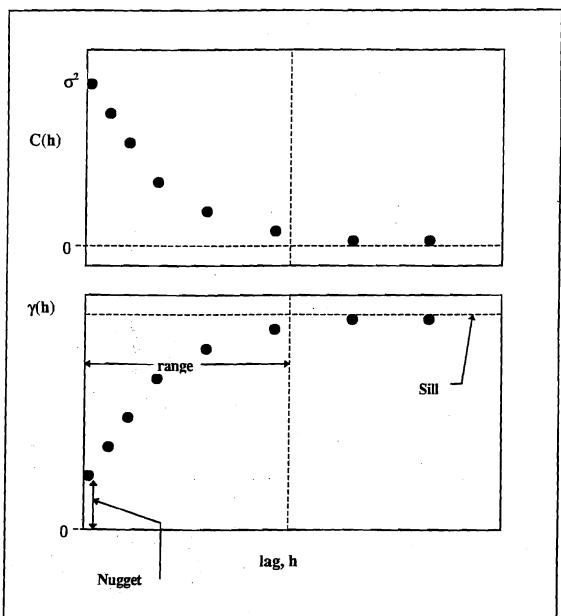
unsampled locations of interest. It is equivalent to deciding that there is no spatial relationship between occurrences; the mean probability can be reduced by simply enlarging the study area, which will include more drillholes without evidence of brine occurrences.

We can treat the observed values as having originated from a random function (RF), a name which is applied to a collection of random variables distributed across a domain of interest. The spatial correlation of a RF Z is described by the (auto)covariance, $C_{Z(x),Z(x+h)}$, where E is the expectation operator, x is the location vector for an observation, and h is the distance between it and another observation.

$$C_{Z(x),Z(x+h)} = E^{[Z(x) - E[Z(x)]][Z(x+h) - E[Z(x+h)]]}$$
(Eqn.6-1)

If we assume that the mean is constant and that the covariance is simply a function of the distance **h** separating the two values within the domain of interest, we can then simplify the covariance function:


$$C_{r}(h) = E\{[Z(x) Z(x+h)]\} - E\{Z(x)\}^{2}$$
 (eqn. 6-2)


These assumptions are the result of deciding to treat the random function Z as a stationary RF. It is useful to decide an RF is stationary because we seldom can take repeated measurements of the phenomenon of interest at the same location, making it impossible to estimate the cumulative distribution function (cdf) at that point. Instead, by deciding to use a stationary random function model, we can use samples from other locations to estimate the cdf. It cannot be determined from the data whether the stationarity decision is valid . See Deutsch and Journel, 1992, p 12-13; Isaaks and Srivastava, 1989, p. 220-221; and Journel, 1986 for further discussion. This decision, however, permits us the use of a range of geostatistical tools, such as the semi-variogram, to estimate the covariance and thereby quantify the spatial variability.

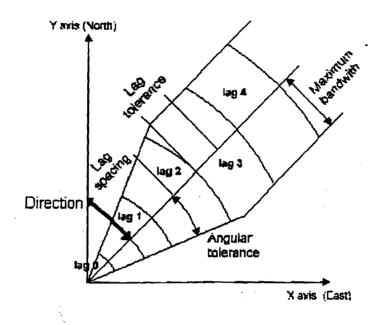
The semi-variogram, g(h), is the variance of the difference between observations separated by a distance (or lag) h:

$$\gamma(h) = \frac{Var\{Z(x-h) - Z(x)\}}{2} = C_Z(0) - C_Z(h)$$
 (Eqn. 6-3)

The covariance at separation distance **0** is simply the variance of Z. Equation **3** demonstrates the relationship between the variogram and the covariance function for a stationary RF. Their interrelationship is depicted in Figure 1. The

.

S. Sec. Sec.


following discussion assumes a random function defined over a two-dimensional domain; generalization to a three-dimensional domain is straightforward. Most semi-variograms consist of three parameters: the range, defined as the lag at which the semi-variogram value levels out, i.e., the correlation between two observations decreases to zero; the sill, defined as the $\gamma(h)$ value at which the semi-variogram levels out; and the nugget, which refers to a discontinuity between the estimated semi-variogram's first point (nearest to a zero lag) and the origin. The range represents the length (or time) scale over which correlation between any two observations is still observed. The sill represents the population or sample variance of all the observations, and the nugget represents the sum of measurement errors and small-scale spatial variability not yet resolved. Each of these is depicted in Figure 6-1.

If, when calculated along a number of different directions, the sample semivariograms show no significant changes in range, nugget, or sill values then the phenomenon is said to be isotropic; otherwise, it is anisotropic. Anisotropy in the directional semi-variograms is analogous to the major and minor axes of an ellipse (or ellipsoid in 3-D space). The directions corresponding to the major and minor axes can be thought of as the phenomenon's preferred or principal directions. Figure 6-2 demonstrates the relevant parameters for calculating a directional semi-variogram. To calculate an isotropic semi-variogram, which is also called an omni-directional semi-variogram, the search and bandwidth distances and half-angle should be set to their maxima, e.g., the length of the domain and 90 degrees, respectively.

A host of related geostatistical tools for describing spatial variability have been developed to complement the strengths and weaknesses of the semi-variogram (see Deutsch and Journel, 1992, p. 56). The correlogram and non-ergodic covariance functions can filter out trends in the variances and means for each lag group respectively. The relative semi-variograms and semi-rodogram are less susceptible to data clustering and outlier values than the semi-variogram. The semi-madogram is more robust to outliers than the semi-variogram. Prudent practice requires that one or more of these alternative measures of spatial variability be examined in addition to the traditional semi-variogram.

Estimation of the values at unsampled locations can begin once the spatial variability has been adequately characterized by a semi-variogram (or covariance) function with an estimated sill, nugget, and range. A very wide range of methods have been developed to solve the general interpolation problem (see Cressie, 1991), but only the kriging algorithms provide an unbiased, minimum error variance estimate, which exactly honors observed values, for an explicit covariance model. The kriged or predicted value is a function of the estimated covariance and of the locations, not the values, of the initial observations of the phenomenon. However, the value predicted for an unsampled location is conditional on the observed values, since they are

Adapted from Y. Pannatier, VARIOWIN HELP.

reproduced exactly by the algorithms. When applied to a binary variable, such as the presence or absence of a rock type or a brine reservoir intercept, the most commonly used kriging algorithm, ordinary kriging, provides a direct estimate of the conditional probability of that variable (Journel, 1984; Deutsch and Journel, 1992, p. 73). As above, this probability estimate is a function of the covariance model adopted and of the data locations and is conditioned on the observations.

.....

6.2 METHODS

6.2.1 Variography

Variography is the process of extricating a phenomenon's spatial correlation from a set of observed values. Also known as structural analysis, the process focuses on estimating a sample semi-variogram or related functions, which are proxies for the covariance function, and then critically examining the estimate for sensitivity to individual data points, data clustering, and extreme values (outliers). Values for the range, sill, and nugget are determined from a theoretical semi-variogram model which is fitted to the sample semi-variogram.

6.2.1.1 Sample Semi-Variogram Calculation

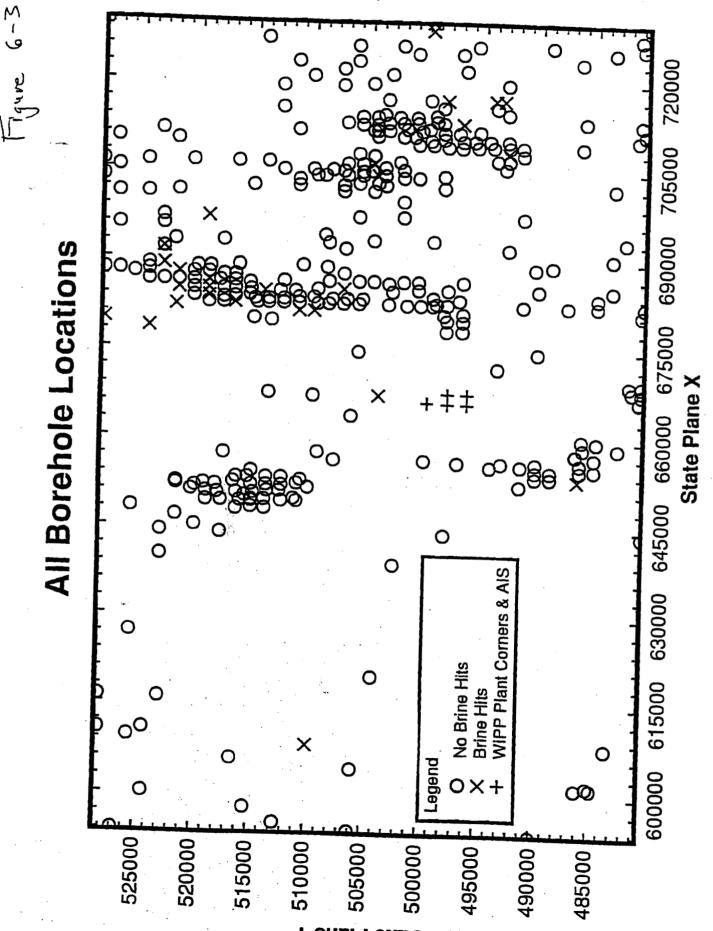
Semi-variograms are calculated according to

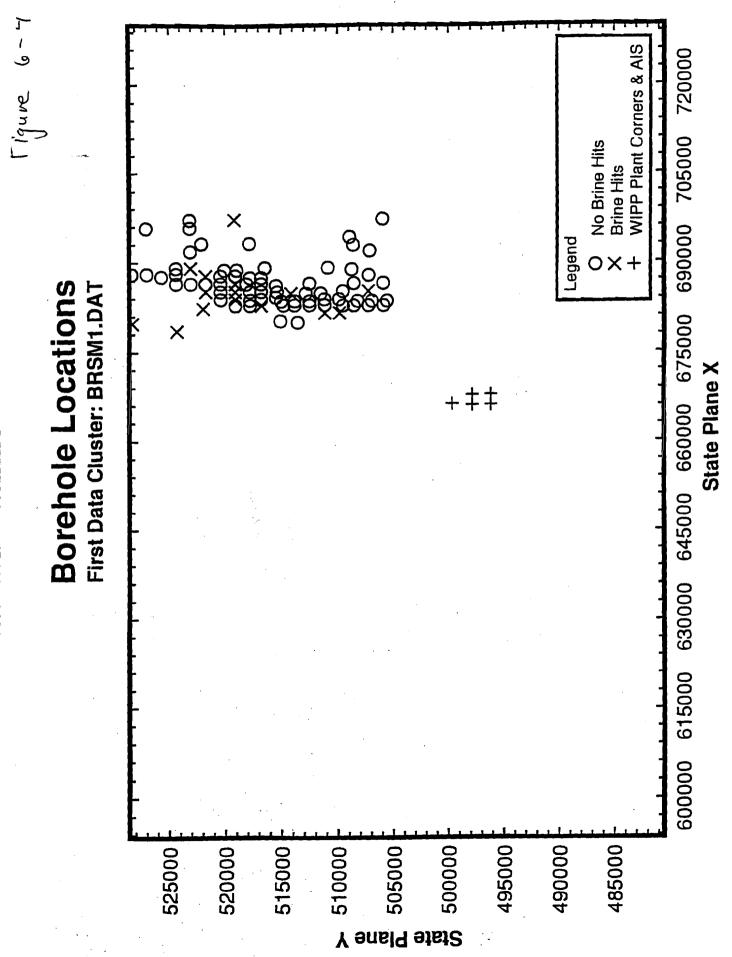
 $\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} (x_i - y_i)^2$ (Eqn. 6-4)

where **h** is the approximate or average lag distance for each lag class, N(h) is the number of pairs for each lag class, x_i is the initial or tail value, and y_i is the final or head value for the pair. All variographic calculations were carried out using the VARIO module of the public domain software package UNCERT (Wingle et al, 1994), available from the Colorado School of Mines in Golden, CO. Calculations for the final semi-variograms were compared with those from two other geostatistical software packages: GSLIB (Deutsch and Journel, 1992) and VARIOWIN (Pannatier, 1994).

Since the geological structure data were not available to help constrain the choice of geometric directions prior to this study's start, we calculated sample semi-variograms for the isotropic (omni-directional) case and for a full range of anisotropic geometric directions. This ensured there was no bias in the selection of sample semi-variogram directions. We did not consider zonal anisotropy in this analysis because we have assumed the Castile Formation, from which all of the observations were collected, has a homogeneous variance

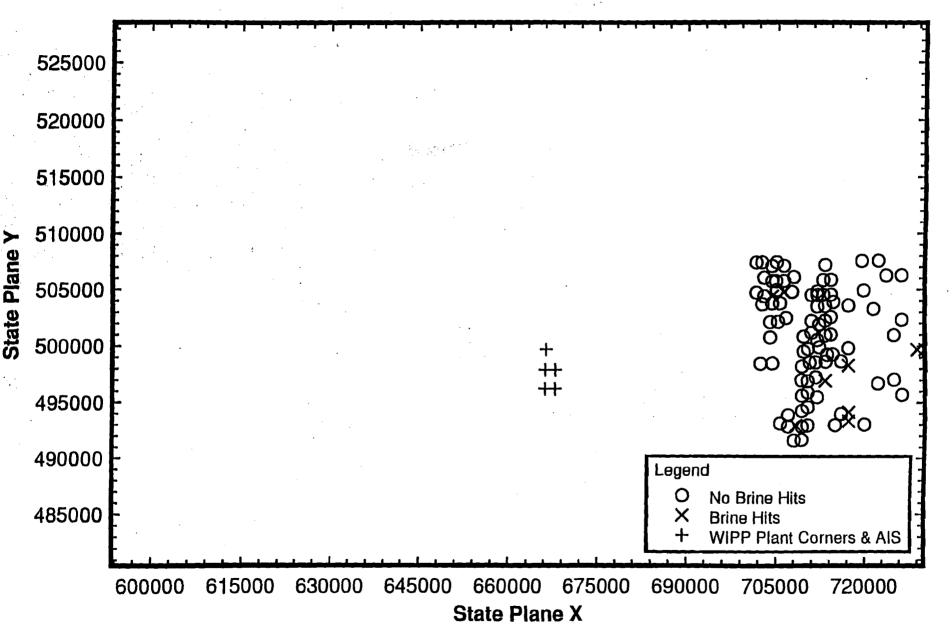
7/10/96


about the probability of a brine intercept. That is, the brine intercept probability variance is constant across the study area. Our results indicate the sill does not vary significantly compared to the ranges for the directional sample semi-variograms and therefore the anisotropy is better described by the geometric rather than the zonal approach.


The directional semi-variograms were estimated for azimuths 0, 20, 45, 70, 90, 110, 135, and 160 degrees measured clockwise from a 0 degree north. Lag spacings between 1000 ft and 2000 ft were examined because they bracketed the most common borehole spacings observed in the data. The maximum search distance, directional bandwidth, and horizontal half-angle were set to their maximum values of 150000 ft, 150000 ft and 90 degrees for the isotropic sample semi-variogram. The data were sufficient in number to restrict the horizontal half-angle to 15 degrees , maximum search distance to 50000 ft, and the directional bandwidth to 10000 ft and still have adequate numbers of observation pairs (>30) within each of the first 20 or more lags for all of the anisotropic sample semi-variograms.

Sample semi-variograms were judged significant if they exhibited a reasonably monotonic increasing structure within the first 25% of the lag classes with adequate numbers of pairs within each lag class. All significant sample semi-variograms were retained for fitting of theoretical semi-variogram model parameters (range, sill, and nugget variance). When an anisotropic sample semi-variogram was found significant, we calculated the sample semi-variogram along its orthogonal direction.

6.2.1.2 Sample Semi-Variogram Robustness


Clustering of the data locations can create apparent structure in sample semivariograms (Deutsch and Journel, 1992; Isaaks and Srivastava, 1989, p. 162). Given the obvious clustering of borehole locations (see Figure 6-3), we tested the sample semi-variogram robustness to clustering using two different approaches. The first compares sample semi-variograms from the entire data set with those computed for two non-overlapping data subsets which have relatively uniform spatial distributions of boreholes and possess adequate numbers of brine reservoir intercepts. Subset 1 contains 81 boreholes, 15 of which had brine intercepts. Subset 2 holds 93 boreholes, 9 of which had evidence of brine intercepts. Figures 6-4 and 6-5 show the locations of the two data subsets. These two subsets were the only areas to possess both a relatively uniform distribution of boreholes and sufficient numbers of brine intercepts. Most of the boreholes in these two subsets were drilled to explore sand channels which underlie the Castile Formation. Correlation structures which appeared significant in each of the data subsets and in the complete data set were judged to be independent of the large scale data clustering evident in Figure 6-3.

Borehole Locations

Second Data Cluster: BRSM2.DAT

6-5

igure

The second approach utilizes alternative measures of spatial continuity which are less sensitive to data clustering. The general and pairwise relative semivariograms are typically less vulnerable to clustering because they normalize the semi-variogram value for each lag class by the squared mean of the data and the squared average of the paired values; however, they can only be computed for strictly positive data (Deutsch and Journel, 1992). Since our data were mainly zeros and a few ones, we added a value of one to each data point, shifting the data range from [0,1] to [1,2] and then calculated the relative semivariograms. This shift preserves the maximum and minimum differences between any two data points, which are all that is required for calculation.

The semi-rodogram, defined as

 $\gamma_R(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} \sqrt{|x_i - y_i|}$ (Eqn.6-5)

is also more resistant to clustering than the semi-variogram (Deutsch and Journel, 1992, p. 56). However, this measure (and the related semi-madogram) is numerically identical to the semi-variogram when computed for a binary variable limited to differences of 1 and 0. While this may suggest the semivariogram for a binary variable with the same maximum and minimum differences should be relatively indifferent to data clustering, it may simply be a numerical artifact. Accordingly, the semi-rodograms were not used in the analysis.

We examined the impact of classification error on the sample semi-variogram calculations. Initial variographic calculations had been made prior to reclassifying well AEC7 from a brine intercept to a non-intercept. We recalculated sample semi-variograms for each of the data subsets and for the entire data set and then compared them to the previous results.

Undue influence of outlier data values was not considered to be significant because the range of allowable values was strictly limited to 0 and 1.

6.2.1.3 Theoretical Variogram Model Fitting

The range, sill, and nugget variance were estimated for each of the final sample semi-variograms using UNCERT's VARIOFIT module. Fits of each of the most common theoretical semi-variogram models: spherical, exponential, and Gaussian, were made both with and without non-zero nugget variances. Model fit was evaluated subjectively with the objective of preserving the apparent smaller scale range and nugget as much as possible. Automated, non-linear curve fits of theoretical models to the sample semi-variograms were also examined to check for subjective bias in the initial manual fit.

* 16

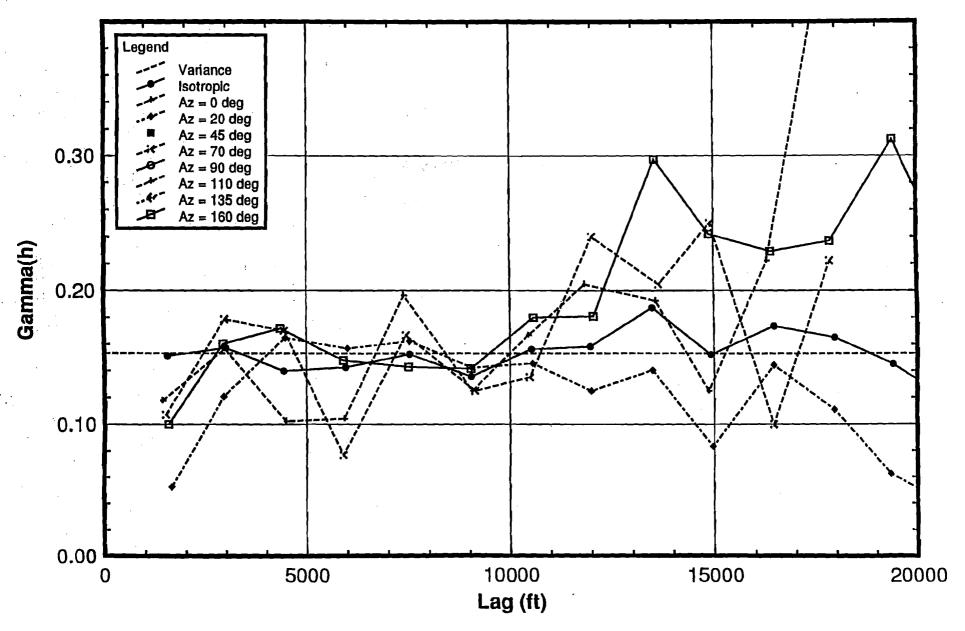
6.2.2 Kriging of a Binary Categorical Variable

We estimated the conditional probabilities of a brine intercept at regularlyspaced grid nodes using ordinary point kriging for each of the selected theoretical semi-variogram models. An areally-averaged probability was then computed from the kriged point probabilities for the waste panel area.

Ordinary point kriging was carried out using UNCERT's GRID module for each theoretical semi-variogram model. Inputs include the estimated semi-variogram parameters, the intercept/no-intercept observations, grid definition parameters, and search parameters. We selected a 1000 ft grid node spacing along both the N-S and E-W axes. The kriged domain range included all of the data points and had an E-W range of [590000, 731000] and a N-S range of [480000, 530000] in NM state plane coordinates. We compared results from the normal search mode, with minimum and maximum number of data points set to 4 and 16, to those from the octant search mode, which had minimum and maximum number of data points.

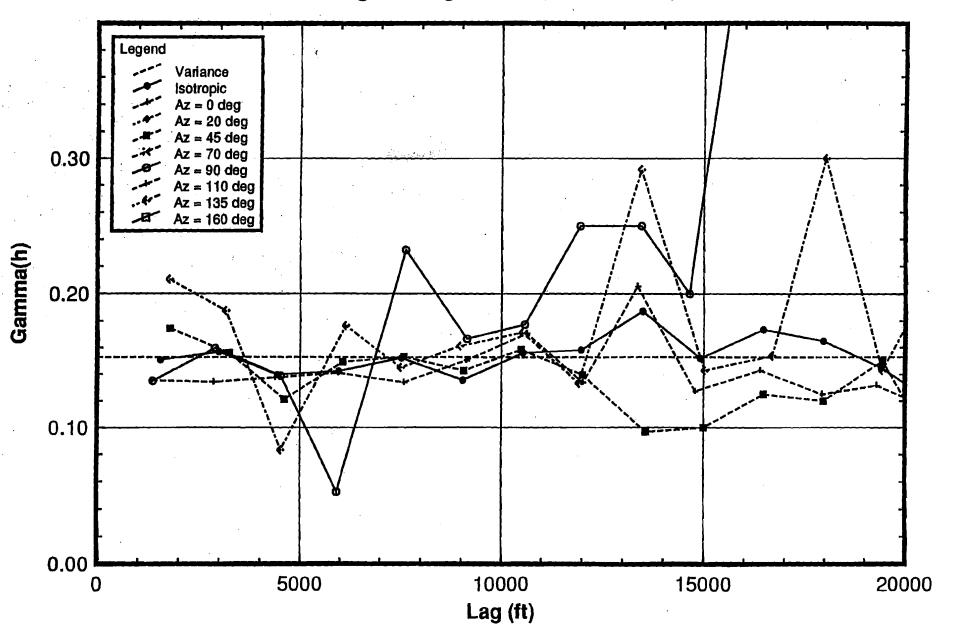
The CONTOUR module from UNCERT was used to create color-coded maps of the conditional brine intercept probabilities for each of the semi-variogram models. Point-kriged probabilities for each node within the waste panel, the shaft pillar, and the experimental areas were pulled from the output files and noted. We estimated an average conditional probability for the entire waste panel area through weighting each nodal conditional probability by the percentage of the total waste panel area it influenced. These calculations were made using the EXCEL spreadsheet package.

We checked the point-kriged probabilities from UNCERT's GRID module against results from GSLIB's KTB3D algorithm using the same grid, search, and variogram model parameters.


6.3 RESULTS AND DISCUSSION

6.3.1 Variography

6.3.1.1 Sample Semi-Variogram Calculations


Figures 6-6ab and 6-7ab show all the sample semi-variograms for the first and second data subsets. Figure 6-6a depicts the most significant sample semi-variograms found in Subset 1: the isotropic case and azimuths 20 and 160 degrees together with their orthogonals (110 and 70 degrees, respectively). The remaining directional sample semi-variograms, shown in Figure 6-6b, demonstrate a pure nugget effect, i.e., there is no spatial correlation. Figure 6-7a shows that only the azimuth 160 directional semi-variogram clearly demonstrates any correlation structure. The isotropic case semi-variogram also

Castile Brine Reservoirs: BRSM1.DAT

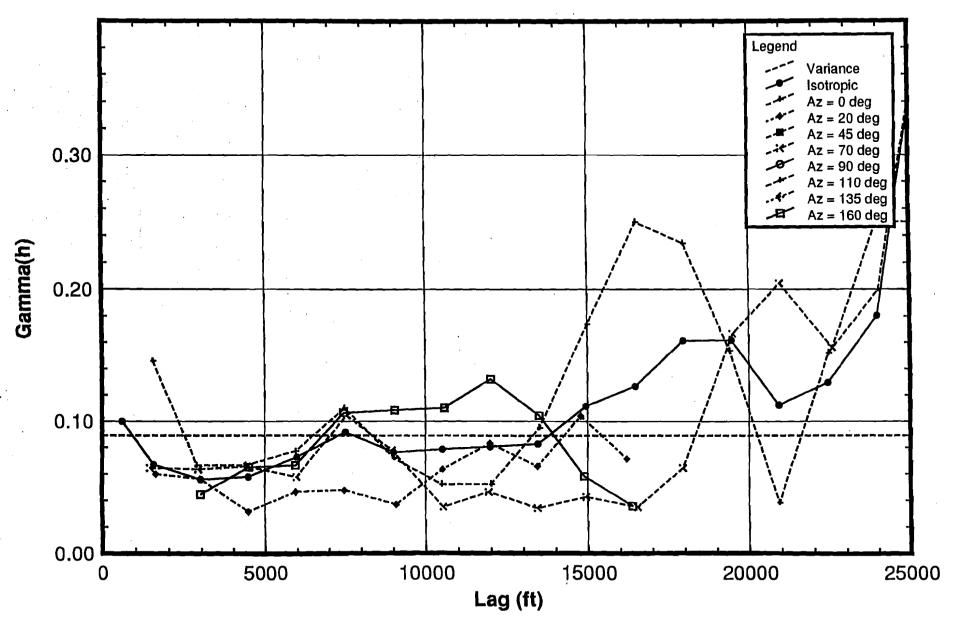

Castile Brine Reservoirs: BRSM1.DAT

Figure 6-66

Castile Brine Reservoirs: BRSM2.DAT

Figure 6-70

Castile Brine Reservoirs: BRSM2.DAT

Semi-Variogram: Lag = 1500 ft; BW = 10000; HA = 15

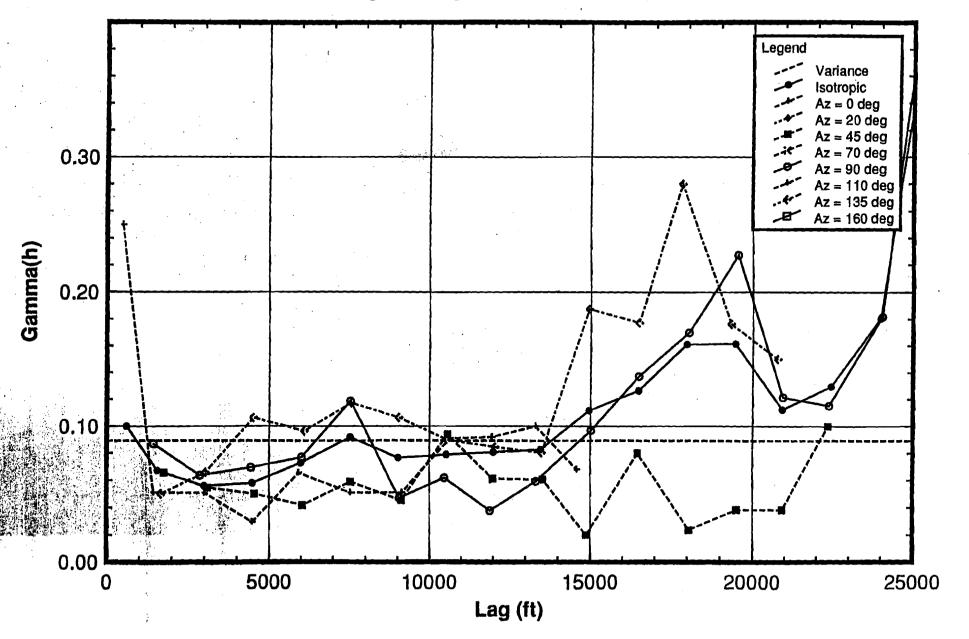
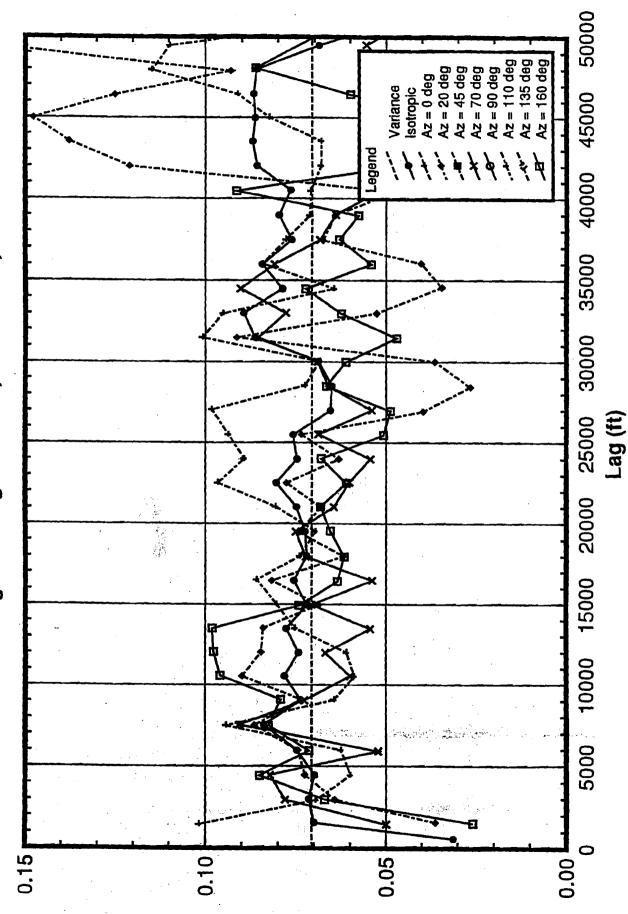


Figure 6.76

demonstrates correlation structure because its first lag spacing point has too few pairs to be considered a valid estimate. The 20 degree azimuth does not exhibit significant correlation structure. The same holds for all the remaining directions depicted in Figure 6-7b.

Figure 6-8a indicates that significant correlation structure can be found in the isotropic and 20, 70, and 160 degrees azimuth sample semi-variograms for the complete data set. Figure 6-8b shows that the remaining directions have no correlation structure and are best described by a pure nugget effect. The relatively large number of data points within the complete data set ensured that large numbers of pairs were found in all of the early lag classes, e.g., from 0 to 20000 ft lags. The semi-variogram values are typically less dependable for the later lag classes because the semi-variogram estimates become increasingly unstable as lag spacing increases beyond 25 to 40% of the maximum separation distance within the data set.


The only spatial correlation structures which appear consistently across the three data sets are the isotropic (omni-directional) and the anisotropic 160 degrees azimuth sample semi-variograms. The latter sample semi-variogram persisted across a fairly narrow range of azimuth angles: from 157 to 162 degrees azimuth. Although it exhibits some noise (or, potentially, cyclicity) at the fourth lag, the 70 degree azimuth sample semi-variogram was consistent across the three data sets. The correlation structures observed for the 160 and 70 degree azimuth and isotropic semi-variograms persisted when lag spacings were varied from the initial value of 1500 ft to 1000 and 2000 ft. This was not the case for the 20 degree azimuth semi-variogram, which was observed at 1500 and 2000 ft lags but not at the 1000 ft lag. Furthermore, its orthogonal semi-variogram (azimuth of 110 degrees) did not show any significant correlation structure in any of the data sets for any lag spacing. Consequently, the 20 degree azimuth model was not considered to be a significant sample semi-variogram.

The relative semi-variograms for the complete data set shifted from [0,1] to [1,2] (see Figures 6-9ab and 6-10ab) confirm the isotropic and 160 and 70 degree azimuth semi-variograms demonstrate significant correlation structure. Changing borehole AEC7 from an intercept to a no-intercept had a negligible impact on the estimated sample semi-variograms. We found an exact equivalence to four or more decimal places between the calculations made with UNCERT's VARIO and those made using the GSLIB and VARIOWIN variography routines. The calculation results for each package are presented in Appendix I.

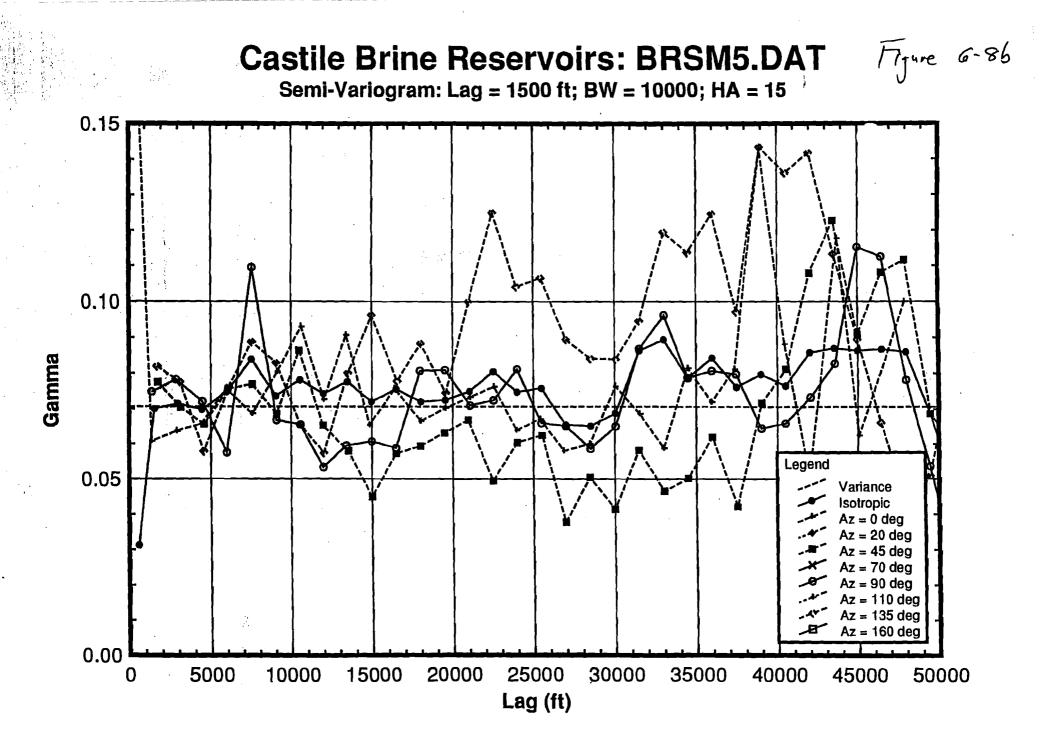

6.3.1.2 Theoretical Semi-Variogram Model Fitting

Table 6-1 presents the range, sill, and nugget variance parameters fitted for the

Fijure 6-89 Castile Brine Reservoirs: BRSM5.DAT Semi-Variogram: Range = 1500 ft; BW = 10000; HA = 15

Gamma

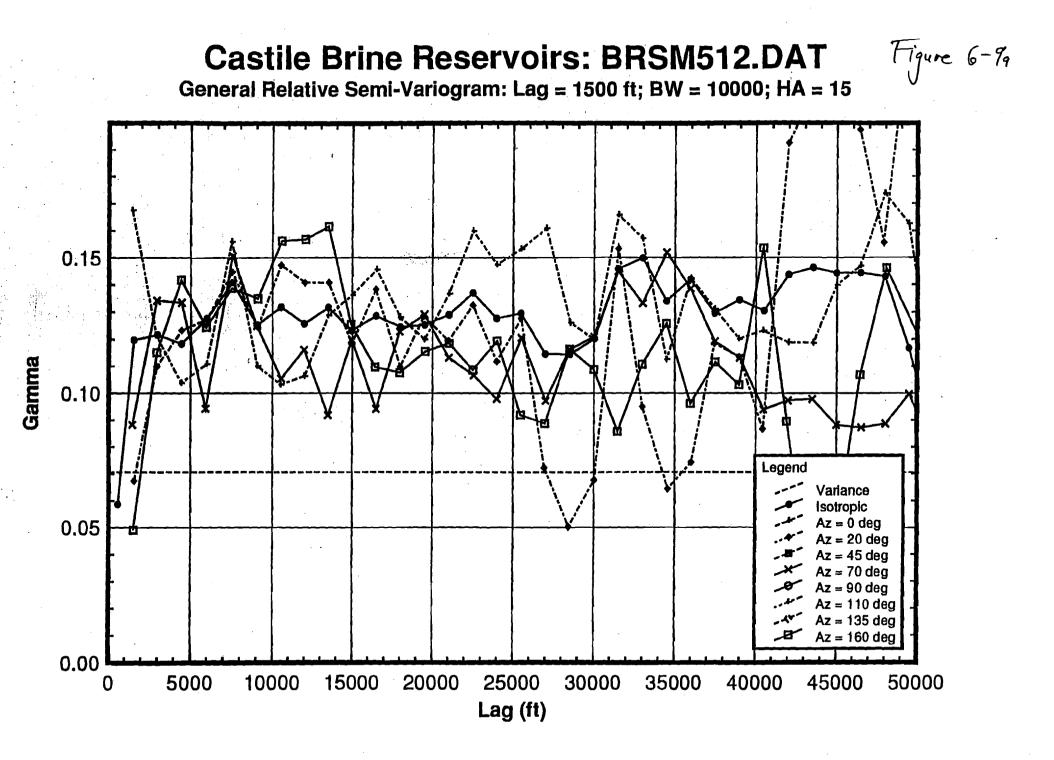
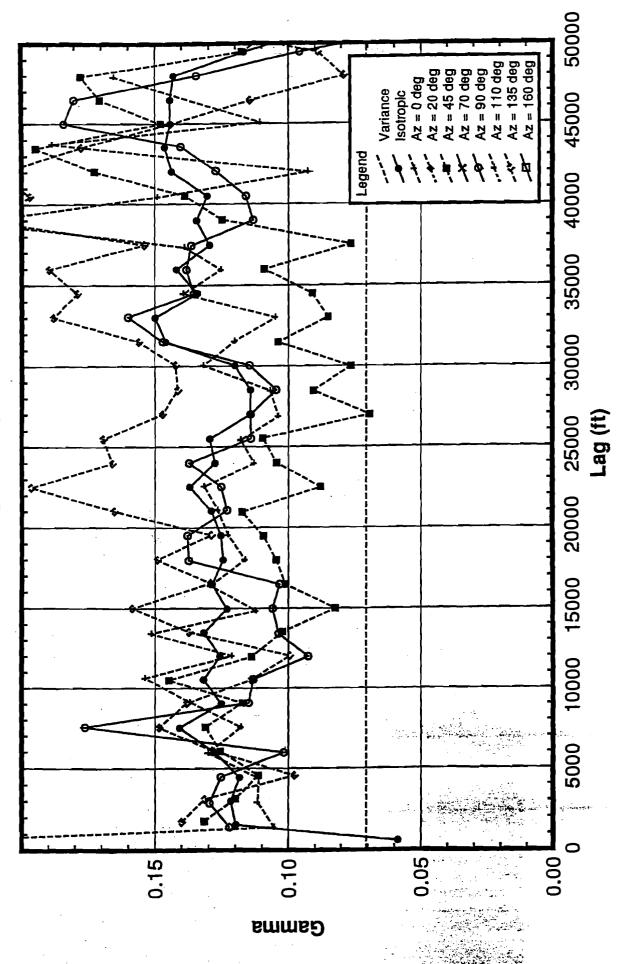
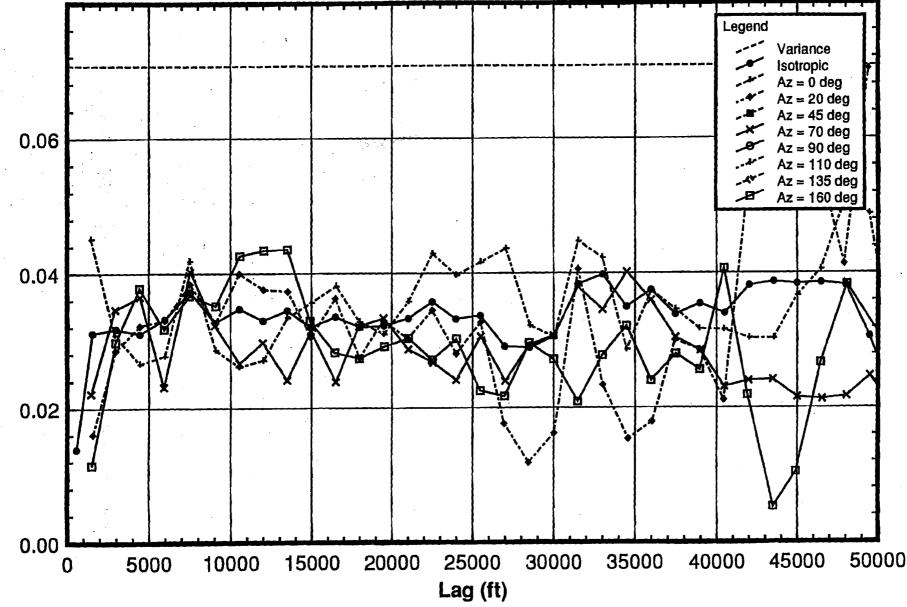



Figure 6-96



Castile Brine Reservoirs: BRSM512.DAT

Figure 6-10a

Pairwise Relative Semi-Variogram: Lag = 1500 ft; BW = 10000; HA = 15

Gamma

Figure 6-106 Pairwise Relative Semi-Variogram: Lag = 1500 ft; BW = 10000; HA = 15 Legend ---Variance Isotropic Az = 0 degAz = 20 degAz = 45 degAz = 70 deg0.06 Az = 90 degAz = 110 degAz = 135 degAz = 160 degP Gamma 0.04 0.02 0.00 15000 5000 20000 10000 25000 ,30000 35000 40000 45000 50000 0 Lag (ft)

Castile Brine Reservoirs: BRSM512.DAT

isotropic and two anisotropic sample semi-variograms. The "best" fits were made using the spherical theoretical variogram model, typically with zero nugget variance. The Gaussian theoretical variogram model allowed a non-zero nugget for the 160 degree azimuth sample semi-variogram. Figures 6-11abc show how the fitted spherical theoretical variograms match the sample semi-variograms.

It is important to note that the effective ranges of the various theoretical model types differ substantially. While the spherical model's range and effective range are equal, the effective range for the Gaussian model is $\sqrt{3}$ times its range. Similarly, multiply the exponential model's range by 3 to get its effective range. Only the effective ranges can be compared across model types.

Sample Semi-Variogram	Theoretical Model Type	Nugget	Range (ft)	C (= Sill - Nugget)
Azimuth 160 degrees	Spherical	0.00	5700	0.085
	Gaussian	0.01	2500	0.074
Azimuth 70 degrees	Spherical	0.00	2880	0.080
· · · · · · · · · · · · · · · · · · ·	Gaussian	0.01	1400	0.068
Isotropic	Spherical	0.01	2500	0.065
	Exponential	0.00	800	0.076

Table 6-1 Fitted Model Variogram Parameters

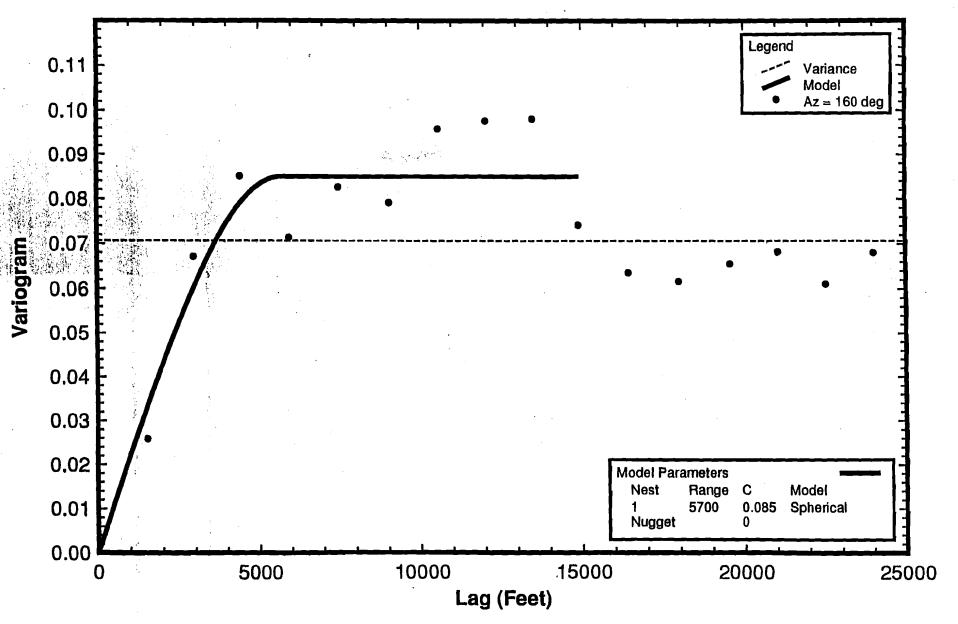

6.3.2 Kriging

Figure 6-12 shows the point-kriged conditional probability of a brine reservoir intercept for the WIPP site and the surrounding vicinity using the 160 - 70 degree azimuth model semi-variograms. The waste panel centers are indicated by four crosses located in the center left of the map at roughly state plane coordinates [667000, 499000]. It is immediately south of the isolated brine reservoir hit shown as a high probability zone in yellow and orange. Note the anisotropic orientation of the probability contours: they are aligned along an azimuth corresponding to the 160 degree sample semi-variogram orientation. The contours form an ellipse because the 70 degree azimuth range is roughly half the range for the 160 degree orientation. The were no differences observed, to three or more decimal places, in point-kriged intercept probabilities within the site area footprints when results from the normal and octant search methods were compared. Figure 6-13 shows the individual nodal kriged probabilities within the site's three areas of interest: waste panel, shafts and access, and the experimental area. The kriged probabilities show an increasing trend moving from south to north as you approach the observed brine intercept at the WIPP-12 borehole.

Within the waste panel area, however, the kriged probabilities range between

Castile Fm. Brine Reservoir: BRSM5.DAT

Figure 6-11a

3 . 2

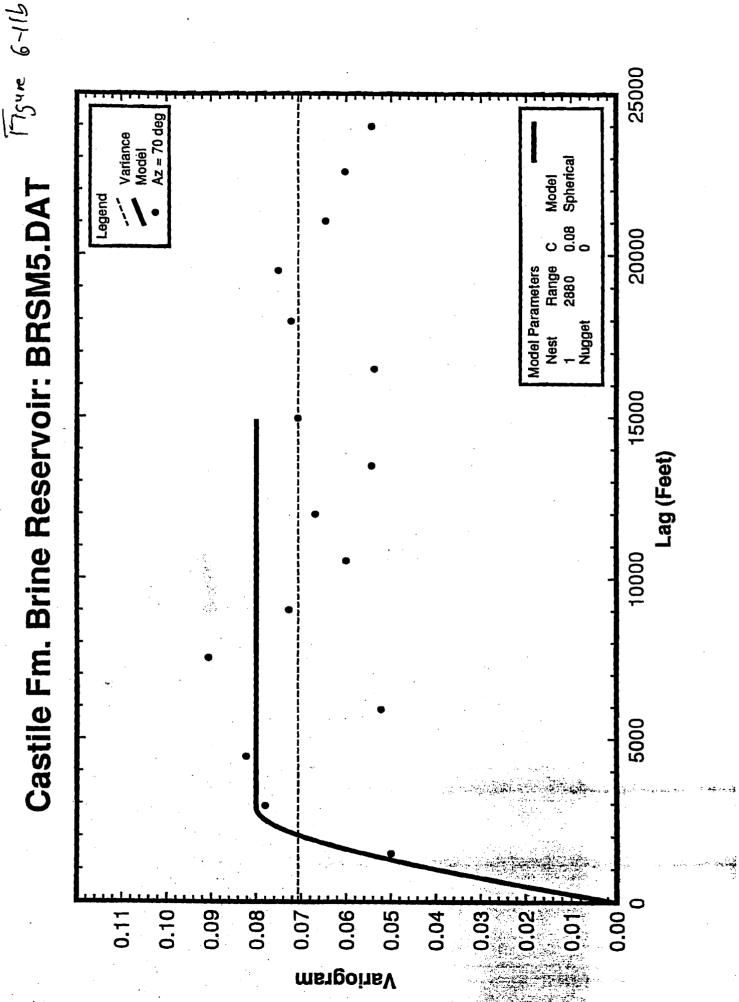


Figure 6-11c

Castile Fm. Brine Reservoir: BRSM5.DAT

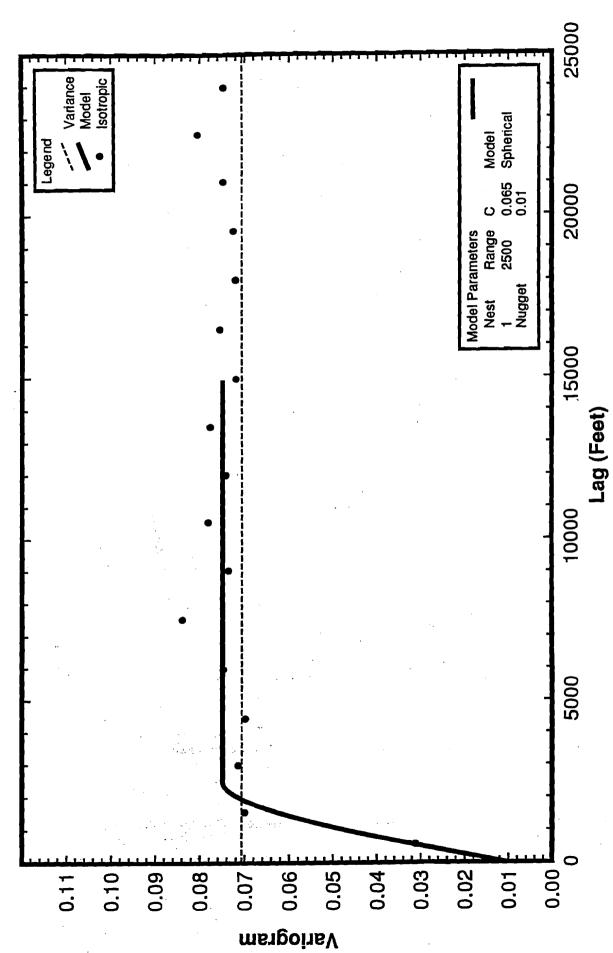
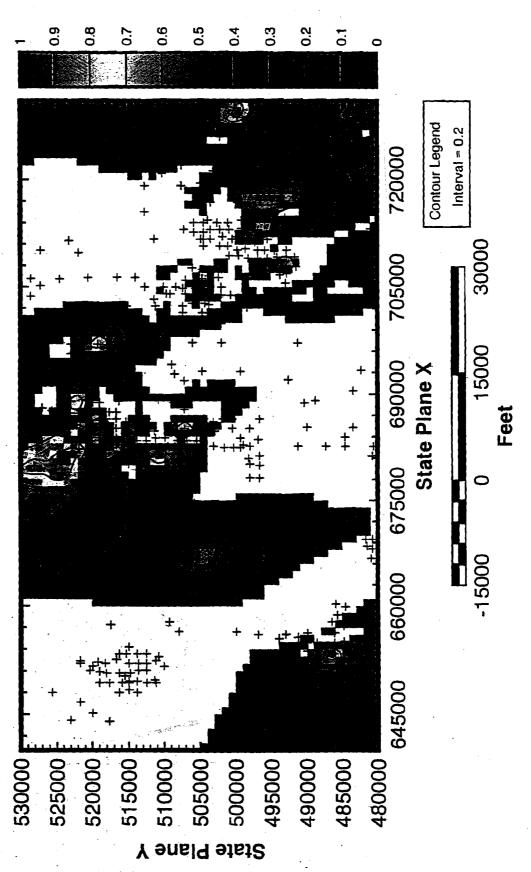
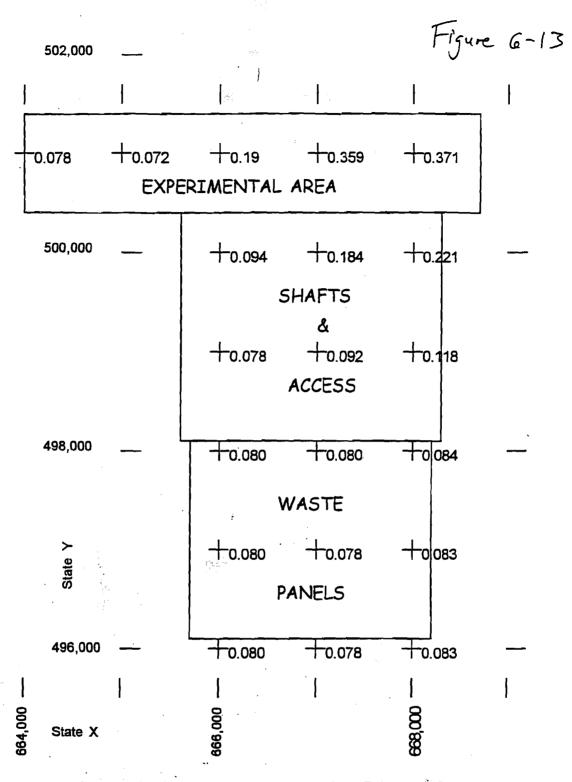




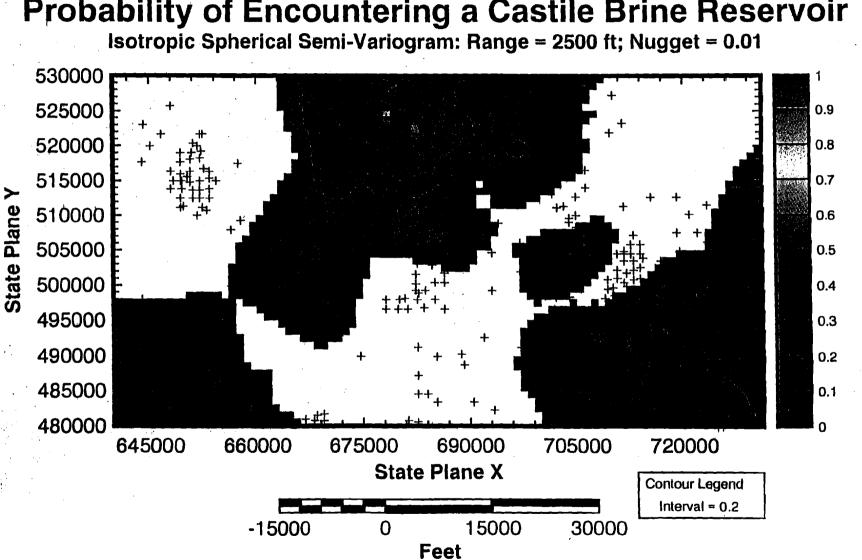
Figure 6-12

Probability of Encountering a Castile Brine Reservoir

Anisotropic Spherical Semi-Variogram: Azimuth = 160 deg; Range = 5700 ft; Nugget = 0

Nodal Probabilities of Intercepting Brine in Castile (Anisotropic: az = 160; range 5700 ft, nugget = 0) . A. 185

0.078 and 0.084. Each node is centered in a grid block which has dimensions of 1000 ft on each face. We calculated an areally-averaged probability of 0.080 for the entire waste panel site by weighting each point-kriged probability by the proportion of the waste panel area its grid block occupies. This weighted probability average is roughly equivalent to a 3x3 block-kriged probability if the block overlaid the waste panel area exactly.


The waste panel point-kriged probabilities calculated using the isotropic theoretical semi-variogram model were all less than 0.07. The lower probabilities were caused by the substantially shorter range (2500 vs 5700 ft). Figure 6-14 shows the point-kriged conditional probability map assuming the isotropic theoretical model semi-variogram.

6.3.3 Variations in Kriging Results

We examined partially the effects of "errors" in classification equivalent to either missing a brine intercept in a drillhole or believing pressurized brine is present when it is not. Drillholes AEC 7 was included in our first analyses because it was included in some lists as a potential brine reservoir. After further review of the basic data report (Sandia National Laboratories and D'Appolonia Consulting Engineers, 1982), we have excluded it from the list (Table 4.1-2).

The kriging results were unchanged by the change in classification of borehole AEC 7 from an intercept to a no-intercept. The negligible impact of the classification error is attributable to the large distance (roughly 10 km), relative to the semi-variogram ranges observed, between the site and AEC 7's location. This suggests that classification errors must be considered with regard to the location of interest before their impact on the estimated probabilities can be understood. Individual misclassification errors will have continue to have a negligible impact on estimated intercept probabilities at the site unless those errors occur within one or two correlation lengths (ranges) of the site footprint and they are Type II errors. Type I errors are also known as false positives; Type II errors are known as false negatives. Thus, to create a significant change in the estimated site probabilities, one of the nearby no-intercept observations would have to reclassified as a brine intercept. It is unlikely such an error has occurred because most of the wells near the WIPP site were drilled by the Department of Energy, and conditions should have been quite favorable for detecting such Castile brine reservoirs. Our approach is robust with regard to individual misclassification errors located beyond several miles from the WIPP site.

Differences in the intercept probabilities estimated using UNCERT's GRID module and those estimated using the KT3B algorithm found in GSLIB (Deutsch and Journel, 1992) were 5% or less within the waste panel footprint. The GSLIB routine estimates for the shaft & access and experimental areas were less than

Probability of Encountering a Castile Brine Reservoir

Figure 6-14

Final Report

those calculated with GRID, which was based on the KT3B algorithm. This is attributed to the different search strategies utilized by the packages.

6.4 SUMMARY

- There is significant spatial correlation to the presence of brine reservoirs based on the available data. The physical cause of the correlation is, at present, unknown.
- The most significant correlation occurs along an azimuth of 160 degrees counterclockwise from north. It is anisotropic. This correlation structure does not appear to significantly influenced by data clustering. The main drilling trends are north-northeast.
- Another model of spatial correlation, along azimuth of 20 degrees, may be significant. However, it appears to be influenced by data clustering.
- The spatial correlation length scale of a brine reservoir hit, as described by the semi-variogram range, is relatively small: less than 6000 ft.
- The kriged point probability of a borehole encountering a brine reservoir in • the Castile Formation within the waste panel footprint does not exceed 0.10, regardless of which spatial correlation model is chosen.
- The point-kriged probability estimates are insensitive to individual data classification errors located more than several miles from the WIPP site areas of concern.

7.0 GEOSTATISTICAL INVESTIGATION OF THE CASTILE FORMATION'S GEOLOGICAL STRUCTURE

7.1 INTRODUCTION

The objective of this investigation is to determine whether there are significant quantitative relationships between the brine reservoir intercepts and structural geologic data, particularly data that may be indicative of processes which created or influenced the observed brine intercept spatial distribution. Ideally, a geostatistical analysis will identify a random field's spatial correlation structure that is consistent with the processes which controlled the distribution of that random field. For example, the spatial variability of soil lead concentrations in fields surrounding a lead smelter should be consistent with the orientation of the prevailing winds and smelter operation patterns.

We believe brine reservoirs were caused by deformation of the uppermost units within the Castile Formation. We hypothesize that structural data, such as the thickness of these units, can provide insight into the amount and location of deformation. We began testing our hypothesis by 1) estimating the spatial variability of the structural data to compare with the brine intercept results from section 6.0 and 2) using statistics to examine potential interrelationships between geological structure and brine intercept data. Given our assumptions that structural data and brine reservoirs are functions of the amount of deformation in the upper Castile, any structural data similarities to the correlation scale and direction observed for brine intercepts adds greater weight to our conclusions about brine reservoir spatial variability. This investigation could potentially provide significant improvements in predicting the conditional probability of a brine reservoir intercept within the WIPP site.

For example, Figure 6-1 shows there are relatively few boreholes within 10000 ft of the WIPP site with information about brine intercepts/no-intercepts. There are, however, numerous boreholes across the site with information about the geologic structure of the Salado and Rustler Formations. If a strong association between brine intercepts/no-intercepts and geological structure data can be determined, then we could use the cokriging approach to get better-constrained estimates of the conditional probability of a Castile brine reservoir intercept within the site than can be estimated using brine hit/miss data alone. Cokriging extends the kriging algorithms by conditioning prediction of a random field at unsampled locations (e.g., brine hit probability) on observations of the original and a second, related, random field (e.g., brine hits/misses and amount of deformation). It also assumes knowledge of the random fields' autocovariance and cross-covariance functions, which are typically estimated from sample semivariograms and cross-semivariograms. Cokriging can only improve on a standard kriging algorithm when observation locations of the second random field are more numerous within the area of interest than those for the first

random field. At the WIPP site, this would require a strong relationship between brine hits and structural information for units above the Castile Formation, such as Marker Bed 124, since there are many more different observation locations for these units than for units within the Castile across the WIPP site.

We have some doubts whether the cokriging approach will work for the specific case of brine intercepts/no-intercepts and structural data since the cross-covariance (or cross-semivariogram) for each lag only receives a positive contribution from pairs which include brine intercepts (see Eqns 7-1 and 7-2 below). This suggests that the estimated cross-covariance is then a function of the ratio of brine intercepts to brine no-intercepts. However, cokriging may still provide significant improvements in the conditional probability estimates from Section 6 because it, like standard kriging and unlike many other interpolation algorithms, honors the data exactly.

We focused on the thickness between the top of the Bell Canyon and the base of the Cowden, which immediately overlies the presumed location of the brine reservoirs within the Castile's uppermost anhydrite (Anhydrite III) and halite (Halite II) zones. Measurements of this thickness, called here the Cowden isopach of IsoCowden, were made using geophysical logs for 352 boreholes. The dataset differs slightly from that used for geostatistical analysis of brine reservoir intercepts (Section 6.0). We estimated the Cowden isopach for five brine intercept boreholes and several drillholes without intercepts using information from nearby boreholes (section 5.0; Appendix E). As before, the 352 wells are distributed across roughly 645 km² (252 mi²) of Delaware Basin. The WIPP site is roughly centered within this area.

In addition to estimating the spatial variability of the Cowden isopach, we examined the spatial cross-correlation between the Cowden isopach and brine intercept/no-intercepts. The cross-covariance between two random fields, Y and Z, is described by $C_{Y(x), Z(x+h)}$, where E is the expectation operator, x is the location vector for an observation, and h is the distance between it and another observation:

$$C_{Y(x),Z(x+h)} = E^{1}[Y(x) - E[Y(x)]][Z(x+h) - E[Z(x+h)]]$$
(Eqn.7-1)

The cross-semivariogram, $\gamma_c(h)$, is the variance of the difference between observations of two variables separated by a distance (or lag) h:

 $\gamma_{c}(h) = \frac{Var\{Z(x-h) - Y(x)\}}{2}$

(Eqn. 7.2)

7.2 METHODS

7.2.1 Exploratory Data Analysis

We examined differences in Cowden isopach measurements for two categories: boreholes with brine intercepts and boreholes with brine no-intercepts. Descriptive statistics, such as sample mean, standard deviation, skewness, etc., and sample cumulative frequency distributions for the two categories were compared.

Descriptive statistics and sample cumulative frequency distributions of Cowden isopach measurements were calculated for boreholes with and without brine intercepts. Graphs and calculations were made using the Excel spreadsheet program, version 4, from Microsoft and MathSoft's MathCad 6.0+ mathematical analysis program.

7.2.2 Variography

We quantified Cowden isopach spatial correlation through calculation of sample semi-variograms. We tested our estimates for sensitivity to data clustering and extreme values (outliers) by computing sample semi-variograms for subsets of the data and by examining more robust measures such as the semi-rodogram, general relative semi-variogram, and non-ergodic covariance function (see Section 6.1). Values for the range, sill, and nugget variance are determined by fitting a theoretical semi-variogram model to the sample semi-variogram.

7.2.1.1 Sample Semi-Variogram Calculation

Sample semi-variograms are calculated according to Eqn. 6-4 for the isotropic (omni-directional) case and for a range of anisotropic geometric directions: azimuths 0, 20, 45, 70, 90, 110, 135, and 160 degrees measured clockwise from a 0 degree north. All variographic calculations were carried out using the VARIO module of the public domain software package UNCERT (Wingle et al, 1994), available from the Colorado School of Mines in Golden, CO.

Lag spacing was set at 1500 ft to match the lag spacings from the analysis of brine intercept/no-intercept spatial variability. The maximum search distance, directional bandwidth, and horizontal half-angle were set to their maximum values of 150000 ft, 150000 ft and 90 degrees for the isotropic sample semi-variogram. The data were sufficient in number to restrict the horizontal half-angle to 15 degrees, maximum search distance to 150000 ft, and the directional bandwidth to 10000 ft for all of the anisotropic sample semi-variograms.

Sample semi-variograms were judged significant if they exhibited a reasonably monotonic increasing structure within the first 25% of the lag classes with

adequate numbers of pairs within each lag class. Theoretical semi-variogram model parameters (range, sill, and nugget variance) were estimated for selected sample semi-variograms.

7.2.1.2 Sample Semi-Variogram Robustness

We tested the Cowden isopach sample semi-variogram robustness to clustering using two different approaches. The first compares sample semi-variograms from the entire data set with those computed for two non-overlapping data subsets which have relatively uniform spatial distributions of boreholes and possess adequate numbers of brine reservoir intercepts. Subset 1 contains 80 boreholes, 15 of which had brine intercepts. Subset 2 holds 93 boreholes, 9 of which had evidence of brine intercepts. These two subsets possess both a relatively uniform distribution of boreholes and sufficient numbers of brine intercepts to generate adequate numbers of observation pairs for each lag. Correlation structures which appeared significant in each of the data subsets and in the complete data set were judged to be independent of the large scale data clustering evident in Figure 6-3.

The second approach utilizes alternative measures of spatial continuity which are less sensitive to data clustering. The semi-rodogram and general and pairwise relative semi-variograms are typically less vulnerable to clustering because they normalize the semi-variogram value for each lag class by the squared mean of the data and the squared average of the paired values; Eqn. 6-5 defines the semi-rodogram and Eqn. 7-3 defines the general relative semivariogram. We calculated sample semi-rodograms, general relative semivariograms, and non-ergodic covariances for each data subset, their union, and the entire data set.

$$\gamma_{GR}(h) = \frac{Var\{Z(x-h) - Z(x)\}}{[\frac{m_t m_h}{2}]^2}$$
 (Eqn. 7-3)

where m_t and m_h are the means of the tails and heads of each pair within a lag.

7.2.1.3 Sample Cross-Semivariogram Estimation

We estimated the sample cross-semivariograms for the brine intercept/nointercept and Cowden isopach using

$$\gamma_{c}(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} (z_{i} - y_{i})^{2}$$

(Egn. 7-4)

Sample cross-semivariograms were determined for the union of Subsets 1 and 2 for the isotropic case and along the same eight sample semi-variogram directions. Calculations were made with the GAM2V routine from the GSLIB library (Deutsch and Journel, 1992) because the Sun OS version of UNCERT's VARIO module does not yet support cross-semivariogram estimation.

7.2.1.3 Theoretical Variogram Model Fitting

We estimated range, sill, and nugget variance using UNCERT's VARIOFIT module for only a few selected sample semi-variograms because of a time limitation and because we did not need to krige Cowden isopach values. We estimated ranges by eye for the remaining sample semi-variograms, assuming a spherical theoretical semi-variogram model, to enable quick comparison with the ranges estimated for the brine intercept/no-intercept variable.

7.3 RESULTS AND DISCUSSION

7.3.1 Exploratory Data Analysis

Table 7-1 summarizes the descriptive statistics for Cowden isopach categorized by whether a brine intercept was observed (or not) in the borehole. Note that the mean, minimum, and maximum for the brine hit group are all larger than those for the brine miss group. Isopach standard deviations relatively close (coefficient of variation is 10% for each group). The brine intercept group is skewed to larger isopach values and is significantly kurtic, i.e., its probability density function (histogram) is more flat than peaked. In contrast, the brine nointercept group shows relatively little skewness and kurtosis.

Statistic	Brine Intercepts	Brine No-Intercepts
Mean	1905.77	1760.16
Standard Error	37.49	9.99
Median	1891.00	1726.00
Mode	1925.00	1660.00
Standard Deviation	191.16	180.31
Variance	36541.94	32511.90
Kurtosis	5.97	-0.02
Skewness	2.01	0.55
Range	919	944
Minimum	1677	1373
Maximum	2596	2317
Sum	49550	573812
Count	26	326

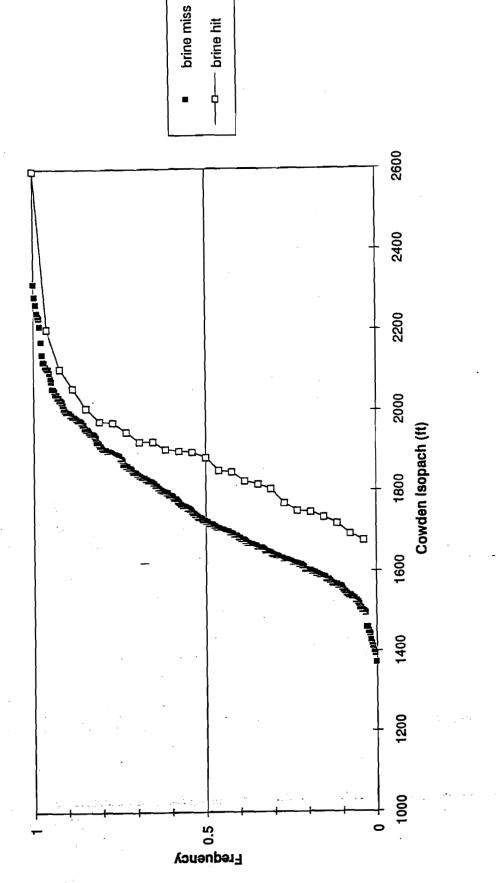
	Table 7-1	
Summary Statistics for	Cowden Isopach by	Brine Intercept/No-Intercept

Figure 7-1 presents the sample cumulative relative frequency distributions for the two groups. Figure 7-2 depicts sample histograms for each group. Comparison of the intercept and no-intercept curves suggests there is a minimum Cowden isopach value of 1650 to 1680 ft below which brine reservoirs are not observed.

We attempted to fit a Poisson distribution to the sample relative frequency distribution for the brine intercepts. Results are shown in Figure 7-3. If we can assume the Cowden isopach for brine intercepts is governed by a Poisson process, then it is highly unlikely that brine intercepts will be observed when the Cowden isopach is less than 1670 ft. We attempted to fit several other distributions but met with no success.

7.3.2 Variography

7.3.2.1 Sample Semi-Variogram Calculations


Figures 7-4ab and 7-5ab show the sample semi-variograms for the first and second data subsets, which occupy the same locations used in Section 6.2. Appendix J contains printouts of the calculation log files. The results are less clear-cut than those presented for the brine intercept/no-intercept binary variable in Section 6.3. Locally-varying trends in Cowden isopach values keep both isotropic and anisotropic sample semi-variograms from leveling out near the sill. See, for example, the sample semi-variograms for azimuths 0, 20, 45, and 70 degrees, as well as the isotropic case, for Subset 1 (Figures 7-4ab). These thickening-thinning trends can be seen in Figure 5.3-3, which depicts the top of Bell Canyon to base of Cowden isopach contours. Note the especially strong north-south trend in isopach value across the center of the map. The sample semi-variograms for azimuths 90, 100, and 135 degrees appear to be mostly noise. While some evidence for trends in the sample semi-variograms for Subset 2 can be observed (e.g., azimuths 0 and 45 degrees), it is not as common as in the Subset 1 results. This is most likely attributable to the lack of strong trends within that data set (see Figure 5.3-3).

The sample semi-variogram for azimuth 160 degrees suggests the presence of a nested correlation structure under both data subsets. The small-scale correlation length (range) appears to fall between 4000 and 5000 ft. The azimuth 0, 20, and 135 degree sample semi-variograms for Subset 2 and the 0 degree azimuth sample semi-variogram for Subset 1 also indicate such a smallscale correlation structure. The large-scale correlation length may reach its sill somewhere near 15000 ft; however, this large-scale structure may be an artifact of the small number of pairs found within those largest lags.

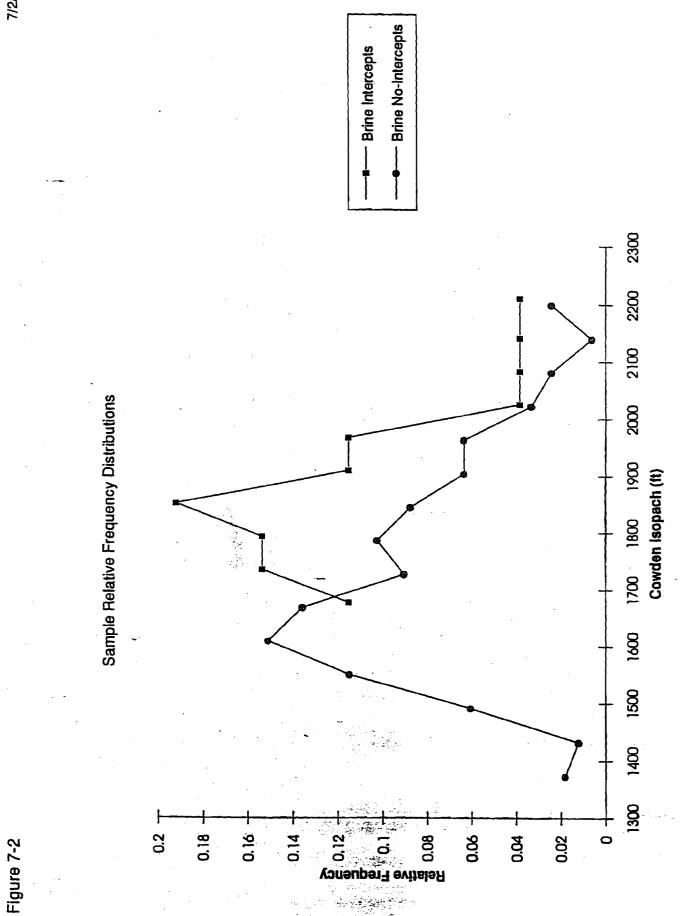
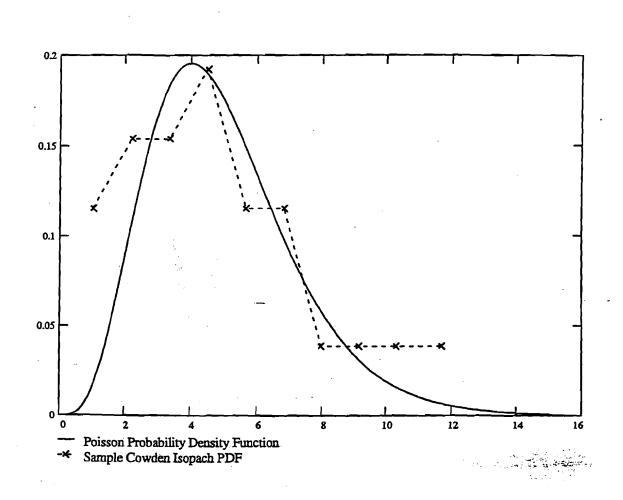

Figures 7-6ab present the sample semi-variograms for the complete data set.

Figure 7-1


Estimated Cumulative Relative Frequency Distributions of Cowden Isopach Values

7/2/96

7/2/96

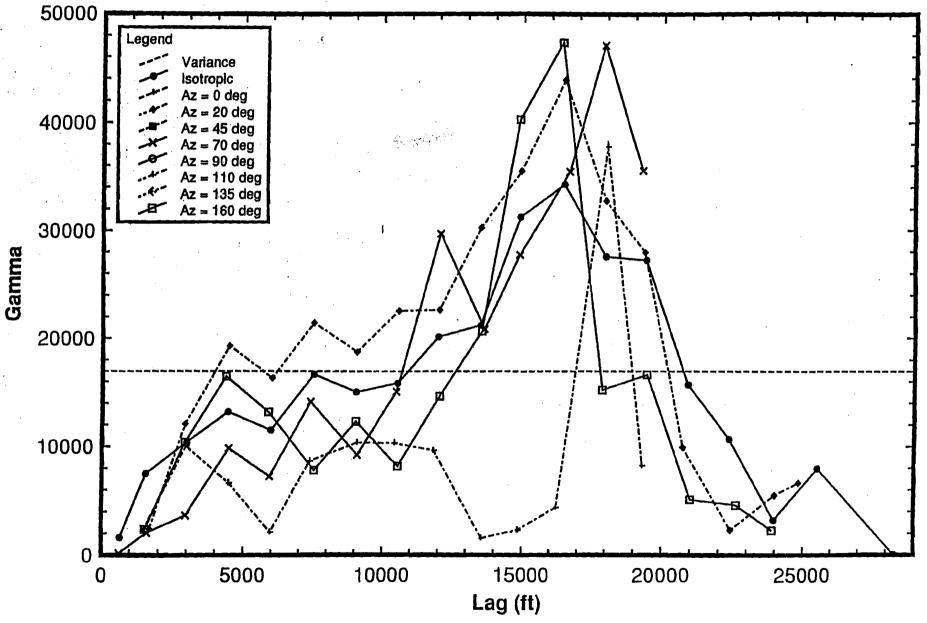
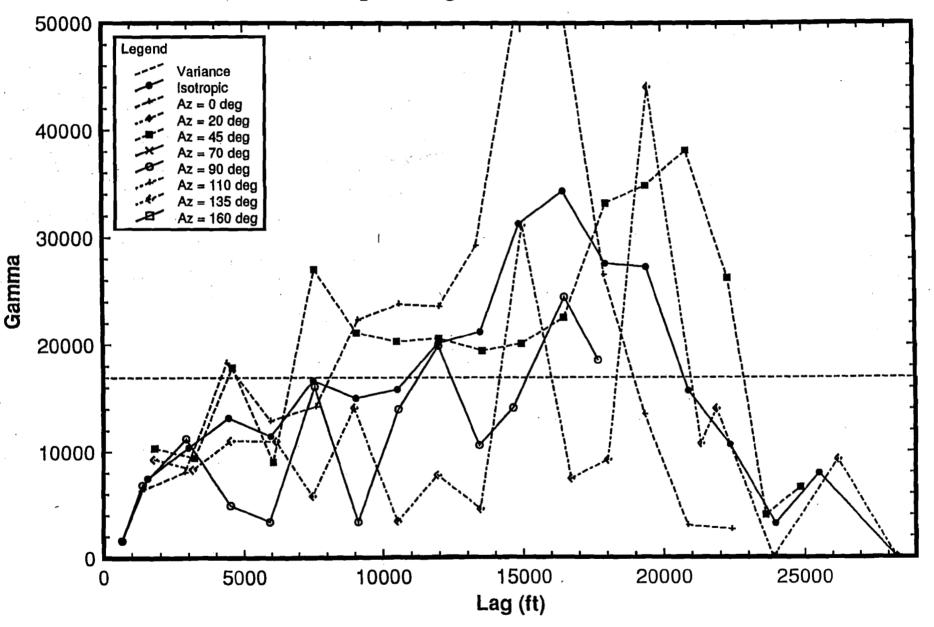
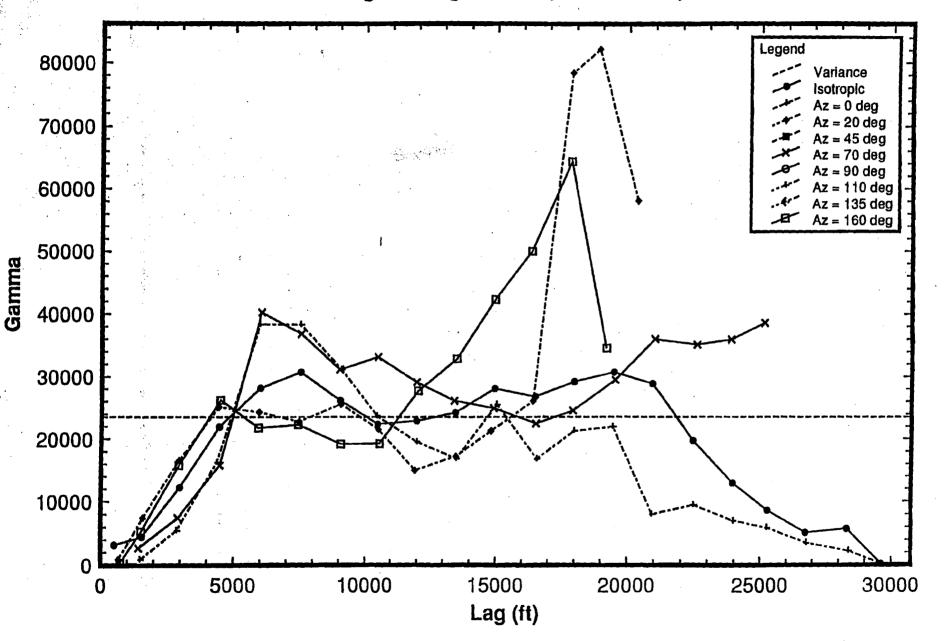


FIGURE 7-3

Estimated Cowden Isopach Probability Density Function (PDF) vs. Poisson PDF


Figure 7-49 Castile Fm. Isopach Data for Subset 1: isocow

Semi-Variogram: Lag = 1500 ft; BW = 10000; HA = 15



. . .


Castile Fm. Isopach Data for Subset 1: isocow Semi-Variogram: Lag = 1500 ft: RW - 10000-114

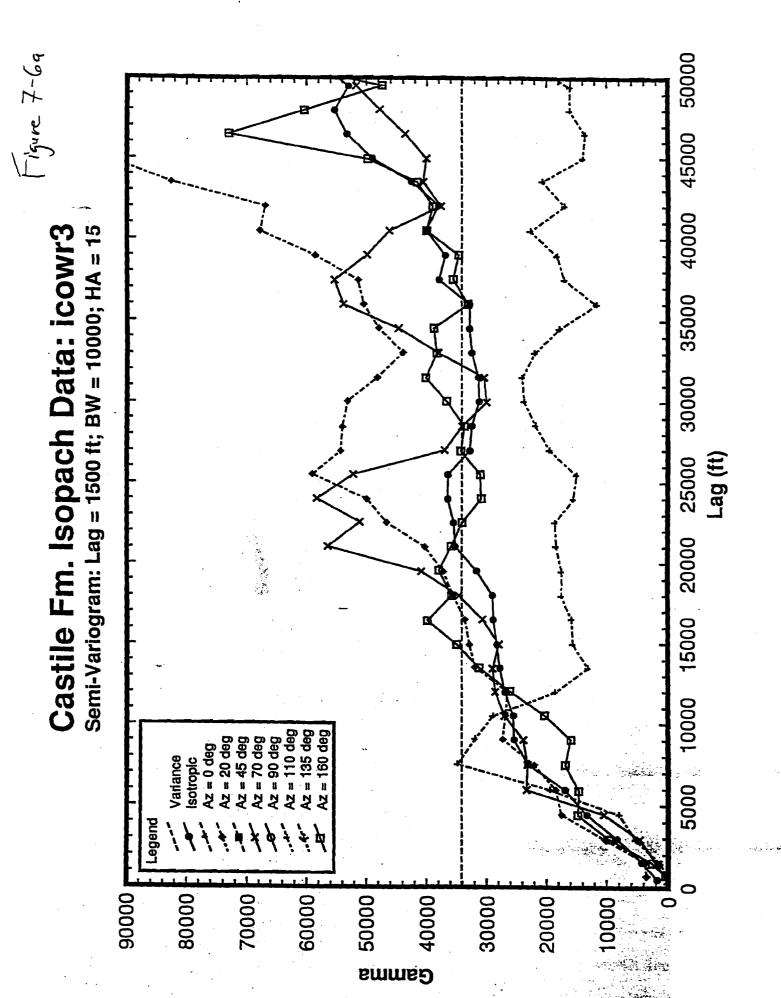


Figure 7-59 Castile Fm. Isopach Data for Subset 2: isocow

Figure 7-56 Castile Fm. Isopach Data for Subset 2: isocow

Castile Fm. Isopach Data: icowr3

Semi-Variogram: Lag = 1500 ft; BW = 10000; HA = 15

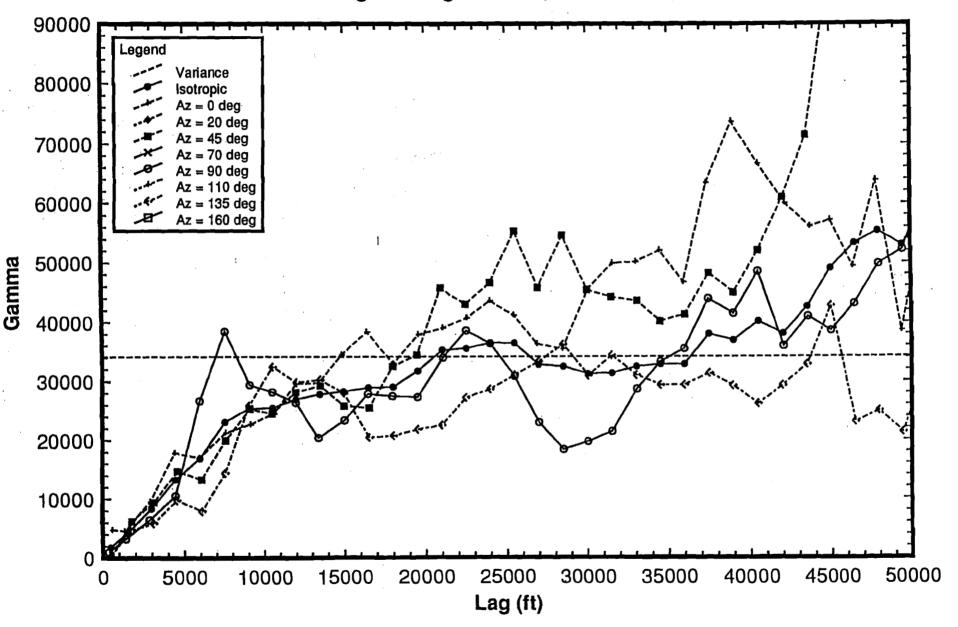
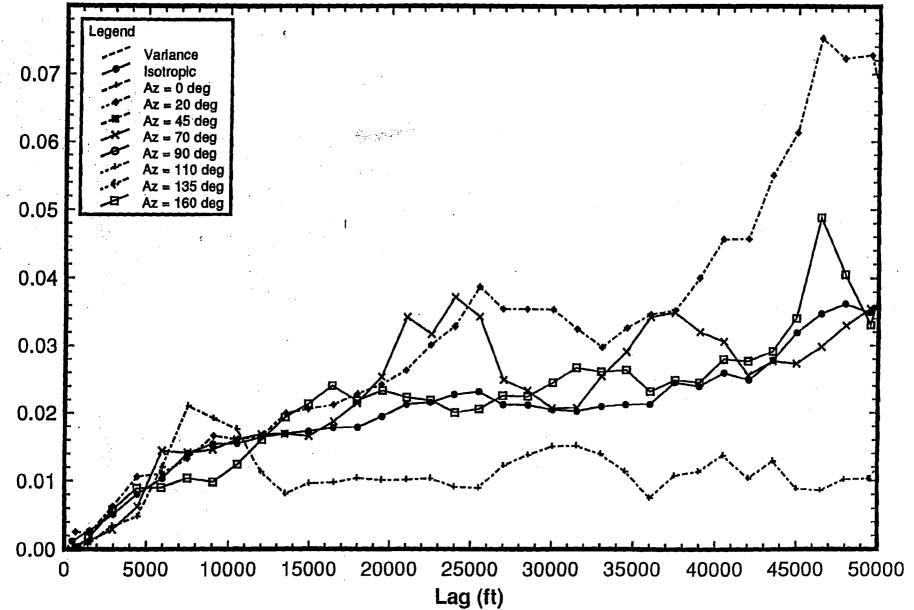
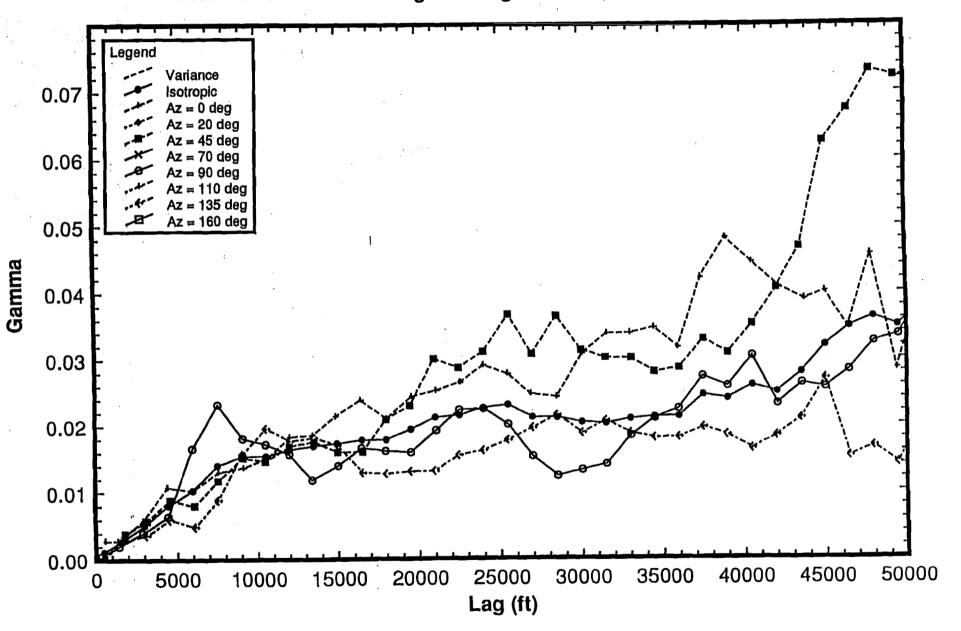
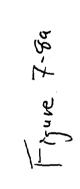



Figure 7-66

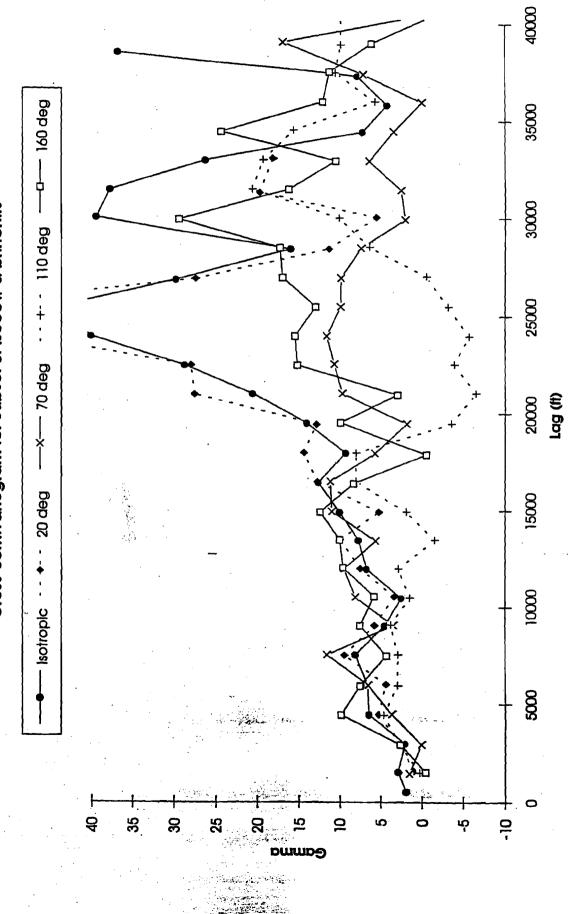
Castile Fm. Isopach Data: icowr3

Gen. Relative Semi-Variogram: Lag = 1500 ft; BW = 10000; HA = 15


Gamma


Figure 7-79

Castile Fm. Isopach Data: icowr3


Figure 7-75

Gen. Relative Semi-Variogram: Lag = 1500 ft; BW = 10000; HA = 15

7/2/96

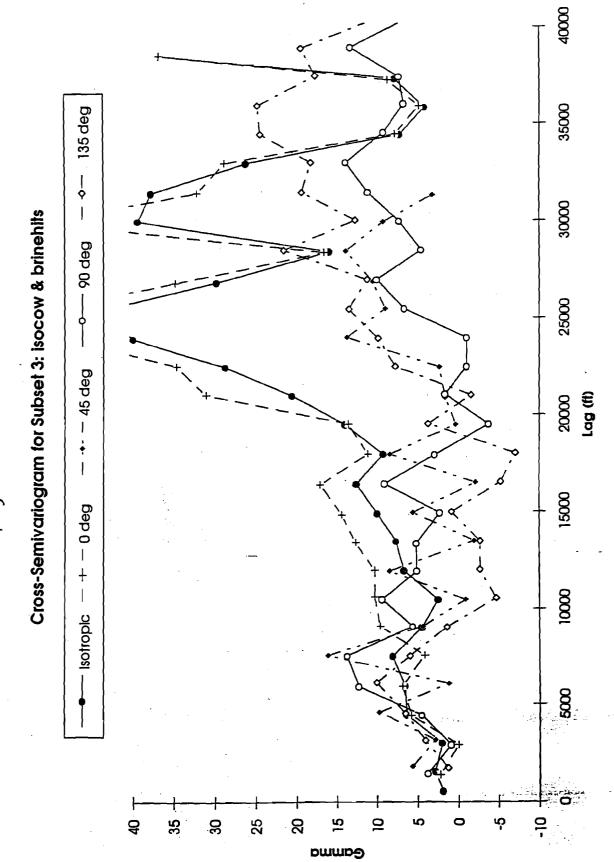


Figure 7-86

7/2/96

Cowden Isopach for Subset 2

Anisotropic Azimuth 160 deg.: Small-Scale Correlation

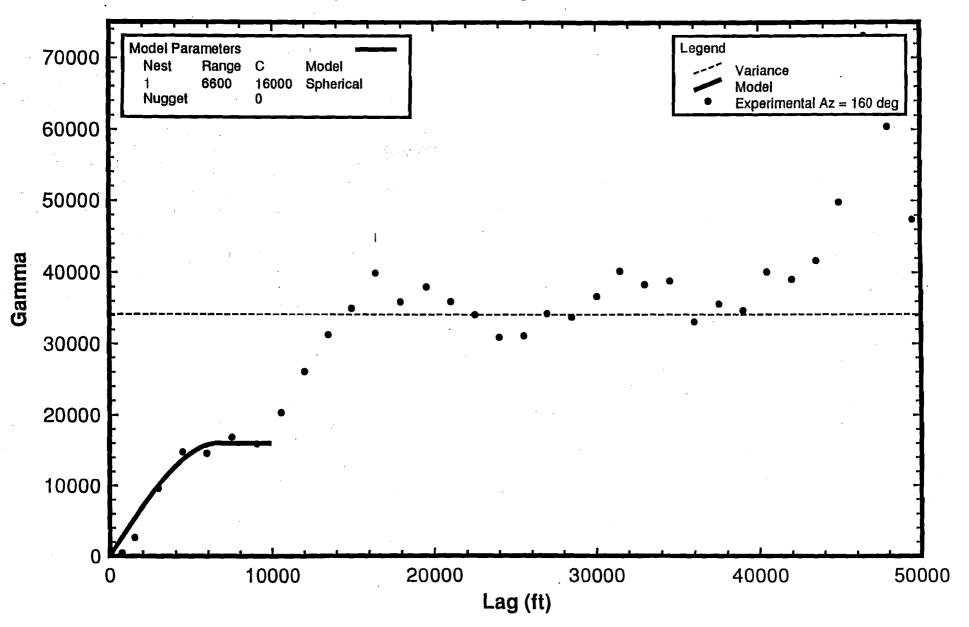



Figure 7-99

Cowden Isopach: icowr3

Figure 7-96

Anisotropic Azimuth 160 deg.: Small-Scale Correlation

Trends in isopach values are evident in the isotropic and azimuth 0, 20, 45, and 70 degree anisotropic sample semi-variograms. Small-scale correlation structures with effective ranges varying between 5000 and 6000 ft are shown most clearly in the azimuth 160, 135, and 70 degree sample semi-variograms. The 0, 20, and 45 degree directional semi-variograms also appear to possess this small-scale structure. Additional analyses indicated that the small-scale correlation features similar to that found in the azimuth 135 and 160 degree directions were observable along azimuths 140, 145, 150, and 155 degrees for the complete data set. This observation is by the orientation of the Cowden isopach maximum shown in Figure 5.3-3, which varies between azimuths 135 and 160 degrees.

Figures 7-6ab also demonstrate a significant large-scale correlation structure which has an effective range between roughly 10000 ft (for azimuth 135 deg.) and 18000 to 20000 ft (azimuths 70 and 160 deg.). The distance separating Subset 1 from Subset 2 closely corresponds to the upper end of the range estimate, possibly indicating the sample semi-variogram values are controlled by data clustering. However, the large-scale correlation structure is observable in the sample general relative semi-variograms for the same directions (see Figures 7-7ab), suggesting that data clustering is not the cause. Plots of the non-ergodic covariance and the semi-rodograms add support to this conclusion. The remaining directional sample semi-variograms demonstrate more trend effects than large-scale spatial correlation at larger lags.

7.3.2.2 Sample Cross-Semivariogram Calculation

Figures 7-8ab show the estimated cross-semivariograms for a combination of data Subsets 1 and 2. As above, there is consistent evidence for a small-scale correlation structure with an effective range of 5000 to 9000 ft (azimuths 0, 20, 70, 135, and 160 deg.). Several of the directional sample cross-semivariograms indicate the possibility of a large-scale correlation structure with an effective range of roughly 20000 ft. Although we have doubts about the impact of computing a cross-semivariogram using a binary variable, these results are consistent with the correlation structures observed along the azimuth 160 degree sample semi-variograms.

If there is a minimum Cowden isopach thickness for brine reservoirs and if the observed minimum is close to the actual threshold, it may be possible to define an indicator variable for the threshold Cowden isopach and then cokrige the brine intercept/no-intercept binary variable with the indicator variable.

7.3.2.3 Theoretical Semi-Variogram Model Fitting

Figures 7-9ab show the fitted theoretical variograms for the small-scale correlation structures observed in the azimuth 160 deg. sample semi-variograms

7/10/96

for all data and for Subset 2. We fit a Gaussian model to the latter sample semi-variogram with an effective range of $\sqrt{3} \times 3000$ ft = 5200 ft (Figure 7-9a). The small-scale feature for the complete data set was fitted with a spherical model and an effective range of 6600 ft (Figure 7-9b). These range values matched those estimated by eye for the small-scale correlation structure observed in the other sample semi-variograms. We focused solely on estimating effective ranges because we had no need of kriging the Cowden isopach variable.

7.4 SUMMARY

- The Bell Canyon to base of Cowden thickness (Cowden isopach) shows significant spatial correlation along several directions. Several directions demonstrate both small and large scale correlation structures.
- The observed large-scale spatial correlation had an effective range on the order of 10000 to 20000 ft.
- Small-scale spatial correlation, with effective ranges between 5000 and 7000 ft, was observed in the azimuth 160, 70, and 135 degree directions.
- The most consistent, significant correlation occurs in a range of azimuths from 135 to 160 degrees counterclockwise from north. These correlation structure does not appear to significantly influenced by data clustering and are consistent with the direction and correlation lengths observed for the brine intercept/no-intercept binary variable analyzed in Section 6.0
- Sample cross-semivariograms also appear to share the same small-scale correlation structure observed in the azimuth 160 degree sample semivariograms.
- The geostatistical analysis results for the Cowden isopach are consistent with those for brine intercept/no-intercept.
- There may be a threshold Cowden isopach value, roughly 1670 ft, below which brine reservoirs do not occur.

8.0 INTEGRATION AND CONCLUSIONS

The geological information clearly outlines the area where evaporites have been greatly deformed to the northeast of the WIPP. Both structure contour and isopach data also give indications for certain horizons and intervals that areas at WIPP 12 and the Hudson Belco well differ from the surrounding areas. Drillholes east of the WIPP site differ structurally from regional trends as well, but are less deformed than the maximum for our study areas. The geological information strongly suggest that brine encounters are related to deformation of Castile evaporites.

The geostatistical analysis of brine intercepts alone demonstrates there is a directional anisotropy for brine reservoir intercepts along an azimuth of 160 degrees. This direction is in general agreement with the orientation of the major structures revealed by geological analysis. Further analysis of the spatial correlation of thickness data shows similar anisotropy, and is consistent with an association between the structural deformation of the upper anhydrite zones and the presence of brine reservoirs within the Castile Formation. Analysis of one interval shows also that known brine occurrences are in areas where the interval is thicker than estimated for the WIPP site; there may be a threshold thickness related to degree of deformation. Further analysis of this approach is warranted before concluding that this kind of information limits the probability of brine encounters under the WIPP site.

Two models of spatial correlation for brine encounters were observed: one isotropic with a range of 2500 ft and one anisotropic with a longer range of 5700 ft. We recommend conditional probabilities of encountering a brine reservoir intercept be estimated using the anisotropic model because it yields the larger estimate, though differences are small. Using the anisotropic model, the area-weighted average of estimated conditional probabilities at computational nodes located over the waste panel is 0.08.

9.0 REFERENCES

Anderson, R.Y., and Powers, D.W. 1978. Salt anticlines in the Castile-Salado evaporite sequence, northern Delaware Basin, New Mexico: Circular 159, Geology and Mineral Deposits of Ochoan Rocks in Delaware Basin and Adjacent Areas, G.S. Austin, ed., New Mexico Bureau of Mines and Mineral Resources, Socorro, NM, p. 78-83.

Bachman, G.O. 1984. Regional geology of Ochoan evaporites, northern part of Delaware Basin: Circular 184, New Mexico Bureau of Mines and Mineral Resources, Socorro, NM.

Borns, D.J. 1987. The geologic structures observed in drillhole DOE-2 and their possible origins: Waste Isolation Pilot Plant: SAND86-1495, Sandia National Laboratories, Albuquerque, NM.

Borns, D.J., and Shaffer, S-E. 1985. Regional well-log correlation in the New Mexico portion of the Delaware Basin: SAND83-1798, Sandia National Laboratories, Albuquerque, NM.

Borns, D.J., Barrows, L.J., Powers, D.W., and Snyder, R.P. 1983. Deformation of evaporites near the Waste Isolation Pilot Plant (WIPP) site: SAND82-1069, Sandia National laboratories, Albuquerque, NM.

Chaturvedi, L. 1984. Occurrence of gases in the Salado Formation: EEG-25, Environmental Evaluation Group, Santa Fe, NM.

Cressie, N. 1991. <u>Statistics for Spatial Data</u>. John Wiley and Sons, New York. 900 pages.

D'Appolonia Consulting Engineers, Inc. 1982. Data file report, ERDA-6 & WIPP-12 testing: Westinghouse Electric Corporation, Albuquerque, NM.

Deutsch, C.V., and Journel, A.G. 1992. <u>GSLIB: Geostatistical Software Library and User's Guide</u>. Oxford University Press, New York. 340 pages.

Gonzales, M.M. 1989. Compilation and comparison of test-hole location surveys in the vicinity of the Waste Isolation Pilot Plant site: SAND 88-1065, Sandia National Laboratories, Albuquergue, NM.

Griswold, G.B. 1977. Site selection and evaluation studies of the Waste Isolation Pilot Plant (WIPP), Los Medanos, Eddy County, NM: SAND77-0946, Sandia National Laboratories, Albuquerque, NM.

Holt, R.M., and Powers, D.W. 1988. Facies variability and post-depositional alteration within the Rustler Formation in the vicinity of the Waste Isolation Pilot Plant, southeastern New Mexico: DOE/WIPP 88-004, US Department of Energy, Carlsbad, NM.

Isaaks, E.H., and Srivastava, R.M. 1989. <u>An Introduction to Applied Geostatistics</u>. Oxford University Press, New York. 561 pages.

Jones, C.L. 1981. Geologic data for borehole ERDA-6, Eddy County, New Mexico:

Open-file Report 81-468, US Geological Survey, Denver, CO.

Jones, C.L., Bowles, C.G., and Bell, K.G. 1960. Experimental drill hole logging in potash deposits of the Carlsbad District, New Mexico: Open-file Report 60-84, US Geological Survey, Denver, CO.

Journel, A.G. 1984. The place of non-parametric geostatistics. In G. Verly et al, eds., <u>Geostatistics for Natural Resources Characterization</u>, pages 307-355, Reidel, Dordrecht, Holland.

Journel, A.G. 1986. Geostatistics: Models and tools for the earth sciences. Math. Geology, v. 18, no. 1, p. 119-140.

Kehrman, R. 1994. Recent occurrences of pressurized brine in the Castile Formation: WS:94:03255, letter to W.D. Weart, Sandia National Laboratories, dated 7/20/1994. (Included as Appendix F)

Pannatier, Y. 1994. MS-WINDOWS Programs for Exploratory Variography and Variogram Modeling in 2D. In <u>Statistics of Spatial Processes: Theory and Applications.</u> Bari, Italy, September 27-30, 1993. V. Capasso, G. Girone, and D. Posa, eds., pages 165-170.

Popielak, R.S., Beauheim, R.L., Black, S.R., Coons, W.E., Ellingson, C.T., and Olsen, R.L. 1983. Brine reservoirs in the Castile Formation, Waste Isolation Pilot Plant (WIPP) project, southeastern New Mexico: WTSD-TME-3155, US Department of Energy, Albuquerque, NM.

Powers, D.W., and Holt, R.M. 1990. Sedimentology of the Rustler Formation near the Waste Isolation Pilot Plant (WIPP) site: Field Trip #14 Guidebook, Geological and Hydrological Studies of Evaportes in the Northern Delaware Basin for the Waste Isolation Pilot Plant (WIPP), New Mexico, D.W. Powers et al., eds., Geological Society of America (Dallas Geological Society), p. 27-32.

Powers, D.W., and Holt, R.M. 1995. Regional geological processes affecting Rustler hydrogeology. IT Corporation report to Westinghouse Electric Corporation (in review as SAND report). (Included as Appendix G)

Powers, D.W., Lambert, S.J., Shaffer, S-E., Hill, L.R., and Weart, W.D., eds. 1978. Geological characterization report, Waste Isolation Pilot Plant (WIPP) site, southeastern New Mexico: SAND 78-1596, Sandia National Laboratories, Albuquerque, NM.

Register, J.K. 1981. Brine pocket occurrences in the Castile Formation, southeastern New Mexico: TME 3080, US Department of Energy, Albuquerque, NM.

Sandia National Laboratories and D'Appolonia Consulting Engineers. 1983. Basic data report for drillhole AEC 7 (Waste Isolation Pilot Plant - WIPP): SAND79-0268, Sandia National Laboratories, Albuquerque, NM.

Sandia National Laboratories and US Geological Survey. 1983. Basic data report for drillhole ERDA 6 (Waste Isolation Pilot Plant - WIPP): SAND79-0267, Sandia National Laboratories, Albuquergue, NM.

Silva, M. 1996. Letter to P. Swift, Sandia National Laboratories, dated 3/20/1996,

Final Report

7/10/96

enclosing reports from petroleum companies regarding brine occurrences in selected wells. (Included as Appendix H)

Wingle, W.L., Poeter, E.P., and McKenna, S.A. 1994. UNCERT User's Guide. Colorado School of Mines, Golden, CO 80401.

.....

20 20 20 20 20

· · ·

· · · · · · ·

Appendix A

Background for Borehole Location Data

Westinghouse Electric Corporation

WS:96:03002 DA:96:13041

waste Isolation Division

Box 2078 Carlsbad New Mexico 98221

July 18, 1996

Westinghouse Electric Corporation Government and Environmental Services Company

Ms. Margaret Chu WIPP Deputy Project Management and Technical Integration Department Sandia National Laboratories P.O. Box 5800 Department 6801 MS-1335 Albuquerque, NM 87185

Subject: PROBABILITY OF INTERCEPTING A PRESSURIZED BRINE RESERVOIR UNDER THE WIPP SITE

Dear Ms. Chu:

Per your request, please find attached two data files to aid your research of brine reservoir occurrences in the area of the WIPP. The information was derived from our Delaware Basin Drilling Studies which will ultimately be included in appendix DEL of the CCA. The first file consists of drillhole locations from oil and gas exploration in the Delaware Basin (inside the Capitan Reef) from T.21-23S., R.29-33E. The second file consists of a set of locations for the underground (in State Plane coordinates) that you will need for the final geostatistical analysis being conducted in support of the WIPP Performance Assessment (PA). This set of locations includes the following:

- a) the corners of the disposal area,
- b) the corners of the area outlining the shafts and access area, and
- c) the corners of the rectangular area outlining the experimental area and access to it.

Attached is the request for this data, information documenting the quality of the data, along with some additional supporting documentation. This information should be included in relevant PA data packages and records, as required.

If you have any further questions, please contact Mr. David Hughes of my staff at Extension 8175.

Sincerely,

Leonard, Manager

Compliance and Permitting

DH:hmp

Attachments

cc: Dennis Powers

Dennis W. Powers, Ph. D.

Consulting Geologist

July 15, 1996

FAX: (505) 234-8854

David Hughes

Westinghouse Compliance WIPP Project P.O. Box 2078 Carlsbad, NM 88221

Dear Dave:

On June 13, you forwarded to Mel Marietta (SNL) documentation of the background for drillhole location data analyzed as part of our geostatistics study of brine reservoirs in the northern Delaware Basin. Unfortunately, the documentation has fallen through the cracks somewhere between the time you sent it out and arriving in Albuquerque to be held for the report we were preparing.

Would you please recreate the documentation and forward it to:

Margaret Chu Department 6801 MS 1335

MIDD Deputy Design Manageme

WIPP Deputy Project Management and

Technical Integration Department

Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185

It will be Appendix A of our report "Probability of Intercepting a Pressurized Brine Reservoir Under the WIPP Site".

I would also appreciate a copy of the same documentation, if it's not too much trouble.

I apologize for not being able to track down the documentation, and I appreciate your willingness to recreate it for the report.

Sincerely,

(sent from computer) Dennis W. Powers

The second s

WS:96:03001 DA:96:13035 Waste Isolation Division

Westinghouse Electric Corporation Government and Environmental Services Company

Box 2078 Carlsbad New Mexico 88221 June 13, 1996

Mr. Mel Marietta, Manager WIPP Project Compliance Department Sandia National Laboratories 115 N. Main Street Carlsbad, NM 88220

Subject: GEOSTATISTICAL ANALYSIS OF BRINE RESERVOIR OCCURRENCES IN THE AREA OF WIPP FOR WIPP PERFORMANCE ASSESSMENT (PA)

Dear Mr. Marietta:

Per your request, please fine attached two data files to aid your research of brine reservoir occurrences in the area of WIPP. The information was derived from our Delaware Basin Drilling Studies and will ultimately be included as an appendix to the Compliance Certification Application. The first file consists of drillhole locations from oil and gas exploration in the Delaware Basin (inside the Capitan Reef) from T.21-23S., R.29-33E. The second file consists of a set of locations for the underground (in State Plane coordinates) that you will need for the final geostatistical analysis being conducted in support WIPP PA:

- a) the corners of the disposal area,
- b) the corners of the area outlining the shafts and access area, and
- c) the corners of the rectangular area outlining the experimental area and access to it.

Attached is the request for this data and pedigree for the source of the data along with some supporting documentation. This information should be included in relevant PA data packages and records, as required.

Should you have any question, please contact David Hughes of my staff at (505) 234-8175.

Sincerely,

R. J. Leonard, Manager Compliance and Permitting

DLH:kds

Attachments

DATA RECORD PACKAGE FOR DRAWINGS SUPPLIED TO DENNIS POWERS USED IN THE GEOSTATISTICAL ANALYSIS OF BRINE RESERVOIR OCCURRENCES IN THE AREA OF WIPP FOR WIPP PERFORMANCE ASSESSMENT (PA).

POWERS.DWG

The software used to create the Powers map (see attached map) was AUTOCAD®, Release 11. This software package is currently being used by this user for several projects, including the making of maps and is recognized as an industry standard for this type of project.

The background information was purchased from Sylvan Ascent, Inc., P.O. Box 4792, Santa Fe, New Mexico 87502. The information on the maps of New Mexico and West Texas was derived from the U.S. census Bureau's TIGER/Line data, U.S. Geological Survey 3 Arc Second Digital Elevation Model (DEM) data, and USGS Geographical Names Information System (GNIS) data. This data was converted to DWG files and state plane coordinate systems for easy use in AutoCAD software. Map accuracy for the data varies for the different features, and for different geographical areas. Each type corresponds to National Map Accuracy standards for the original data from the US government. The State Plane Coordinate systems used in these maps were based on the North American Datum of 1927.

One electronic file was purchased, active.dxf (Drawing Interchange File), which consisted of all oil and gas well locations for southeastern New Mexico and west Texas, primarily that of the Delaware Basin. DXF files are standard ASCII text files. They can easily be translated to the formats of other CAD systems or submitted to other programs for specialized analysis. This file was purchased from Petroleum Information Corporation of Denver, Colorado and consisted of points and five-digit numbers for the hydrocarbon holes. The five-digit number was part of the API number associated with each hydrocarbon well and allowed for further information to be retrieved from PI's database utilizing that number. The DXF file was imported into AutoCAD and saved as a drawing. This drawing was then inserted into a map consisting of the information purchased from Sylvan Ascent. The oil well location drawing was scaled up and rotated to fit the state plane coordinates of the two dry holes located in the WIPP Site boundary. Symbology representing the different types of oil wells were inserted at the point location for each well.

The land grid data was purchased from Whitestar Corp, 333 West Hampden Avenue, Suite 604, Englewood, Colorado 80110 and consisted of the township, range, blocks, and section lines for Eddy and Lea Counties in New Mexico and seven counties in West Texas. This data was in a AutoCAD drawing file format. This drawing was inserted into the master map drawing at the proper state plane coordinates for Jeff Davis County in west Texas.

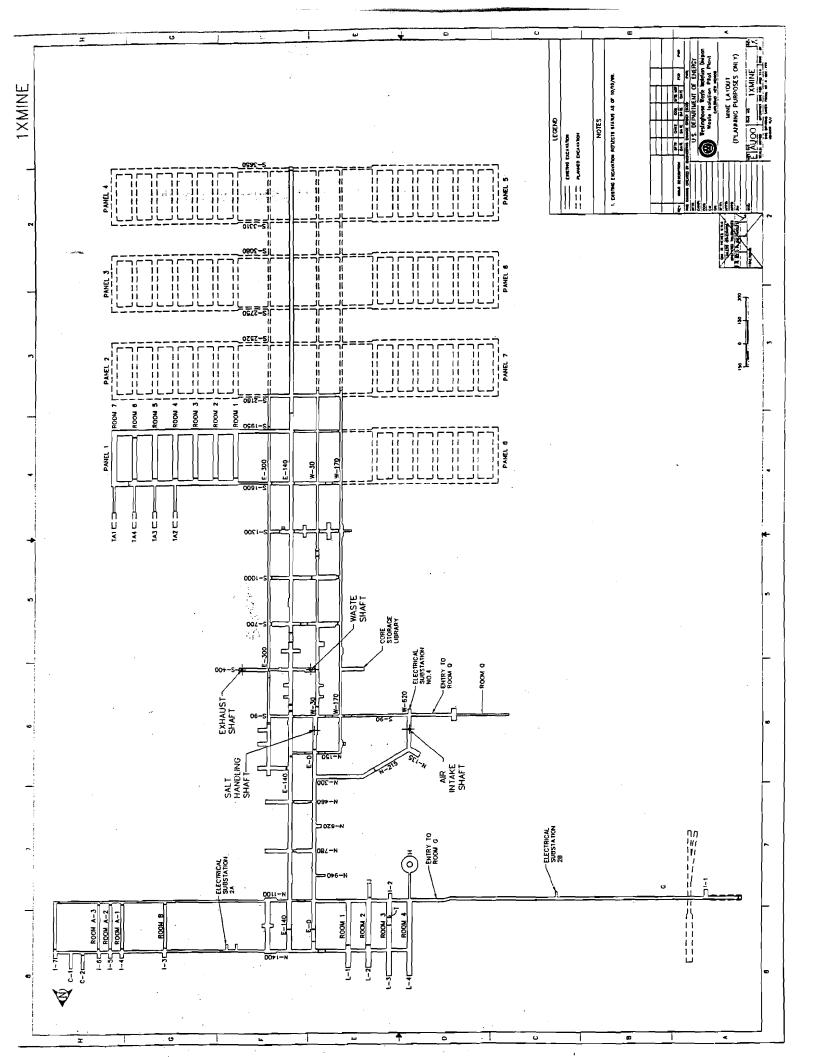
The next step in the process to create Powers.dwg was to Wblock (a command within AutoCAD that allows the user to write all or part of a drawing out to a new drawing file) the area desired.

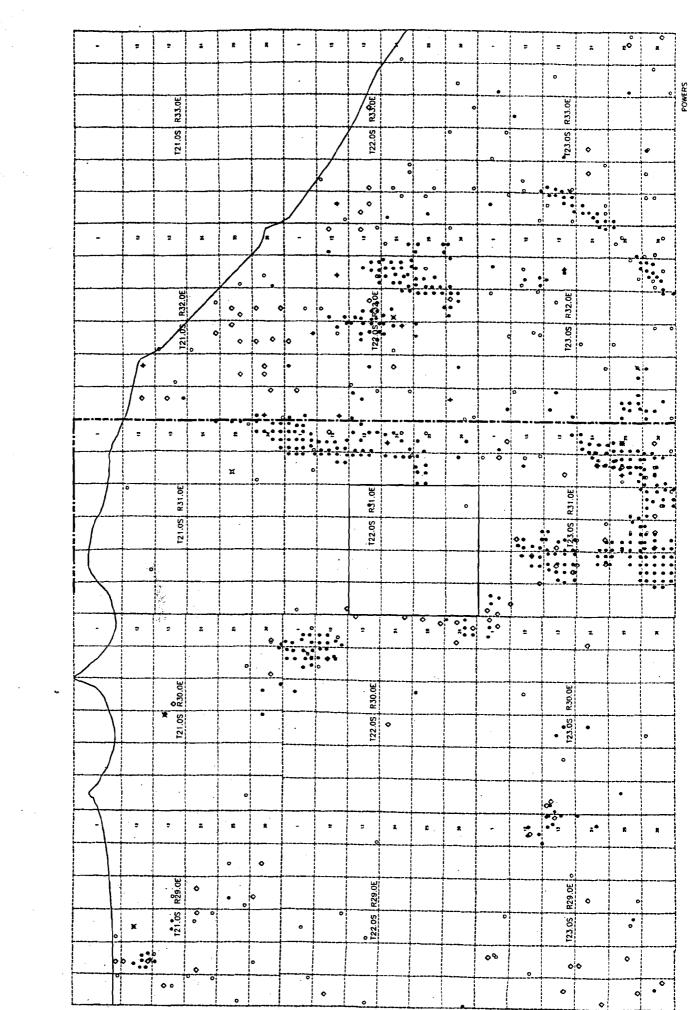
The new drawing was given the name of Powers.dwg. The material that was not needed was erased, leaving only the desired material which consisted of the land grid, the symbol and location for each hydrocarbon hole, and the API number associated for each well. To properly locate the drawing to the state plane coordinate system, the state plane coordinates for the northeast corner of Sec. 15, Township 22 South, Range 31 East were looked up in the U.S.G.S. table located in SAND88-1065. The drawing was moved to that location and verified that the northeast corner of Sec. 15 was at the proper state plane coordinate.

A lisp routine (see attached) was written to extract the five-digit API number for the hydrocarbon holes and the x-y location of each number in the drawing. The x-y location is the same as state plane coordinates. The API number and x-y location was written to a file called dennis.txt (see attached).

The x-y locations as translated into state plane coordinates are as accurate as the information obtained from Petroleum Information and no claim is made as to the exactness of the locations. All hydrocarbon holes are reported in feet from line for the location of the hole and not in state plane coordinates.

POWERS1.DWG

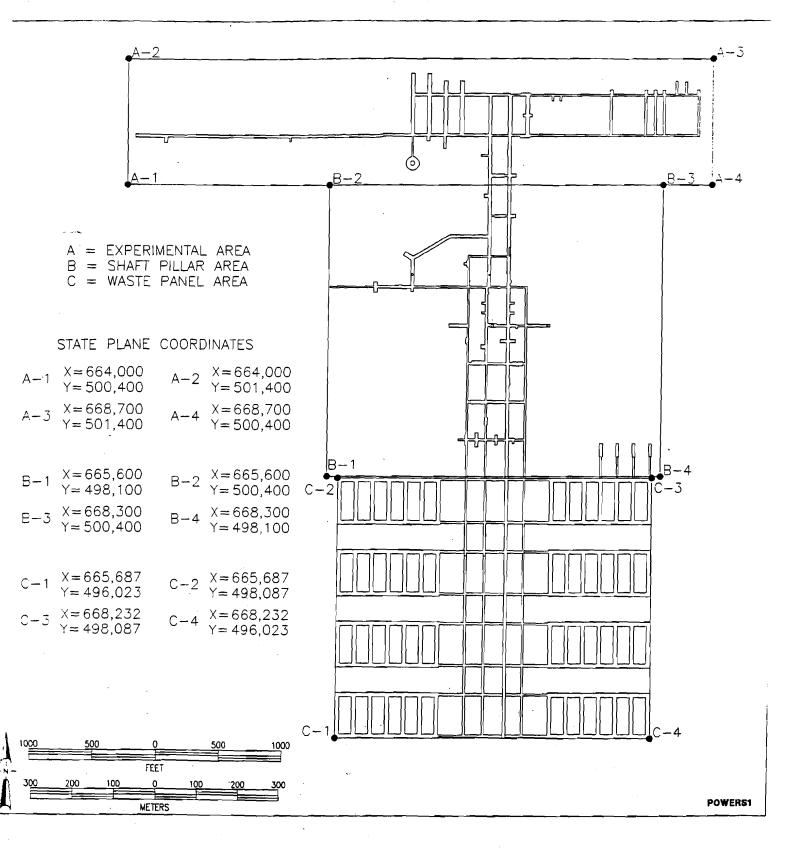

WID Engineering drawing 1XMINE is maintained as an overlay for other engineering drawings that depict the underground conditions. This drawing (see attached) was inserted into Powers.dwg and all extraneous information was erased. The reason for using Powers.dwg was that it was already set up for state plane coordinates. The locations (in state plane coordinates) of the four shafts, exhaust, waste handling, salt handling, and air intake were taken from the tables in SAND95xxxx, Condensed Listing of Surface Boreholes at the Waste Isolation Pilot Plant Project through June 30, 1995. The drawing was moved to these locations and verified that the center of each shaft matched the location of that given in the above report. It was renamed to Powers1.dwg to distinguish it from Powers.dwg.


Three rectangles were located on the drawing (as requested) and the corners were identified in state plane coordinates and listed on the drawing.

TEXTLOC.LSP

A lisp routine or program created using the programming language Autolisp that is resident within AutoCAD for this purpose.

```
(defun C:txtout (/ fln f a n index e1 e txt)
 (setq fln (getstring "\nFile name: "))
 (setq f (open fln "w"))
 (setq a (ssget))
 (setq n (sslength a))
 (setq index (- n 1))
 (repeat n
   (setq e1 (entget (ssname a index)))
   (setq index (- index 1))
   (setq e (assoc 0 e1))
   (if (= "TEXT" (cdr e)))
    (progn
     (setq txt (cdr (assoc 1 e1)))
     (setq bcd (cdr(assoc 10 e1)))
     (setq text (list(cons txt bcd)))
     (print text f)
    )
  )
 )
 (close f)
)
```



.

. .

.

•

DENNIS.TXT

The following is the text file created with the AutoCAD lisp routine. The information in this file is the API number and x-y location of the oil and gas wells defined on the Powers.dwg.

"25769-PI" 670643.0 459657.0 0.0)) "27812-PI" 669667.0 459656.0 0.0)) "27094-PI" 665706.0 459641.0 0.0)) "27019-PI" 664376.0 458292.0 0.0)) "27624-PI" 662071.0 458283.0 0.0)) "28240-PI" 675269.0 458364.0 0.0)) "27500-PI" 676261.0 458380.0 0.0)) "28026-PI" 683147.0 458424.0 0.0)) "05847-PI" 675267.0 458691.0 0.0)) 678578.0 459390.0 0.0)) "27549-PI" 681538.0 459415.0 0.0)) "27617-PI" 662064.0 459600.0 0.0)) 670974.0 459652.0 0.0) "25773-PI" 673612.0 459667.0 0.0) "27096-PI" 664369.0 459623.0 0.0)) 678910.0 458039.0 0.0)) 668355.0 458303.0 0.0)) "25866-PI" 665714.0 458292.0 0.0)) "27156-PI" 663057.0 458285.0 0.0)) "27239-PI" 677583.0 459381.0 0.0)) 663050.0 459608.0 0.0) "25348-PI" 720322.0 466632.0 0.0)) "27240-PI" 677923.0 456725.0 0.0)) "28239-PI" 675279.0 456720.0 0.0)) 676276.0 456733.0 0.0)) "27601-PI" 668362.0 456987.0 0.0)) "27018-PI" 665721.0 456976.0 0.0)) 667043.0 456983.0 0.0)) "27020-PI" 664383.0 456976.0 0.0)) 663064.0 456969.0 0.0)) (0.0) 677594.0 457050.0 0.0) "27550-PI" 669694.0 457031.0 0.0)) 684196.0 457122.0 0.0) 677916.0 458041.0 0.0)) "27016-PI" 667036.0 458299.0 0.0)) "25696-PI" "27113-PI" "27097-PI" "27548-PI" "27155-PI" "27268-PI" "27588-PI" "27017-PI" "25595-PI" "05848-PI" "27223-PI"

"05845-PI" 668348.0 459655.0 0.0)) "25639-PI" 668493.0 459656.0 0.0)) "27095-PI" 667029.0 459652.0 0.0)) "25176-PI" 680226.0 459727.0 0.0)) "25405-PI" 680424.0 459728.0 0.0)) "25640-PI" 681533.0 459742.0 0.0)) "27496-PI" 683136.0 459751.0 0.0)) "20341-PI" 685487.0 459769.0 0.0)) 668347.0 459805.0 0.0)) 675936.0 460018.0 0.0)) 683835.0 460090.0 0.0)) "27177-PI" 663142.0 460925.0 0.0)) 663043.0 460925.0 0.0)) 670966.0 460968.0 0.0)) 673604.0 460983.0 0.0)) "27171-PI" 664362.0 460935.0 0.0)) 674927.0 460994.0 0.0)) 676258.0 461009.0 0.0)) 665699.0 460957.0 0.0)) 677580.0 461024.0 0.0)) 667021.0 461070.0 0.0)) 670635.0 461101.0 0.0)) 671953.0 461293.0 0.0)) 669327.0 461297.0 0.0)) "24608-PI" 679894.0 461041.0 0.0)) "27425-PI" 668339.0 461299.0 0.0)) ("26885-PI" 678619.0 461361.0 0.0)) "27081-PI" 679892.0 461368.0 0.0)) 681186.0 461383.0 0.0)) (("27365-PI" 683821.0 461402.0 0.0)) (("27266-PI" 663139.0 461903.0 0.0)) 664363.0 461913.0 0.0)) 682839.0 461393.0 0.0)) (("27497-PI" 671949.0 461955.0 0.0)) (("27319-PI" 665694.0 461931.0 0.0)) 670630.0 461959.0 0.0)) 677908.0 462000.0 0.0)) ("27115-PI" 667016.0 461946.0 0.0)) ("27131-PI" 668011.0 461955.0 0.0)) "27105-PI" 681510.0 462032.0 0.0)) ("27219-PI" 669330.0 461959.0 0.0)) (("27104-PI" 680419.0 462022.0 0.0)) "27134-PI" 682829.0 462040.0 0.0)) "27519-PI" "28005-PI" "27170-PI" "27424-PI" "27936-PI" "27937-PI" "27498-PI" "23587-PI" "27255-PI" "27552-PI" "27206-PI" "127269-PI" "27499-PI" "05844-PI" "05846-PI" "27611-PI" "27312-PI" "27106-PI" (("27347-PI"

(("20751-PI" 665691.0 463575.0 0.0)) (("27386-PI" 684214.0 462401.0 0.0) (("27711-PI" 673263.0 462286.0 (("20277-PI" 681826.0 464986.0 0.0) (("20242-PI" 681495.0 464984.0 0.0) (("21431-PI" 681506.0 462686.0 0.0) (("27217-PI" 669295.0 464951.0 0.0) (("21211-PI" 685471.0 465011.0 0.0) (("27382-PI" 684138.0 466316.0 0.0) (("21224-PI" 682482.0 466299.0 0.0) (("27197-PI" 679101.0 465014.0 0.0) (("27112-PI" 667997.0 464922.0 0.0) (("21229-PI" 685452.0 465011.0 0.0) (("27216-PI" 669313.0 466572.0 0.0) (("27114-PI" 667000.0 466556.0 0.0) (("27706-PI" 685518.0 466368.0 0.0) (("27101-PI" 681169.0 465313.0 0.0) ("20302-PI" 680204.0 464987.0 0.0) ("27139-PI" 668005.0 463598.0 0.0) ("27102-PI" 680543.0 463662.0 0.0) ("27609-PI" 670633.0 463598.0 0.0)) ("26194-PI" 670952.0 463596.0 0.0)) ("05843-PI" 673587.0 463600.0 0.0) ("27884-PI" 673435.0 463600.0 0.0) ("27999-PI" 672603.0 463275.0 0.0)) ("27075-PI" 679231.0 462342.0 0.0) (("27841-PI" 665701.0 466865.0 0.0)) (("27103-PI" 682589.0 465972.0 0.0) ("20986-PI" 681501.0 464003.0 0.0) ("27385-PI" 684147.0 463695.0 0.0) ("27199-PI" 682825.0 463683.0 0.0) ("27200-PI" 681503.0 463675.0 0.0) ("27218-PI" 669324.0 463598.0 0.0) ("27795-PI" 667010.0 463586.0 0.0) (("27412-PI" 685117.0 467296.0 ("24069-PI" 668328.0 464923.0 0.0) ("21127-PI" 685461.0 465011.0 0.0) ("27374-PI" 681437.0 466431.0 0.0) ("20599-PI" 681494.0 466300.0 0.0) ("27198-PI" 682817.0 465065.0 0.0) ("27383-PI" 684139.0 465062.0 0.0) ("26987-PI" 667995.0 466565.0 0.0) ("27391-PI" 683797.0 467448.0 0.0) 0.0) 0.0

(("27616-PI" 669281.0 467459.0 0.0)) (("23739-PI" 665679.0 467512.0 0.0)) (("27237-PI" 666010.0 467514.0 0.0)) (("27238-PI" 666998.0 467530.0 0.0)) (("20796-PI" 681820.0 467615.0 0.0)) (("27243-PI" 667983.0 467543.0 0.0)) (("05842-PI" 672239.0 467570.0 0.0)) (("27387-PI" 681667.0 467748.0 0.0)) (("23175-PI" 669632.0 467690.0 0.0)) (("27388-PI" 667978.0 468528.0 0.0)) (("27411-PI" 685174.0 468675.0 0.0)) (("26928-PI" 682563.0 468746.0 0.0)) (("27290-PI" 665669.0 468828.0 0.0)) (("27289-PI" 666988.0 468846.0 0.0)) (("24257-PI" 681660.0 468930.0 0.0)) (("22473-PI" 681812.0 468931.0 0.0)) (("27384-PI" 681864.0 469026.0 0.0)) (("27162-PI" 683787.0 469110.0 0.0)) (("25408-PI" 683786.0 469259.0 0.0)) (("28182-PI" 683017.0 469790.0 0.0)) (("27423-PI" 685260.0 470246.0 0.0)) (("27129-PI" 683780.0 470306.0 0.0)) (("25305-PI" 683916.0 470307.0 0.0)) (("25407-PI" 684432.0 471299.0 0.0)) (("28123-PI" 684330.0 471396.0 0.0)) (("27657-PI" 685551.0 471633.0 0.0)) (("27691-PI" 686768.0 471640.0 0.0)) (("27270-PI" 665496.0 472178.0 0.0)) (("27840-PI" 667880.0 472192.0 0.0)) (("28006-PI" 669532.0 472201.0 0.0)) (("27397-PI" 664299.0 472482.0 0.0)) (("27501-PI" 663046.0 472475.0 0.0)) (("27899-PI" 667289.0 472498.0 0.0)) (("27022-PI" 669592.0 472511.0 0.0)) (("27888-PI" 665635.0 472762.0 0.0)) (("27021-PI" 667942.0 472822.0 0.0)) (("23992-PI" 664298.0 472809.0 0.0)) (("27716-PI" 686664.0 473054.0 0.0)) (("26633-PI" 667928.0 474138.0 0.0)) (("27421-PI" 664291.0 474122.0 0.0)) (("27420-PI" 665625.0 474129.0 0.0)) (("27422-PI" 662642.0 474113.0 0.0)) (("27152-PI" 667274.0 474138.0 0.0))

(("20423-PI" 669577.0 474150.0 0.0)) (("20298-PI" 680147.0 474229.0 0.0)) (("26591-PI" 669238.0 475167.0 0.0)) (("27887-PI" 663004.0 475158.0 0.0)) (("27396-PI" 665671.0 475278.0 0.0)) (("27589-PI" 664287.0 475452.0 0.0)) (("26382-PI" 668242.0 475481.0 0.0)) (("26021-PI" 665278.0 475476.0 0.0)) (("27153-PI" 667256.0 475672.0 0.0)) (("27886-PI" 664607.0 476632.0 0.0)) (("27392-PI" 667244.0 476784.0 0.0)) (("27393-PI" 665595.0 476793.0 0.0)) (("27323-PI" 670887.0 476823.0 0.0)) (("27325-PI" 667900.0 476955.0 0.0)) (("27324-PI" 669548.0 477135.0 0.0)) (("27178-PI" 669545.0 477786.0 0.0)) (("27517-PI" 670866.0 477804.0 0.0)) (("27479-PI" 668221.0 478099.0 0.0)) (("10036-PI" 683072.0 478191.0 0.0)) (("27600-PI" 666705.0 478105.0 0.0)) (("27598-PI" 665254.0 478108.0 0.0)) (("24780-PI" 662386.0 478118.0 0.0)) (("27442-PI" 668443.0 479321.0 0.0)) . (("26296-PI" 666896.0 479418.0 0.0)) (("27597-PI" 666707.0 479421.0 0.0)) (("27618-PI" 665259.0 479417.0 0.0)) (("25419-PI" 682737.0 480629.0 0.0)) (("27622-PI" 681420.0 480832.0 0.0)) (("27515-PI" 669534.0 480782.0 0.0)) (("27443-PI" 668207.0 480778.0 0.0)) (("27610-PI" 666887.0 480967.0 0.0)) (("27914-PF" 668532.0 481620.0 0.0)) (("26509-PI" 669525.0 481862.0 0.0)) (("24420-PI" 658934.0 482782.0 0.0)) (("24954-PI" 685369.0 483466.0 0.0)) (("27998-PI" 684036.0 484770.0 0.0)) (("25534-PI" 682721.0 484773.0 0.0)) (("27704-PI" 659943.0 484664.0 0.0)) (("20803-PI" 657281.0 484850.0 0.0)) (("27784-PI" 658924.0 485883.0 0.0)) (("21247-PI" 660269.0 485996.0 0.0)) (("24062-PI" 657800.0 486514.0 0.0)) (("05840-PI" 682702.0 487402.0 0.0))

"32795-PI" 714475.0 503927.0 0.0)) "32765-PI" 714051.0 505880.0 0.0)) "32761-PI" 705593.0 493144.0 0.0)) "32758-PI" 713055.0 507207.0 0.0)) "32754-PI" 691079.0 464743.0 0.0)) "32688-PI" 691074.0 462107.0 0.0)) "32681-PI" 711484.0 497267.0 0.0)) "32676-PI" 689424.0 461115.0 0.0)) 712130.0 499893.0 0.0)) "32655-PI" 706913.0 492866.0 0.0)) (("32868-PI" 692289.0 458458.0 0.0)) "32864-PI" 714068.0 502597.0 0.0)) "32851-PI" 714800.0 493003.0 0.0)) "32764-PI" 714060.0 504564.0 0.0)) "32716-PI" 690757.0 459815.0 0.0)) "32701-PI" 690743.0 461127.0 0.0)) "32669-PI" 689598.0 472965.0 0.0)) "32668-PI" 702432.0 515309.0 0.0)) "32628-PI" 713074.0 503575.0 0.0)) "32627-PI" 710800.0 502232.0 0.0)) "32626-PI" 713073.0 502259.0 0.0)) 711795.0 500552.0 0.0)) "32544-PI" 712734.0 505863.0 0.0)) "32540-PI" 693249.0 462459.0 0.0)) "32539-PI" 712743.0 504551.0 0.0)) "32507-PI" 710784.0 504523.0 0.0)) "32488-PI" 709485.0 500842.0 0.0)) "32487-PI" 709491.0 499529.0 0.0)) ("32481-PI" 691923.0 465079.0 0.0)) "32478-PI" 691927.0 462444.0 0.0)) 711774.0 504537.0 0.0)) "32463-PI" 710172.0 496920.0 0.0)) "32462-PI" 710485.0 498569.0 0.0)) "32437-PI" 709176.0 498222.0 0.0)) "32436-PI" 709089.0 497007.0 0.0)) "32383-PI" 701403.0 521883.0 0.0)) "32396-PI" 711784.0 503533.0 0.0)) "32388-PI" 711476.0 498583.0 0.0)) "32387-PI" 710191.0 494600.0 0.0)) ("32386-PI" 710179.0 495917.0 0.0)) "32376-PI" 710807.0 501189.0 0.0)) "32375-PI" 710224.0 499756.0 0.0)) ("32336-PI" 710208.0 492972.0 0.0)) "32660-PI" "32620-PI" "32469-PI"

(("32334-PI" 725239.0 460126.0 0.0)) (("32332-PI" 703458.0 511356.0 0.0)) (("32326-PI" 717037.0 499821.0 0.0)) (("32324-PI" 688841.0 508765.0 0.0)) (("32287-PI" 712107.0 501921.0 0.0)) (("32255-PI" 704139.0 509067.0 0.0)) (("32233-PI" 731282.0 486206.0 0.0)) (("32221-PI" 705090.0 512723.0 0.0)) (("32176-PI" 691974.0 463775.0 0.0)) (("32149-PI" 691960.0 507160.0 0.0)) (("32143-PI" 709193.0 495630.0 0.0)) (("32142-PI" 719299.0 512875.0 0.0)) (("32138-PI" 732950.0 461350.0 0.0)) (("32136-PI" 707918.0 491618.0 0.0)) (("32121-PI" 706395.0 514055.0 0.0)) (("32108-PI" 713552.0 486079.0 0.0)) (("32103-PI" 714066.0 501040.0 0.0)) (("32093-PI" 689284.0 488859.0 0.0)) (("32041-PI" 689461.0 465068.0 0.0)) (("32037-PI" 713148.0 498645.0 0.0)) (("32036-PI" 717086.0 494153.0 0.0)) (("32023-PI" 715772.0 493995.0 0.0)) (("32000-PI" 704165.0 509787.0 0.0)) (("31986-PI" 706377.0 516673.0 0.0)) (("31976-PI" 705153.0 510128.0 0.0)) (("31968-PI" 709669.0 478781.0 0.0)) (("31959-PI" 722064.0 496705.0 0.0)) (("31951-PI" 709225.0 492852.0 0.0)) (("31947-PI" 711612.0 480841.0 0.0)) (("31932-PI" 709223.0 491671.0 0.0)) (("31929-PI" 715922.0 460038.0 0.0)) (("31926-PI" 694250.0 508981.0 0.0)) (("31907-PI" 713409.0 499262.0 0.0)) (("31906-PI" 713126.0 500954.0 0.0)) (("31902-PI" 709212.0 494256.0 0.0)) (("31889-PI" 701519.0 507402.0 0.0)) (("31885-PI" 727370.0 514213.0 0.0)) (("31855-PI" 711731.0 495498.0 0.0)) (("31850-PI" 715786.0 498671.0 0.0)) (("31849-PI" 704183.0 503788.0 0.0)) (("31821-PI" 709968.0 522005.0 0.0)) (("31801-PI" 704824.0 505759.0 0.0)) (("31800-PI" 706154.0 504786.0 0.0))

(("31762-PI" 702509.0 507416.0 0.0)) (("31754-PI" 702247.0 498452.0 0.0)) (("31753-PI" 707493.0 504806.0 0.0)) (("31729-PI" 692941.0 508635.0 0.0)) (("31726-PI" 706503.0 502505.0 0.0)) (("31720-PI" 708236.0 492940.0 0.0)) (("31716-PI" 711819.0 511456.0 0.0)) (("31695-PI" 714399.0 499301.0 0.0)) (("31694-PI" 697351.0 491465.0 0.0)) (("31665-PI" 702536.0 503708.0 0.0)) (("31661-PI" 704225.0 498483.0 0.0)) (("31651-PI" 703103.0 479385.0 0.0)) (("31650-PI" 702426.0 483394.0 0.0)) (("31645-PI" 701542.0 504730.0 0.0)) (("31644-PI" 702851.0 506059.0 0.0)) (("31625-PI" 710666.0 478366.0 0.0)) (("31618-PI" 706900.0 493891.0 0.0)) (("31617-PI" 705128.0 508426.0 0.0)) (("31614-PI" 706130.0 507124.0 0.0)) (("31603-PI" 706145.0 505775.0 0.0)) (("31602-PI" 705507.0 503807.0 0.0)) (("31600-PI" 702868.0 504415.0 0.0)) (("31599-PI" 704158.0 507100.0 0.0)) (("31595-PI" 704170.0 505751.0 0.0)) (("31576-PI" 704185.0 504435.0 0.0)) (("31518-PI" 691747.0 536332.0 0.0)) (("31515-PI" 697706.0 462644.0 0.0)) (("31512-PI" 704937.0 507436.0 0.0)) (("31495-PI" 704962.0 504975.0 0.0)) (("31470-PI" 706351.0 520629.0 0.0)) (("31443-PI" 689070.0 523103.0 0.0)) (("31442-PI" 689062.0 524415.0 0.0)) (("31434-PI" 711657.0 477373.0 0.0)) (("31415-PI" 703864.0 502131.0 0.0)) (("31412-PI" 697000.0 542978.0 0.0)) (("31403-PI" 688768.0 519007.0 0.0)) (("31394-PI" 688762.0 520119.0 0.0)) (("31362-PI" 699664.0 540385.0 0.0)) (("31267-PI" 724872.0 500986.0 0.0)) (("31227-PI" 689111.0 516479.0 0.0)) (("31193-PI" 710253.0 527301.0 0.0)) (("31137-PI" 715576.0 512845.0 0.0)) (("31120-PI" 706324.0 524620.0 0.0))

"30495-PI" 703668.0 528559.0 0.0)) "30390-PI" 721305.0 466697.0 0.0)) "29603-PI" 710648.0 481391.0 0.0)) 690620.0 483483.0 0.0)) "28991-PI" 733155.0 461152.0 0.0)) "28927-PI" 726068.0 478256.0 0.0)) "28697-PI" 726117.0 473636.0 0.0)) "28681-PI" 725416.0 476943.0 0.0)) 726729.0 477287.0 0.0)) 722817.0 472969.0 0.0) 725430.0 475958.0 0.0)) "27779-PI" 695745.0 527104.0 0.0)) 707811.0 506124.0 0.0)) 712795.0 474520.0 0.0)) "27684-PI" 746307.0 460264.0 0.0)) 701049.0 524549.0 0.0)) "30664-PI" 701038.0 527167.0 0.0)) "30593-PI" 717032.0 503610.0 0.0)) 719299.0 507585.0 0.0)) "30030-PI" 704176.0 457269.0 0.0)) 696073.0 462481.0 0.0)) 711740.0 460301.0 0.0)) "29337-PI" 711749.0 458966.0 0.0)) "29321-PI" 726103.0 481020.0 0.0)) "29175-PI" 721313.0 503306.0 0.0)) 726098.0 474952.0 0.0)) "28659-PI" 725134.0 473309.0 0.0)) "28610-PI" 724130.0 474618.0 0.0)) 723812.0 473303.0 0.0)) "28579-PI" 726415.0 475969.0 0.0)) 725118.0 474625.0 0.0)) "28097-PI" 726246.0 495713.0 0.0)) "27780-PI" 722146.0 507594.0 0.0)) ("27655-PI" 711983.0 478484.0 0.0)) ("27634-PI" 711605.0 523380.0 0.0)) (("31095-PI" 706307.0 528583.0 0.0)) ("31089-PI" 693156.0 522136.0 0.0)) 689152.0 510880.0 0.0)) 705323.0 527224.0 0.0)) "30886-PI" 695776.0 523170.0 0.0)) ("30873-PI" 707257.0 531208.0 0.0)) 702335.0 531157.0 0.0)) "28272-PI" 727704.0 481232.0 0.0) "29338-PI" "28667-PI" "28223-PI" "27772-PI" "27708-PI" "29495-PI" "29361-PI" "28680-PI" "28609-PI" "28608-PI" "28607-PF" "30781-PI" "30757-PI" "30137-PI" ("31076-PI" "Id-0806")

6

 \mathcal{L}

(("27620-PI" 697134.0 519223.0 0.0)) (("27603-PI" 691693.0 543123.0 0.0)) (("27596-PI" 724919.0 497052.0 0.0)) (("27479-PI" 751583.0 463901.0 0.0)) (("27478-PI" 690748.0 463745.0 0.0)) (("27473-PI" 693182.0 517875.0 0.0)) (("27472-PI" 701090.0 519263.0 0.0)) (("27466-PI" 723435.0 511549.0 0.0)) (("27373-PI" 691724.0 538989.0 0.0)) (("27266-PI" 726123.0 506282.0 0.0)) (("27153-PI" 739333.0 506351.0 0.0)) (("27136-PI" 697570.0 461188.0 0.0)) (("26986-PI" 697111.0 523186.0 0.0)) (("26977-PI" 744873.0 476093.0 0.0)) (("26976-PI" 723492.0 506273.0 0.0)) (("26902-PI" 743432.0 491880.0 0.0)) (("26844-PI" 713292.0 474527.0 0.0)) (("26766-PI" 738219.0 482615.0 0.0)) (("26496-PI" 723696.0 486489.0 0.0)) (("26492-PI" 742177.0 485274.0 0.0)) (("26034-PI" 723856.0 468024.0 0.0)) (("25958-PI" 742356.0 464167.0 0.0)) (("25642-PI" 721841.0 469944.0 0.0)) (("25622-PI" 690690.0 476593.0 0.0)) (("25553-PI" 733078.0 470709.0 0.0)) (("25518-PI" 731720.0 474626.0 0.0)) (("25473-PI" 750261.0 464225.0 0.0)) (("25302-PI" 751619.0 458982.0 0.0)) (("25201-PI" 722567.0 471654.0 0.0)) (("25151-PI" 723830.0 471663.0 0.0)) (("25150-PI" 718668.0 465359.0 0.0)) (("25017-PI" 693497.0 475651.0 0.0)) (("25000-PI" 722580.0 470665.0 0.0)) (("24947-PI" 717041.0 498309.0 0.0)) (("24893-PI" 729125.0 470680.0 0.0)) (("24823-PI" 697249.0 506004.0 0.0)) (("24663-PI" 699664.0 535095.0 0.0)) (("24215-PI" 697274.0 502059.0 0.0)) (("21440-PI" 709782.0 456990.0 0.0)) (("21436-PI" 693473.0 482355.0 0.0)) (("21397-PI" 723765.0 477255.0 0.0)) (("21320-PI" 709771.0 458633.0 0.0)) (("21297-PI" 710754.0 459959.0 0.0))

(("20428-PI" 701489.0 466482.0 0.0) (("20432-PI" 701446.0 471743.0 0.0) (("20734-PI" 693314.0 499351.0 0.0) (("20759-PI" 739511.0 489206.0 0.0) (("20810-PI" 717094.0 493357.0 0.0) (("21296-PI" 710432.0 458630.0 (("08117-PI" 708030.0 475818.0 0.0) (("08118-PI" 697522.0 467751.0 0.0) (("08119-PI" 719977.0 467996.0 0.0) (("08120-PI" 715676.0 462967.0 0.0) (("08121-PI" 712061.0 462593.0 0.0) (("08122-PI" 715011.0 463944.0 0.0) (("08125-PI" (("08126-PI" (("08127-PI" 712406.0 459654.0 0.0) (("08130-PI" (("20153-PI" (("20424-PI" 730469.0 468043.0 0.0) (("20437-PI" 717620.0 466333.0 0.0) (("20804-PI" 726446.0 473311.0 0.0)) (("08123-PI" 714695.0 462299.0 0.0) ("08364-PI" ("08365-PI" ("08124-PI" 713707.0 462288.0 0.0) ("08128-P**I**" ("08133-PI" ("08357-PI" ("08359-PI". ("08361-PI" ("20407-PI" 688914.0 490347.0 0.0) ("08129-PI" ("08131-PI" 712396.0 460970.0 0.0) ("08132-PI" 713056.0 460313.0 0.0) ("08134-PI" ("08135-PI" "08354-PI" ("08355-PI" ("08356-PI" ("08358-PI" ("08360-PI" ("08363-PI" ("20423-PI" 692059.0 492737.0 0.0) ("21081-PI" 718714.0 458749.0 0.0) 713392.0 458658.0 0.0) 716027.0 460028.0 0.0) 735569.0 483904.0 0.0) 721237.0 473292.0 0.0) 721293.0 468009.0 0.0) 722522.0 469334.0 0.0) 725232.0 461442.0 0.0) 720295.0 468984.0 0.0) 689572.0 457128.0 0.0) 704158.0 459912.0 0.0) 714699.0 461324.0 0.0) 713380.0 461308.0 0.0) 715691.0 461662.0 0.0) 721203.0 478534.0 0.0) 722541.0 468018.0 0.0) 721237.0 469325.0 0.0) 729189.0 461450.0 0.0) 742401.0 457586.0 0.0) 714471.0 460334.0 0.0) 725384.0 483523.0 0.0) 0.0

يتر سر

0.0) "08115-PI" 702718.0 478364.0 0.0)) 713234.0 481125.0 0.0)) 709293.0 486352.0 0.0)) "08111-PI" 713107.0 496962.0 0.0)) 703873.0 500772.0 0.0)) "08112-PI" 719791.0 493060.0 0.0)) 705188.0 502158.0 0.0)) 719651.0 504941.0 0.0)) 694371.0 537683.0 0.0)) 735512.0 493164.0 0.0)) 726303.0 489144.0 0.0)) 747297.0 501127.0 0.0)) 730127.0 499712.0 0.0)) 726170.0 502337.0 0.0)) 720922.0 510222.0 0.0)) 594193.0 467854.0 0.0)) "28043-PI" 610560.0 528287.0 0.0)) 597888.0 534815.0 0.0)) 653127.0 510856.0 0.0)) 626201.0 476220.0 0.0)) 502084.0 0.0) 693293.0 504667.0 0.0) 702468.0 511350.0 0.0) 728806.0 499702.0 0.0)) 657789.0 509389.0 0.0)) 620008.0 477482.0 0.0)) 628300.0 464893.0 0.0)) "27927-PI" 656248.0 493126.0 0.0)) 624565.0 471818.0 0.0)) 651813.0 510184.0 0.0)) 537467.0 0.0)) "27735-PI" 653880.0 490100.0 0.0)) 622633.0 479659.0 0.0)) 653887.0 488787.0 0.0) 656263.0 490090.0 0.0)) 655083.0 486128.0 0.0)) "27683-PI" 601197.0 542421.0 0.0)) 593537.0 490026.0 0.0)) "27635-PI" 605498.0 537561.0 0.0)) "27587-PI" 656552.0 499922.0 0.0)) "27520-PI" 621528.0 477975.0 0.0)) "27510-PI" 624355.0 476794.0 0.0)) 711772.0 504864.0 "08108-PI" 699915.0 "27778-PI" 606796.0 ("08116-PI" "Id-90180" "08107-PI" "02616-PI" "01802-PI" "08114-PI" "08113-PI" "08110-PI" "08106-PI" "08105-PI" "01803-PI" "01801-PI" "01800-PI" "01799-PI" "01798-PI" "01796-PI" "28165-PI" "28093-PI" "28049-PI" "28032-PI" "28020-PI" "27966-PI" "27909-PI" "27877-PI" "27791-PI" "27734-PI" "27686-PI" "27590-PI" "27703-PI" "27666-PI"

(("27478-PI" 655598.0 494097.0 0.0)) (("27441-PI" 649916.0 511440.0 0.0)) (("27434-PI" 656517.0 507932.0 0.0)) (("27427-PI" 601429.0 540397.0 0.0)) (("27410-PI" 656234.0 497001.0 0.0)) (("27407-PI" 597877.0 546413.0 0.0)) (("27357-PI" 654945.0 490094.0 0.0)) (("27316-PI" 621268.0 479781.0 0.0)) (("27294-PI" 600237.0 540294.0 0.0)) (("27283-PI" 599227.0 542742.0 0.0)) (("27225-PI" 687611.0 525719.0 0.0)) (("27215-PI" 599233.0 541756.0 0.0)) (("27208-PI" 655815.0 491378.0 0.0)) (("27078-PI" 652468.0 511180.0 0.0)) (("27061-PI" 599879.0 543787.0 0.0)) (("27060-PI" 601530.0 541437.0 0.0)) (("27038-PI" 640263.0 523060.0 0.0)) (("27036-PI" 600560.0 541106.0 0.0)) (("27001-PI" 688186.0 530998.0 0.0)) (("26992-PI" 623118.0 475818.0 0.0)) (("26991-PI" 622645.0 476609.0 0.0)) (("26988-PI" 686144.0 515490.0 0.0)) (("26979-PI" 683579.0 505578.0 0.0)) (("26973-PI" 680237.0 515105.0 0.0)) (("26960-PI" 682869.0 513845.0 0.0)) (("26954-PI" 597771.0 458188.0 0.0)) (("26942-PI" 684844.0 514173.0 0.0)) (("26941-PI" 680015.0 496696.0 0.0)) (("26940-PI" 678367.0 496708.0 0.0)) (("26934-PI" 644237.0 523079.0 0.0)) (("26932-PI" 682601.0 500402.0 0.0)) (("26931-PI" 600417.0 542418.0 0.0)) (("26929-PI" 683570.0 506937.0 0.0)) (("26918-PI" 684852.0 512857.0 0.0)) (("26917-PI" 684860.0 511537.0 0.0)) (("26910-PI" 685062.0 515399.0 0.0)) (("26909-PI" 684173.0 515489.0 0.0)) (("26908-PI" 682877.0 512529.0 0.0)) (("26904-PI" 649501.0 511172.0 0.0)) (("26894-PI" 682863.0 514819.0 0.0)) (("26877-PI" 682845.0 516790.0 0.0)) (("26876-PI" 682839.0 517800.0 0.0)) (("26875-PI" 682828.0 519113.0 0.0))

683529.0 513841.0 0.0)) 683537.0 512529.0 0.0)) 681039.0 498331.0 0.0)) 683812.0 519115.0 0.0)) 517807.0 0.0)) 686469.0 516801.0 0.0)) 519123.0 0.0)) 678359.0 498083.0 0.0) 685202.0 509565.0 0.0)) 683563.0 508250.0 0.0)) 683697.0 517798.0 0.0)) "26849-PI" 687453.0 517817.0 0.0)) 684906.0 502953.0 0.0)) 683829.0 516803.0 0.0)) "26829-PI" 687459.0 516799.0 0.0)) 688026.0 531008.0 0.0)) 688045.0 528376.0 0.0)) "26802-PI" 644112.0 517803.0 0.0)) 654502.0 515157.0 0.0)) 687770.0 520448.0 0.0)) 680158.0 498061.0 0.0)) 687775.0 519132.0 0.0)) "26780-PI" 683872.0 511208.0 0.0)) "26777-PI" 688059.0 527034.0 0.0)) "26775-PI" 685149.0 516803.0 0.0)) "26774-PI" 686461.0 518138.0 0.0)) "26761-PI" 650327.0 515728.0 0.0)) "26760-PI" 688075.0 524406.0 0.0)) "26751-PI" 686445.0 521756.0 0.0)) "26742-PI" 683880.0 509895.0 0.0)) "26729-PI" 686429.0 524399.0 0.0)) "26724-PI" 681568.0 511172.0 0.0)) 520428.0 0.0)) "26723-PI" 681576.0 509860.0 0.0)) "26722-PI" 682803.0 507264.0 0.0)) "26715-PI" 685122.0 521752.0 0.0)) "26698-PI" 686455.0 519124.0 0.0)) 682744.0 503275.0 0.0)) 651176.0 520437.0 0.0)) 513832.0 0.0)) "26650-PI" 682885.0 511198.0 0.0)) 512523.0 0.0)) 512516.0 0.0)) 685143.0 685129.0 683807.0 "26655-PI" 652140.0 ("26646-PI" 653458.0 ("26645-PI" 652138.0 "26860-PI" "26854-PI" "26848-PI" "26831-PI" "26830-PI" "26816-PI" "26799-PI" "26788-PI" (("26866-PI" "26859-PI" "26858-PI" "26857-PI" "26855-PI" "26843-PI" "26828-PI" "26817-PI" "26815-PI" "26794-PI" "26786-PI" "26716-PI" "26678-PI" "26681-PI"

2

(("26638-PI" 681299.0 496693.0 0.0)) (("26644-PI" 653460.0 513839.0 0.0) (("26446-PI" 601962.0 485030.0 0.0) (("26482-PI" 685241.0 500628.0 0.0) (("26487-PI" 685216.0 507264.0 0.0) (("26502-PI" 686528.0 508580.0 0.0) (("26510-PI" 649465.0 519120.0 0.0) (("26519-PI" 633630.0 474126.0 0.0) (("26314-PI" 648433.0 515137.0 0.0) ("26547-PI" 682796.0 508580.0 0.0) (("26171-PI" 685311.0 490031.0 0.0) (("26172-PI" 596056.0 462130.0 0.0)) (("26232-PI" 650818.0 514982.0 0.0) (("26304-PI" 650793.0 518134.0 0.0) (("26313-PI" 650945.0 519123.0 0.0)) (("26371-PI" 651151.0 513733.0 0.0) (("26372-PI" 606797.0 533853.0 0.0) ("26548-PI" 682812.0 505893.0 0.0) ("26585-PI" 686453.0 520440.0 0.0) ("26586-PI" 685127.0 520435.0 0.0)) ("26625-PI" 686437.0 523087.0 0.0) ("26626-PI" 651831.0 520109.0 0.0) ("26631-PI" 645242.0 520102.0 0.0)) (("26288-PI" 686227.0 503289.0 0.0) ("26549-PI" 682796.0 509554.0 0.0) ("26584-PI" 687762.0 521764.0 0.0)) ("26629-PI" 682660.0 491396.0 0.0)) ("26639-PI" 683605.0 497005.0 0.0)) ("26376-PI" 682760.0 498050.0 0.0) ("26414-PI" 596513.0 459463.0 0.0) ("26436-PI" 652656.0 516740.0 0.0) ("26437-PI" 652115.0 518300.0 0.0) ("26377-PI" 682604.0 499315.0 0.0) ("26380-PI" 651144.0 512689.0 0.0) ("26398-PI" 652168.0 515145.0 0.0) ("26400-PI" 682599.0 501631.0 0.0) ("26407-PI" 610955.0 470146.0 0.0) ("26408-PI" 653438.0 516467.0 0.0) ("26429-PI" 652292.0 519352.0 0.0) ("26165-PI" 687857.0 507261.0 0.0) ("26254-PI" 649678.0 513983.0 0.0) ("26263-PI" 608117.0 533433.0 0.0) ("26287-PI" 683925.0 499308.0 0.0)

(("26084-PI" 637668.0 460947.0 0.0) (("24138-PI" 616093.0 523018.0 0.0)) (("24577-PI" 607006.0 463263.0 0.0)) (("25301-PI" 685247.0 497996.0 0.0) (("25454-PI" 637575.0 475238.0 0.0) (("25899-PI" 686544.0 505923.0 0.0) (("26031-PI" 650807.0 516458.0 0.0) (("26164-PI" 686552.0 504607.0 0.0) (("25699-PI" 649489.0 516124.0 0.0) (("25768-PI" 649478.0 (("22214-PI" 597569.0 530854.0 0.0) (("22223-PI" 593907.0 526897.0 0.0) (("22553-PI" 600341.0 472787.0 0.0)) ("25962-PI" 649679.0 515140.0 0.0) ("25757-PI" 648211.0 513943.0 0.0) ("25758-PI" 648081.0 516451.0 0.0) ("22708-PI" 641866.0 537582.0 0.0)) ("23976-PI" 593929.0 506028.0 0.0)) ("24085-PI" 604394.0 505900.0 0.0) ("24232-PI" 686504.0 512529.0 0.0)) ("22544-PI" 610750.0 537486.0 0.0)) ("22650-PI" 596193.0 473947.0 0.0) ("22701-PI" 608228.0 483431.0 0.0) ("22702-PI" 598999.0 479392.0 0.0) ("22703-PI" 600435.0 471471.0 0.0)) ("22971-PI" 626143.0 476762.0 0.0) ("22989-PI" 600188.0 545432.0 0.0)) ("22994-PI" 601630.0 484702.0 0.0)) ("23004-PI" 595252.0 512646.0 0.0)) ("23045-PI" 679839.0 528315.0 0.0) ("23075-PI" ("23356-PI" 616072.0 528304.0 0.0)) ("23377-PI" 652484.0 491463.0 0.0)) ("23389-PI" 601536.0 486036.0 0.0) ("23414-PI" 601706.0 463771.0 0.0) ("23629-PI" 600233.0 541433.0 0.0)) ("23655-PI" 683516.0 515030.0 0.0)) ("23735-PI" 600183.0 546748.0 0.0)) ("23785-PI" 605975.0 516526.0 0.0)) ("23896-PI" 678521.0 524326.0 0.0)) ("23968-PI" 596263.0 538794.0 0.0)) ("24084-PI" 598885.0 533498.0 0.0) "23348-PI" 686559.0 501978.0 0.0) 656055.0 486279.0 0.0) 517807.0 0.0)

(("22162-PI" 638965.0 502487.0 0.0)) (("22157-PI" 610964.0 462162.0 0.0)) (("21803-PI" 625191.0 475471.0 0.0)) (("21800-PI" 624544.0 474446.0 0.0)) (("21781-PI" 621504.0 479451.0 0.0)) (("21777-PI" 624526.0 476460.0 0.0)) (("21723-PI" 640127.0 538904.0 0.0)) (("21685-PI" 640084.0 539009.0 0.0)) (("21672-PI" 626838.0 476099.0 0.0)) (("21636-PI" 607993.0 462867.0 0.0)) (("21529-PI" 640217.0 538905.0 0.0)) (("21501-PI" 652480.0 521752.0 0.0)) (("21455-PI" 600221.0 524283.0 0.0)) (("21289-PI" 652150.0 521751.0 0.0)) (("21277-PI" 624206.0 475477.0 0.0)) (("21175-PI" 638988.0 470184.0 0.0)) (("21126-PI" 652320.0 470288.0 0.0)) (("21117-PI" 612075.0 533557.0 0.0)) (("21098-PI" 657463.0 517615.0 0.0)) (("21052-PI" 653563.0 486310.0 0.0)) (("21050-PI" 653446.0 515478.0 0.0)) (("20996-PI" 649498.0 512506.0 0.0)) (("20948-PI" 674770.0 490031.0 0.0)) (("20947-PI" 686573.0 496692.0 0.0)) (("20940-PI" 610781.0 524354.0 0.0)) (("20934-PI" 648187.0 525723.0 0.0)) (("20899-PI" 638966.0 474128.0 0.0)) (("20879-PI" 646880.0 521743.0 0.0)) (("20872-PI" 674707.0 505867.0 0.0)) (("20845-PI" 686567.0 500637.0 0.0)) (("20232-PI" 655287.0 484839.0 0.0)) (("10867-PI" 596252.0 537445.0 0.0)) (("10806-PI" 649472.0 515142.0 0.0)) (("06143-PI" 644201.0 480523.0 0.0)) (("05839-PI" 682933.0 498982.0 0.0)) (("05838-PI" 677094.0 545439.0 0.0)) (("05837-PI" 663915.0 541409.0 0.0)) (("04735-PI" 654924.0 488781.0 0.0)) (("04734-PI" 644179.0 498036.0 0.0)) (("04733-PI" 627120.0 525659.0 0.0)) (("03691-PI" 622928.0 468833.0 0.0)) (("03690-PI" 614935.0 472804.0 0.0)) (("03689-PI" 619832.0 504236.0 0.0))

(("03688-PI" 608294.0 509896.0 0.0)) (("03687-PI" 597850.0 515250.0 0.0)) (("03686-PI" 609453.0 525683.0 0.0)) (("03685-PI" 608108.0 530899.0 0.0)) (("03684-PI" 605799.0 543783.0 0.0)) (("03680-PI" 604241.0 546744.0 0.0))

Appendix B

Location Data and Depth for

Drillholes with Interpreted Geophysical Data

Dennis W. Powers

Basic Stratigraphic Data - Locations

IDNum	TWP	RGE	Section	fn,sl	fe,wl	Drillhole Name
11 04	21	31	35	2152s	910e	ERDA 6
1149	22	31	8	704s	128e	DOE 2
1150	22	31	9	712n	294w	WIPP 11
1153	22	31	11	935n	197 9w	AEC 8
1158	22	31	17	2566s	1731w	WIPP 13
1159	22	31	17	148s	84e	WIPP 12
1168	22	31	20	267s	177e	ERDA 9
1175	22	31	28	182s	61 0e	DOE 1
1243	23	31	5	1980n	1980e	MP Grace Cabin Baby Federal No. 1
5000	22	31	1	1980n	990e	Hanagan No. 2 Unocal-HPC
5002	22	31	1	1980n	1980w	Phillips Molly State No. 2
5004	22	31	1	1980n	535w	Phillips Molly State No. 4
5005	22	31	1.	2310s	1980w	Pogo Federa 1 No. 1
5006	22	31	1	2310s	990e	Pogo Federal 1 No. 3
5007	22	31	1	2310s	660w	Pogo 1 Federal No. 4
5008	22	31	1	990s	990w	Pogo Federal 1 No. 5
5009	22	31	1	900s	1880 w	Pogo Federal 1 No. 6
5010	22	31	1	990s	2310e	Pogo Federal 1 No. 6
5011	22	31	1	660n	660e	Yates Unocal "AHU" Federal No. 2

Page Number:

1

Print Date: 07/10/1996

IDNum	TWP	RGE	Section	fn,si	fe,wl	Drillhole Name
5012	22	31	1	2310s	1980e	Pogo Federal 1 No. 2
5014	22	31	2	2310s	330e	Pogo State "2" No. 3
5015	22 [`]	31	11	330s	43 0e	Yates Martha "AIK" Federal No. 1
5016	22	31	11	1980s	330e	Yates Martha "AIK" Federal No. 2
5019	22	31	11	1980n	330e	Yates Martha "AlK" Federal No. 5
5020	22	31	11	660n	330e	Yates Martha "AIK" Federal No. 6
5021	22	31	12	1980s	660w	Pogo Federal 12 No. 2
5022	22	31	12	1980n	330w	Pogo Federal 12 No. 4
5023	22	31	12	660n	330w	Pogo Federal 12 No. 5
5024	22	31	12	231 0s	1 650w	Pogo Federal 12 Nó. 6
5025	22	31	12	1650n	1650w	Pogo Federal 12 No. 7
5027	22	31	12	1980n	1980e	Pogo SCL Federal No. 2
5028	22	31	12	330s	1980w	Pogo Federal 12 No. 3
5029	22	31	13	1980n	660e	Texaco Federal Neff "13" No. 2
5030	ູ 22	31	13	6 60s	1 980e	Texaco Neff 13 No. 3
5032	22	31	13	990n	330w	Texaco Federal Neff 13 No. 6
5033	22	31	13	2310n	330w	Texaco Federal Neff 13 No. 7
5034	22	31	13	1651s	330w	Texaco Federal Neff 13 No. 8
5035	22	31	14	1980n	430e	Yates Dolores "AlL" Federal No. 3
5036	22	31	14	1980s	430e	Yates Dolores "AIL" Federal No. 2
_		•				Print Date: 07/

2

Print Date: 07/10/1996

DNum	TWP	RGE	Section	fn,sl	fe,wl	Drillhole Name
5037	22	31	14	660n	4 30e [′]	Yates Dolores "AIL." Federal No. 1
5038	22	31	23	660s	660e	Pogo Federal 23 No. 1
5039	22 `	31	23	1750s	660e	Pogo Federal "23" No. 2
5040	22	31	23	2310n	660e	Pogo Federal "23" No.3
5041	22	31	23	660n	510e	Pogo Federal 23 No. 5
5042	22	31	24	1980s	1980w	Texaco Getty Federal 24 No. 4
5043	22	31	24	990n	1652w	Texaco Getty Federal 24 No. 5 SWD
5044	22	31	24	660s	660w	Texaco Getty Federal 24 No. 2
5045	22	31	24	1980n	1 980e	Getty Federal #24-1
5046	22	31	25	1650n	330w	Pogo Neff Federal No. 2
5047	22	31	25	660n _	1980w	Pogo Federal Neff No. 1
5048	22	31	24	660n	231 0e	Texaco Getty Federal 24 No. 3
5049	22	31	26	610n	510e	Pogo Federal 26 No. 1
5050	22	31	26	1980n	1980e	Pogo Federal 26 No. 2
5051	22	31	26	610n	21 30 w	Pogo Federal "26" No. 3
5052	22	31	26	600n	330w	Pogo Federal 26 No. 4
5053	22	31	26	330n	2230e	Pogo Federal 26 No. 5
5054	22	31	26	1 980n	330w	Pogo Federai 26 No. 6
5055	22	31	26	1 980n	1980w	Pogo Federai 26 No. 7
5056	22	31	35	1 980n	660e	Yates David Ross "AIT" Federal No. 1

.

3

.

~

Print Date: 07/10/1996

• -

	IDNum	TWP	RGE	Section	fn,si	fe,wi	Drillhole Name
	5057	22	31	36	1980s	1980w	Union of CA Medano State Com, Well No. 1
	5058	21	30	5	250n	1600w	Bass Big Eddy Unit No. 91
	5059	21	30	16	1980n	660e	Bass Big Eddy Unit No. 44
	5060	21	30	16	19 80 ⊓	751e	Bass Big Eddy No. 45-Y
	5061	21	30	26	660s	1980 w	Phillips James "D" No. 1
	5062	21	30	33	1980 <u>n</u>	660e	Yates Kaleidoscope "AIO" Federal No. 1
	5063	21	30	34	1980 n	198 0e	Yates Julia "AJL" Federal No. 4
	5064	21	30	35	66 0 s	330e	Phillips Peak View No. 1
	5065	21	30	35	1980s	660w	Phillips James "C" No. 1
	5066	21	30	36	19 80s	990w	C. Grace Livingston Ridge No. 1-Y
	5068	21	31	36	660n	330e	Yates Mary "AIV" State No. 5
	5069	21	31	36	660n	1980e	Yates Mary "AIV" State No. 3
	5070	21	31	36	1 980n	1980e	Yates Mary "AIV" State No. 1
	5071	21	31	36	66 0 s	660e	Yates Lost Tank "AIS" State No. 8
	5072	21	31	36 .	1980s	1980e	Yates Lost Tank "AIS" State No. 6
	5073	21	31	36	66 0s	660w	Yates Lost Tank "AIS" State No. 5
	5075	21	31	36	66 0 s	_1 980w	Yates Lost Tank "AIS" State No. 3
	5076	21	31	36	660s	1 980e	Yates Lost Tank "AIS" State No. 2
	5079	21	31	24	66 0 s	330e	Yates "AJA" Federal No. 7
	5080	21	31	24	66 0 s	200e	Yates Bonneville "AKK" Federal No. 2
•							Print Date: 07/10/100

4

.

Print Date: 07/10/1996

•

DNum	TWP	RGE	Section	fn,sl	fe,wl	Drillhole Name
5081	21	31	25	1980n	330e (Yates Wolf "AJA" Federal No. 5
5082	21	31	25	1980s	330e	Yates Wolf "AJA" Federal No. 4
5084	22 [°]	30	1	660s	2310e	Yates Jasmine "AJI" Federal No. 1
5085	22	30	1	2240s	1 200 w	Phillips Livingston Ridge No. 2
5086	22	30	1	660s	7 00w	Troporo Cabana No. 1
5087	22	30	1	430n	860w	hillips Livingston Ridge No. 4
5088	22	31	1	1650n	1980e	Hanagan No. 1 Unocal-HPC
5089	22	30	1	1450n	660w	Phillips Livingston Ridge No. 3
5090	22	30	1	1980s	1 980w	Phillips Livingston Ridge No. 6
5091	22	30	3	1980n	1980e	Yates Donell 3 Federal No. 1
5092	22	30	2	1250s	1150e	:hillips James "A" No. 12W
5093	22	30	2	660s	231 0 w	Phillips James A No. 10
5094	22	30	2	660n	500e	Phillips James A No. 9
509 5	22	30	2	1650n	660e	Phillips James A No. 8
5096	22	30	2	1980n	1980e	Phillips James "A" No. 4
5097	22	30	2	1980s	1980w ⁻	Phillips James "A" No. 3
5098	22	30	2	1652s	1980e	Phillips James "A" No. 2
5099	22	30	2	198 0s	660e	Phillips James "A" No. 6
5100	22	30	2	500s	660e	Phillips James A No. 7
5101	22	30	2	660s	1800e	Phillips James "A" No. 5
D		F	·	•••		Print Date: 07

• .

5

Print Date: 07/10/1996

iDNum	TWP	RGE	Section	fn,sl	fe,wi	Drillhole Name
5102	22	30	2	665s	2006e	Phillips James A No. 1
5103	22	30	13	1330n	330e	Mitchell Energy Apache "13" Federal No. 1
5104	22 [.]	30	12	1980s	995w	Phillips James E No. 15
5105	22	30	12	1980n	1980w	Phillips James "E" No. 14
 5106	22	30	12	1980n	660w	Phillips James "E" No. 13
5107	22	30	12	660n	1980w	Phillips James "E" No. 12
51 09	22	30	12	660n	660w	Phillips James "E" No. 11
5110	22	30	12	990s	330w	Bass James Ranch Unit No. 48
5111	22	30	11	2247s	1558e	Phillips James "E" No. 8
5112	22	30	11	1980s	1980e	Phillips James "E" No. 6
5113	22	30	11	1810n	330e	Phillips James "E" Federal No. 5
5114	22	30	. 11	760n	330e	Phillips James "E" Federal No. 4
5115	22	30) 13	535n	2080w	Phillips James "E" No. 2
5116	22	30	36	660s	2009e	Shell James Ranch No. 1
5117	22	30	36	330n	660e	Enron James Ranch Unit No. 71
5118	22	30	36	1980s	660e	Enron James Rand Unit No. 37
5119	22	[.] 30	36	1980s	1 980e	Enron James Ranch Unit No. 19
51 20	22	30	36	1980n	920w	Belco James Ranch No. 11
5121	22	30	36	1980n	1100e	Enron James Ranch Unit No. 18
5122	22	30	11	1980n	1 980e	Phillips James "E" No. 1

6

Print Date: 07/10/1996

IDNum	TWP	RGE	Section	fn,sl	fe,wl	Drillhole Name
5123	22	30	36	1980s	2310w	Bass James Ranch Unit No. 29
5124	22	30	25	1730n	660e	Mitchell Apache "25" Federal No. 1
5125	22	30	25	660s	1310e	Mitchell Apache "25" Federal Com. No. 2
5126	22	30	24	1200s	330e	Mitchell Apache "24" Federal No. 1
5127	23	30	1	1980n	660e	Belco (Bass?) Belco-James Ranch No. 10
5128	23	30	1 ·	1830n	1980w	Belco Hudson Federal No. 1
5129	23	30	1	1980s	1658e	Belco James Ranch Unit No. 3
5130	23	30	16	2310n	1980w	Texaco Forty-Niner Ridge Unit No. 3
5131	23	30	24	1980n	660w	Phillips Sandy Unit No. 1
5132	23	31	13	760s	2080e	Devon Todd 13 'O' Federal No. 15
5133	23	31	11	660s	330e	Max M. Wilson Bauerdorf-Federal No. 1
5134	23	31	9	330s	1980e	Santa Fed North Pure Gold "9" No. 9
5135	23	31	9	1980n	1980w	Santa Fe North Pure Gold "9" Federal No. 7
5136	23	31	9	1980n	660w	Santa Fe North Pure Gold "9" Federai No. 4
5137	23	31	9	1 140n	990w	Santa Fe North Pure Gold "9" Federal No. 5
5138	23	31	9	66 0 s	660w [.]	Santa Fe North Pure Gold "9" Federal No. 2
5139	23	31	9	330s	1980w	Santa Fe North Pure Gold "9" Federal No. 1
5140	23	31	9	900n	1980 w	Santa Fe Pure Gold "4" Federal No. 1
5141	23	31	8	660s	860e	Santa Fe North Pure Gold "8" Federal No. 9
5142	23	31	8	1980s	2310e	Santa Fe North Pure Gold "8" Federal No. 6
		_				Print Date: 07/10/1000

• •

. 7

.

Print Date: 07/10/1996

.

. .

IDNum	TWP	RGE	Section	fn,sl	fe,wi	Drillhole Name
5143	23	31	8	660s	2310e	Santa Fe North Pure Gold "8" Federal No. 5
5144	23	31	8	1 780 n	660e	Santa Fe North Pure Gold *8* Federal No. 3
5145	23 [.]	31	8	1 980s	860e	Santa Fe North Pure Gold "8" Federal No. 2
 5146	23	31	8	1960s	660e	Santa Fe North Pure Gold "8" Federal No. 1
 5147	23	31	6	1 00s	1980w	Belco James Ranch Unit 14
5148	23	31	8	660s	1 00 w	Belco James Ranch Unit No. 15
5149	23	31	6	2080n	19 80w	Enron James Ranch Unit No. 17
5150	23	31	6	1440 n	860w	Bass James Ranch No. 13
5151	23	31	6	1980n	1 980e	Continental James Ranch Unit No. 7
5152	23	31	6	1980s	2310e	Bass James Ranch Unit No. 30
5153	23	31	2	660n	660e	Continental State AA-2 No. 1
5154	23	31	1	66 0 s	1980w	Union of CA Barclay Federal No. 1
5155	23	31		1980s	660w	Owens Union Federal No. 1
5158	22	32	12	1980n	600w	Maralo Prohibition Federal Unit No. 1
5159	22	32	13	1 980 n	990e	Pogo WBR Federal No. 1
5160	22	32	13	66 0 s	660e	Ray Smith B&H Federal No. 1
51 6 1	22	· 32	14	2310n	1960e	Maralo Prohibition Federal Unit No. 4
5162	22	32	14	1650s	2135w	Meridian Red Tank Federal No. 4
51 63	22	32	14	330s	1980w	Meridian Red Tank Federal No. 1
5164	22	32	14	330s	990w	Meridian Red Tank Federal No. 3
						- · · - ·

8

Print Date: 07/10/1996

	iDNum	TWP	RGE	Section	fn,si	fe,wi	Drillhole Name
	5165	22	32	14	660s	1980w	Carper Red Tank Unit No. 2 (SWD?)
	5166	22	32	14	330s	2310e	Meridian Red Tank Federal No. 5 (SWD?)
	5167	22 [°]	32	15	1980s	1980e	Superior No. 1 Connally Federal
	5168	22	32	15	990n	660w	Strata Paisano Federal No. 3
~~~	5169	22	32	15	2310n	1650w	Strata Paisano Federal No. 2
	5170	22	32	15	1980n	460w	Strata Paisano Federal No. 1
	5171	22	32	15	1650s	330w	Strata Lechuza Federal No. 5
	5173	22	32	15	660s	2310e	Strata Lechuza Federal No. 3
	5174	22	32	15	1650s	1650w	Strata Lechuza Federal No. 2
	5175	22	32	15	862s	458w	Strata Lechuza Federal No. 1
	5176	22	32	16	2310n	330e	Yates Kiwi "AKX" State No. 3
	5177	22	32	16	1650s	330e	Yates Kiwi "AKX" State No. 2
	5179	22	32	16	330s	1 <b>650e</b>	Yates Kiwi "AKX" State No. 4
	5180	22	32	16	1980s	1650e	Yates Kiwi "AKX" State No. 5
	5181	22	32	16	660s	2310w	Yates Kiwi "AKX" State No. 6
	5182	22	32	16	1980n	1980e	Yates Kiwi "AKX" State No. 7
	5183	22	32	16	1980n	2310w	Yates Kiwi "AKX" State No. 8
	5184	22	32	16	330n	3 <b>30e</b>	Yates Kiwi "AKX" State No. 9
	5185	22	32	17	1980s	1980e	Yates Cleary "AKC" Feceral No. 1
	5186	22	32	17	330n	330w	Yates Cleary "AKC" Federal No. 2

9

Print Date: 07/10/1996

- ..

IDNum	TWP	RGE	Section	fn,si	fe,wl	Drillhole Name
5188	22	32	18	660n	990e [′]	Pogo Livingston Ridge Federal No. 1
51 <b>89</b>	22	32	18	480n	330w	Pogo Livingston Ridge Federal No. 3 "ZAP"
5190	22	32	18	2130n	1980e	Pogo East Livingston Ridge Federal No. 3
5191	22	32	20	1980n	1980e	Zonne Federal No. 1
 51 <b>92</b>	22	32	21	1980s	660e	Union of CA Federal Gilmore No. 1 (Cerc Fed 1 SWD)
5193	22	32	21	390n	1980e	Strat Cercion Federal No. 3
5194	22	32	21	1990n	660e	Strat Cercion Federal No. 1
5195	22	32	22	1 <b>980n</b>	660w	Trigg Federal Red Tank No. 1-22
5196	22	32	22	1650n	1980w	Strata Cercion Federal No. 4
5197	22	32	22	330n	990w	Strata Cercion Federal No. 2
5198	22	32	23	87 <b>9s</b>	403w	Meridian Checkerboard 23 Federal No. 6
5199	22	32	23	2110s	990e	Pogo Red Tank 23 Federal No. 2
5200	22	32	23	2310n	990e	Meridian Checkerboard 23 No. 16
5201	22	32	23	1 <b>650n</b>	990e	Meridian Checkerboard 23 Federal No. 13
5202	22	32	23	660n	990e	Meridian Checkerboard 23 Federal No. 12
5203	22	32	23	1980n	1 <b>980e</b>	Meridian Checkerboard 23 Federal No. 8
5204	22	32	23	690n	.1 <b>980w</b>	Meridian Checkerboard 23 Federal No. 4
5 <b>206</b>	22	32	23	2310s	990w	Meridian Checkerboard 23 Federal No. 5
5208	22	32	25	330n	660w	Pogo Covington "A" Federal No. 2
5209	22	32	26	330n	1980e	Pogo Covington "A" Federal No. 18
		_				Brint Date: 07404006

. .

10

Print Date: 07/10/1996

DNum	TWP	RGE	Section	fn,sl	fe,wl	Drillhole Name
5210	22	32	26	1880s	1880w	Pogo Red Tank "26" Federal No. 1
5211	22	32	26	330n	660w	Pogo Red Tank "26" Federal No. 2
5212	<b>22</b> ·	32	27	330s	2310w	Pogo Federal 27 No. 1
5214	22	32	27	1980s	660e	Pogo Exxon Federal 27 No. 3
5216	22	32	28	330n	2310e	Pogo Red Tank 28 Federal No. 3
5217	22	32	31	660n	1980e	Bass Perry Federal No. 1
5218	22	32	31	660n	2085e	Pogo Proximity 31 No. 4
5219	22	32	31	660s	660w	Enron Silverton 31 Federal No. 1
5220	22	32	32	1980n	1980e	Yates Lotus "ALT" State No. 2
5221	22	32	34	760n	660e	Pogo Red Tank 34 Federal No. 3
5223	22	32	34	1980n	660e	Pogo Red Tank 34 Federal No. 2
5224	22	32	35	660n	330w	Pogo Red Tank 35 Federal No. 1
5226	22	33	32	660s	660w	Helbing & Podpechan Shell State No. 1-B
5227	22	33	34	660s	1980e	CP Miller Humble State No. 1
5228	22	33	35	1980n	1980w	Amoco Federal "BG" No. 1
522 <del>9</del>	22	33	30	1980n	660e	Yates pronghom Unit No. 2
5230	22	33	30	2310n	1 <b>650w</b>	Mitchell Bighorn "30" State No. 2
5231	22	33	29	1980s	660w	Yates Pronghorn "ACZ" Federal No. 1
5232	22	33	20	1980n	660w	Davis & Collins Conoco Federal No. 1
5233	22	33	19	990n	990w	Santa Fe Bootleg Ridge 19 State No. 1

11

Print Date: 07/10/1996

٠.:

IDNum	TWP	RGE	Section	fn,si	fe,wl	Drillhole Name
5234	22	33	18	1980n	1864w [°]	Pogo State NBR No. 2
5235	22	33	18	1980s	1980e	Pogo State NBR No. 1
5236	<b>22</b> [°]	33	9	660n	660w	Dual Hudson Federal No. 1
5237	22	33	17	1980s	660w	Pogo EBR Federal No. 1
5238	22	33	8	660n	1 <b>980w</b>	Meridian Dagger Lake "8" Federal No. 1
5239	22	33	7	1960s	1980e	Superior SST State 7 No. 1
5240	22	33	7	660s	660w	Cabot State "K" No. 1
5241	22	33	6	1980n	1980e	Superior San Simone State Com No. 1
5242	22	33	4	2310s	800w	Texas Pacific Reed Federal No. 1
5243	22	33	5	660s	330e	Dual Richardson & Bass State No. 1
5244	22	33	5	33 <b>0</b> 5	1980e	Meridian Dagger Lake State No. 1
5245	23	32	2	2310n	1650e	Yates Saffron Unit No. 1
5246	23	32	3 3 4 4	1980n	660e	OB Kiel, Jr. Federal No. 1
5247	23	32	4.	3 <b>30s</b>	2310e	Strata Aracanga Federal No. 1
5248	<b>, 23</b>	32	6	660s	1980w	Santa Fe Platinum 6 Federal No. 1
5249	23	32	7	510n	660e	JH Trigg Federal "WL" No. 5
5250	23	32	9	660s	1980e	McBee Continental Federal No. 1
5251	23	32	9	1 <b>650s</b>	1650e	Strata Aracanga Federal No. 2
5252	23	32	11	<b>1680</b> n	660w	Exxon Central SW Oil Corp Federal No. 1
5253	23	32	11	<b>660s</b>	1980w	Superior Triste Draw Gulf Federal No. 1
Page Num	ber:	12				Print Date: 07/10/1996

۰.

· -

IDNum	TWP	RGE	Section	fn,sl	fe,wi	Drilihole Name
5254	23	32	11	560s	660w	Strata Urraca Federal No. 2
5255	23	32	11	2310n	1650w	Yates Amanda "AMN" Federal No. 1
5256	<b>23</b> ·	32	14	1980s	1980e	Superior Triste Draw Federal No. 1
5257	23	33	4	2310n	330w	Yates Jackal "ANJ" Federal No. 7
5 <b>258</b>	23	33	4	660s	660e	Cabeen Continental Federal No. 1-P
5259	23	33	6	33 <b>0s</b>	330e	WA & ER Hudson Shell Federal No. 1
5260	23	33	6	1980n	19 <b>80e</b>	Yates Pronghorn Unit No. 1
5261	23	33	7	660s	660w	Hudson Federal No. 1
5262	23	33	8	330s	330w	Yates Pronghorn AAP Federal No. 1
5263	23	33	10	660n	1980w	Amoco State "IK" No. 1
5264	21	32	12	1980s	660w	Belco Federal HM No. 1
5265	21	32	32	1980n	1980e	Getty State Com No. 1
5266	21	32	33	660n	1 <b>980w</b>	Texaco Bilbrey Federal Com No. 1
5267	21	32	33	1980s	2310w	Texaco Bilbrey Federal No. 2
5268	21	32	34	660s	1980w	Phillips Bilbrey Federal No. 1
5269	21	32	34	660 <del>n</del>	1980w	Maralo Bilbrey Federal No. 1
5270	21	32	35	1980n	1980w	Gulf Chaney Federal No. 1
5271	21	32	35	1980s	330w	Manzano Anderson No. 1
5272	21	32	31	660n	660w	Phillips Luke Federal No. 2
5273	21	32	31	2310s	660e	Pogo Federal No. 1

Print Date: 07/10/1996

<u>`</u>.

IDNum	TWP	RGE	Section	fn,sl	fe,wi	Drillhole Name
5274	21	32	31	33 <b>0s</b>	330w	Collins & Ware BW Federal No. 1
5275	21	32	31	1980n	660w	Phillips Luke Federal No. 1
5276	21	32	31	2040n	2040e	AEC No. 7
5277	21	32	29	1980s	1 <b>980w</b>	Getty Bilbrey Federal Com No. 1
5278	21	32	28	1980n	660e	Santa Fe Bilbrey Federal No. 1
5279	21	32	27	1 <b>980</b> n	1980w	Santa Fe Bilbrey Federal No. 1-A
52 <b>80</b>	21	32	28	1980s	1 <b>980w</b>	Santa Fe Bilbrey Federal No. 1-A
5301	21	30	15	1980s	990w	WC Blanks Big Eddy Unit No. 67
5302	21	30	34	33 <b>0s</b>	990e	Yates Cabin Lake 34 Federal No. 1
5303	21	30	36	33 <b>0</b> s	330w	C Grace Salomeh No. 1
5304	21	31	25	660s	790e	Maralo MR "25" Federal No. 1
5305	21	31	26	1 <b>980</b> n	1 <b>980w</b>	Pogo Federal No. 1
<b>5306</b>	21	31	35	660n	660w	Union Federal Fl No. 1
5307	21	31	36	1980s	660e	Yates Lost Tank "AIS" State No. 1
5308	<u>_</u> 21	31	36	198 <b>0s</b>	1980w	Yates Lost Tank "AIS" State No. 4
5309	21	32	13	990n	1980w	Belco Federal "HM" No. 13-1
5310	21	32	18	66 <b>0s</b>	1980e	Collins & Ware N.L. Federal No. 2
5311	21	32	18	1 <b>980n</b>	1980e	Getty North Bilbrey 18 Federal No. 1
5312	21	32	21	660n	660w	Skelly Salt Lake South Unit No. 1
5313	21	32	21	660s	1980e	Santa Fe Bilbrey "21" Federal Com. No. 1
D	1					Print Date: 07/10/19

Print Date: 07/10/1996

	IDNum	TWP	RGE	Section	fn,sl	fe,wl	Drillhole Name
	5314	21	32	22	660s	2310e	Santa Fe Bilbrey "22" Federal Com. No. 1
	5315	21	32	26	1980s	660w	Collins & Ware Lincoln Federal No. 1
	5316	21	32	27	1980s	990w	Santa Fe Bilbrey 27 Federal Com. No. 1
	5317	21	32	32	1980n	1980w	Texaco Bilbrey 32 State Com. No. 1
•	5318	22	29	4	1980s	2240 <del>w</del>	Bass Big Eddy Unit No. 90
	5319	22	29	6	660s	660e	Hudson Federal No. 1
	5320	22	29	16	1980s	660w	Bass Big Eddy Unit 96
	5321	22	29	18	1980s	660w	Bass Big Eddy Unit No. 88
	5322	22	30	11	1060s	10e	Phillips James E Federal No. 9
	5323	22	30	12	660s	1980e	Bass James Ranch Unit No. 70
	5324	22	30	27	660n	2003e	Richardson & Bass Federal Legg No. 1
	5325	22	30	36	660s	2310w	Bass James Ranch Unit No. 41
	5326	22	31	1	660n	1980w	Phillips Molly State No. 1
	5327	22	31	1	660n	660w	Phillips Molly State No. 3
	5328	22	31	1	660 <b>n</b>	1980e	Yates Unocal "AHU" Federal No. 1
	5329	22	31	2	660s	<b>2310w</b>	Yates Flora "AKF" State No. 1
	5330	22	31	2	1980n	330e	Yates Graham "AKB" State No. 2
	5331	22	31	2	660n	330e	Yates Graham "AKB" State No. 1
	5332	22	31	2	1980s	2310w	Yates Flora "AKF" State No. 2
	5333	22	31	2	660s	2310e	Pogo State 2 No. 2

Print Date: 07/10/1996

. -.

	iDNum	TWP	RGE	Section	fn,sl	fe,wi	Drillhole Name
	5334	22	31	2	330s	330e	Pogo State 2 No. 1
	5335	22	31	6	1980n	660w	Bryon McKnight & Troporo Campana No. 1
	5336	22	31	7	330s	950w	Yates Llama "ALL" Federal No. 1
4	5337	22	31	11	660s	1650e	Yates Martha "AIK" Federal No. 3
	5338	22	31	11	1980s	1650e	Yates Martha "AIK" Federal No. 4
	5339	22	31	12	330n	1650w	Pogo Federal 12 No. 8
	5340	22	31	13	1980n	1980w	Texaco Federal Neff 13 No. 5
	5341	22	31	13	1980s	1 <b>980e</b>	Pogo Neff 13 No. 1
	5342	22	31	15	1980s	1980w	Clayton W. Williams Badger Unit Federal No. 1
	5343	22	31	23	330s	330e	Texas Crude Wright Federal 23 No. 1
	5344	22	31	25	430n	760w	Pogo Neff Federal No. 3
	5345	22	32	3	1 <b>980s</b>	1980w	Siete Ottowa State No. 1
	5346	22	32	4	660s	1980e	Santa Fe Trumpeter 4 State No. 1
	5347	22	32	<b>'4</b>	660n	1980w	Getty Bilbrey Federal Com. No. 1
	5348	<b>. 22</b>	32	5	660n	1580e	Getty Bilbrey Federal No. 1
	5349	22	32	6	1980s	660w	Yates Rosemary "AJB" Federal No. 1
	5350	22	32	6	800n	. <b>330w</b>	Pogo Federal 6 No. 1
	<b>5351</b>	22	32	6	1980n	660e	Amoco Federal "CK" Com, No. 1
	5352	22	32	7	1 <b>650s</b>	660w	Strata Flamenco Federal No. 1
	5353	22	32	9	330s	330e	Santa Fe White Swam "9" Federal No. 1
	Page Num	ber:	16				Print Date: 07/10/1996

IDNum	TWP	RGE	Section	fn,sl	fe,wl	Drillhole Name
5354	22	32	9	1980n	660e [°]	Santa Fe White Swam "9" Federal No. 4
5355	22	32	9	1980s	990e	Maralo Wild Turkey "9" state No. 1
5356	22	32	10	1980s	330w	Maralo Wild Turkey "10" state No. 1
5357	22	32	10	1980n	660w	WTI Barr None Federal No. 1
5358	22	32	10	660s	660w	Phillips Emerald Federal No. 1
5359	22	32	11	198 <b>0s</b>	2080w	Maralo Prohibition Federal No. 2
5360	22	32	14	2310n	990e	Maralo Prohibition Federal Unit No. 6
5361	22	32	14	1650s	990e	Meridian Redchecker 14 No. 2
5 <b>362</b>	22	32	14	330s	990e	Meridian Redchecker 14 No. 1
5363	22	32	14	2310 <del>n</del>	2155w	Meridian Prohibition Federal No. 5
5364	22	32	14	165 <b>0s</b>	1980w	Meridian Red Tank Federal No. 6
5365	22	32	15	660s	1650w	Strata Lechuza Federal No. 4
<b>536</b> 6	22	32	16	330s	330e	Yates Kiwi "AKX" State No. 1
5367	22	32	18	660s	660e	John H. Trigg Federal Jennings No. 1
5368	22	32	19	660s	660e	Ralph Lowe Bass Federal No. 1
5369	22	32	21	330n	330e	Strata Cercion Federal No. 5
5370	22	32	22	1980s	330e	Pogo Prize Federal No. 13
5371	22	32	22	66 <b>0</b> s	330e	Pogo Prize Federal No. 10
5372	22	32	23	660n	1980e	Meridian Checkerboard 23 Federal No. 11
5373	22	32	23	2310n	2295w	Meridian Checkerboard 23 Federal No. 3
					•	

17

Print Date: 07/10/1996

.

	IDNum	TWP	RGE	Section	fn,sl	fe,wl	Drilhole Name
	5374	22	32	23	330s	1650e [′]	Meridian Checkerboard 23 Federal No. 2
	5375	22	32	23	1980s	1980e	Meridian Checkerboard 23 Federal No. 1
	5376	<b>22</b> [·]	32	23	990s	2310w	Meridian Checkerboard 23 Federal No. 9
	5377	22	32	23	1650s	1980 <del>w</del>	Meridian Checkerboard 23 Federal No. 7
	5378	22	32	23	1 <b>980n</b>	990w	Meridian Checkerboard 23 Federal No. 10
	53 <b>80</b>	22	32	25	330s	660w	Pogo Covington "A" Federal No. 8
	5381	22	32	25	480s	1980w	Pogo Covington "A" Federal No. 9
	5382	22	32	25	660n	1 <b>980w</b>	Pogo Covington "A" Federal No. 1
	5383	22	32	26	1980n	330w	Pogo Red Tank "26" Federal No. 3
	5384	22	32	26	2310s	330w	Pogo Red Tank "26" Federal No. 4
	5385	22	32	27	1880n	760e	Pogo Prize Federal No. 4
	5386	22	32	27	660n	660e	Pogo Prize Federal No. 5
	5387	22	32	27	660s	660e	Pogo Exxon Federal 27-2
	5389	22	32	28	330n	330e	Pogo Red Tank "28" Federal No. 1
	5390	<b>, 22</b>	32	34	710n	2310w	Pogo Red Tank "34" Federal No. 14
	5391	22	32	34	1980n	1 <b>980e</b>	Pogo Red Tank "34" Federal No. 4
	5392	22	32	34	660n	1 <b>650e</b>	Pogo Red Tank "34" Federal No. 1
	539 <b>3</b>	22	32	35	2310s	990w	Pogo Red Tank "35" Federal No. 3 SWD
	5394	22	32	36	<b>330</b> n	1980w	Shell Bootleg Ridge Unit No. 1
	5395	22	32	36	330n	1980e	Meridian Mule Deer 36 State No. 1
. •							Print Date: 07/10/1996

18

Print Date: 07/10/1996

۰.

DNum	TWP	RGE	Section	fn,sl	fe,wl	Drillhole Name
5396	22	32	36	1980n	2310e	Meridian Mule Deer 36 State No. 2
5397	22	32	36	660n	860e	Meridian Mule Deer 36 State No. 4
5398	<b>22</b> [°]	33	8	330n	2310e	Meridian Dagger Lake 8 Fed No. 2
5399	22	33	15	1980s	1980e	Getty Federal 15 No. 1
5400	22	33	15	660n	1980w	Getty Federal 15 Com "B" No. 1
5401	22	33	19	1980s	660e	Collins & Ware White Lightning Federal No. 1
5402	22	33	33	660n	660e	R.B. Farris Phillps State No. 1
5403	22	34	23	360s	660e	Pogo RI Federal 23 No. 1
5404	22	32	36	660n	660e	Richardson & Bass Tidewater No. 1
5405	22	32	26	1980n	1980e	Culbertson & Irwin Culbertson No. 1
5406	22	29	9	660s	660e	H & W Danford No. 1
5407	22	33	20	660s	1980e	Yates Mascho Cloyd No. 2
5408	22	33	20	660s	660e	Yates Mascho Cloyd No. 1
Page Numbe	er:	19				Print Date: 07/10/1996

The source data table and this report were created by Dennis W. Powers using Rbase 5.5, a commercial relational database available from Microrim, Inc. Basic information has been checked. The relational column within the database is the idnum, an identifier unique to the drillhole. Data were checked for report setup.

	Dasic Stratigraphic Data - Deptils											
idnum	refele∨ *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus	
1104	3540	4300	• •	2733	2555	2401		2291	1525	1287	811	
1149	3418	4071	3809	3801			3083	2670	1738	1456	961	
1150	3439	-	3563	3512	3392	2424	2343	2242	1688	1434	964	
1153	3541	4315	4038	3696	3555	3290	2980	2562	1747	1484	990	
1158	3405		3809	3715	3626	3507	2959	2509	1633	1347	846	
1159	3484		3914	3403	3294	3066	2738	2471	1715	1447	966	
1168	3420						2836	2563	1653	1367	860	
1175	3473		4032	3708	3600	3375	2937	2677	1785	1490	977	
1243	3328	4045	3810	3480	3373	3155	2704	2435	1 <b>48</b> 1	1184	653	
5000	3607	4485	4188	3583	3445	3118	2890	2528	1738	1462	945	
5002	3585	4428	4138	3360	3200	3015	2798	2482	1696	1431	917	
5004	3575	4415	4115	3435	3272	3015	2740	2512	1624	1413	<b>9</b> 16	
5005	3583	4438	4141	3619	3463	3086	2860	2532	1704	1426	917	
5006	3604	4490	4195	3600	3462	31 <b>98</b>	2956	2582	1746	1468	947	
5007	3570	4424	4126	3645	3492	3178	2892	2555	1680	1411	920	
5008	3568	4438	4142	3635	3510	3055	2795	2445	1682	1420	933	
5009	3590	4445	4150	3610	3465	3241	2982	2597	1720	1447	956	
5010	3600	4475	4182	3608	3483	3145	2898	2575	1752	1473	978	
5011	3609	4480	4172	3945	3555	3110	2905	2535	1735	1460	950	
5012	359 <del>9</del>	4479	4183	3650	3490	3155	2932	2576	1746	1468	912	

## Basic Stratigraphic Data - Depths *

Page Number:

1

•

•••

5014	3564	1209			topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
		4398	4104	3810	3664	3270	2938	2573	1693	1416	922
5015	3579	4459	4174	3746	3614	3335	2946	2662	1854	1580	1090
5016	3599	4475	4188	3712	3563	3310	2940	2644	1838	1566	1175
5019	3577	4440	4147	3700	3557	3188	2905	2558	1765	1500	1010
5020	3560	4430	4137	3567	3425	3145	2780	2488	1708	1452	972
5021	3595	4480	4198	3784	3647		3005	2652	1840	1566	1065
5022	3577	4454	4160	3645	3512	3145	2845	2510	1759	1496	1010
5023	3567	4448	4153	4038	3495	3300	2680	2580	1704	1450	970
5024	3605	4475	4195	4034	3865	3325	2940	2660	1846	1570	1070
5025	3604	4463	4179	3692	3546	3394	2998	2662	1805	1533	1036
5027	3642	4570	4234	3730	3585	3340	3050	2680	1880	1603	1098
5028	3607	4485	4120	3860	3715	3398	3010	2694	1890	1621	1105
5029	3626	4510	<b>42</b> 40	3840	3755	3427	3063	2745	1955	1680	1153
5030	3586	4453	4115	3865	3715	3504	3165	2753	1848	1660	1137
5032	3582	4462	4185	3740	3610	3328	2934	2662	1878	1607	1105
5033	3576	4462	4240	3810	3687	3370	3033	2698	1894	1617	1118
5034	3569	4445	4168	3845	3726	3470	3060	2720	1908	1628	1120
5035	3570	4442	4162	3770	3642	3383	2998	2675	1877	1604	1107
5036	3569	4445	4160	3835	3710	3425	3025	2705	1895	1614	1113
5037	3572	<b>444</b> 4 .	4163	3720	3590	3285	2973	2628	1856	1582	1092
5038	3592	4475	4210	3855	3733	3464	3070	2820	1990	1703	1185

•

۰.

• •

idnum	reielev *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5039	3572	4442	4122	3845	3721	3442	3054	2782	1 <b>94</b> 7	1660	1150
5040	3553	4402	4135	3783	3657	3387	2880	2721	1900	1620	11 <b>12</b>
5041	3561	4428	4153	3775	3665	3365	2978	2686	1887	1612	1105
5042	3601	4483						2683		1712	1204
5043	3574	4437	4163	3844	3714	3423	3030	2718	1917	1646	1126
5044	3599	4464						2822		1709	1190
5045	3607	4502	4221	3860	37 <b>3</b> 7	3447	3035	2767	1972	1697	1174
5046	3546	4457	4185	3875	3760	3520	3095	2826	1915	1696	1168
5047	3598	4520	4245	3885	3766	3675		2852	1941	1740	1214
5048	3580	4443	4093	3861	3737	3464	3063	2737	1935	1662	1142
5049	3610	4461						2858		1730	1208
5050	3556	4420	4158	3885	3766	3530		2820		1677	1153
5051	3576	4467	4205	3855	3735	3475	3063	2808	1966	1676	1162
5052	3556	4428	4173	3790	3700	3428	3015	2766	1915	1634	1124
5053	3585	4465	4204	3860	3640	3345	3075	2823	1985	1693	1177
5054	3526	4410	4150	3806	3692	3453	2950	2750	1891	1604	1090
5055	3546	4425	4163	3835	3720	3470	3020	2785	1936	1646	1137
5056	3482	4455	4166	3820	3710	3460	3030	27 <b>64</b>	1882	1607	1082
5057	3488	4462	4210	3880	3768			2835	1932	1657	1127
5058	3566	3785	•							1262	857
5059	3324	3554		•						863	565
j	• NI:			3					<b>60 5</b> 4 4	1006	
rag	e Number:	÷.		J .					06/24/	1990	

· · ·

•

•

idnum	ref <del>ele</del> v *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5060	3315	3553	3207			2670	2115	1815	<b>1</b> 140	870	510
5061	3250	3606						2233			465
5062	3149	3484	3207	2763	2631	2280	1972	1620	850	563	344
5063	3216	3559	3277	2810	2680	2460	2160	1804	1013	737	392
5064	3228	3637	3300	3010	2930	2495	2230	1936	1140	862	
5065	3218	3600	3301	2844	2713	2503	2190				515
та П				2011	2110	2000	2190	1843	1063	797	460
50 <b>66</b>	3256	3667								930	594
<b>5068</b>	3671	4537	4160	3660	3535	3185	2520	2460	1765	1500	990
5069	3627	4442	4075	3645		3195	3005	2441	1716	1440	937
5070	3617	4455	4120					2430	1695	1431	948
5071	3603	4430	4160	3443	3273	2980	2795	2455	1706	1433	930
5072	3604	4442	4125	3310	3140	2906	2736	2445	1705	1436	940
5073	3567	4374	4065	4040	3778	3340	3065	2330	1590	1345	895
5075	3578	4405	4095	3710	3470	3170	2936		1637	1390	902
5076	3591	4441	4125	3460	3287	3090	2852	2530	1696	1418	915
5079	3650	4363	4025	3990	3750	3565	3172	2760	1947	1670	1160
5080	3655	4363				•	3170	2765	1950	1676	1170
5081	3682	4475	·4100	3785	3665	3300	2900	2670	1917	1645	1145
5082	3709	4518	4220	4030	3780	3323	3018	2757	1910	1628	1120
5084	3352	3810	3544	3190	3080	2810	2455	2144	1406	1150	656
5085	3319	37 <b>92</b>	3520	3250	31 <b>20</b>	2700	2 <b>400</b>	2086	1340	1073	582

• _

4

Page Number:

06/24/1996

idnum	refelev *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5086	3357	3798								1112	625
5087	3312	3745	3500	3200	3150		2590	2016	1265	1008	543
5088	3590	4451				·	2800	2482	1710	1438	925
5089	3314	3772	3495	3100	2990	2700	2340	2070	1304	1040	560
5090	3344	3790	3520	3100	2987	2748	2404	2105	1362	1103	612
5091	3203	3544	3268	3000		25 <b>30</b>	2135	1825	1040	765	435
5092	3197	3634	3360	3008	2874	2627	2160	1 <b>943</b>	1160	897	570
5093	3174	3620			2915	2670	2210	1930	1132	850	532
5094	3232	3658	3360	2935	2810		2140	1940	1159	898	560
5095	3228	3652	3345	3000				1985	1183	916 ्	560
5096	3194	3620	3350	2973	2845	25 <b>85</b>	2224	1925	1135	870	510
5097	3179	3602	3335	3043	2912	2610	2215	1895	1103	840	512
5098	3188	3625	3350	2965	2845	2633	2236	1928	1140	877	550
5099	3217	3655	3370	3018	2900	2640	2270	1975	1182	918	510
5100	3232	3685	3395	3040	2925	2680	2295	1982	1220	953	495
5101	3187	3621	3323	3028	2905	2660	2270	1950	1153	883	555
5102	3193	3640	3370	3055	2928	2675	2290	1962	1152	887	522
5103	3361	3848	3592	3220	3115	2880	2510	2230	1480	1216	735
5104	3330	3755	3495	3150				2124	1370	1105	610
5105	3336	3775	3510	3190	3080	2852	2430	2146	1393	1133	688
5106	3322	3760	3493	3170	3055	2810	2426	2112	1360	1092	595

.

• .

5

06/24/1996

یا در در معنی در در مع مربو

-----

idnum	ref <del>cie</del> v *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5107	3336	3778	3514	3170	3058	2812	2410	2140	1380	1115	628
5109	3321	3765	3540			2760	2400	2105	1350	1084	584
5110	3344	3775	3515	3140	3032	2790	2421	2150	1384	1120	630
5111	3238	3685	3423			2500	2220	2009	1245	906	600
5112_	3228	3675	3282	3069	2955	2675	2235	2001	1228	958	640
5113	3300	3738	3478	3180	3090	2780	2420	2086	1321	1145	555
5114	3305	3748	3468	3260	3080	2797	2435	2080	1322	1057	560
5115	3187	3635	3370	3037	2926	2660	2270	1950	1150	874	560
5116	3327	3835	3582	3235	3108	2895	2405	2110	1308	1035	535
5117	3339	3857	3610	3255	3152	2920	2470	2262	1382	1102	615
5118	3327	3840			31 <b>20</b>	. 2890	2560	2282	1350	1062	555
51 19	3324	3823	3580	3240	3100	. <b>2900</b>	2350	2286	1335	1054	548
5120	3324	3795	3552	3203	3100	2890	2445	2250	1335	1065	580
5121	3345	3853				3142	2540	2273	1365	1082	585
5122	3221	3665	3400	3064	2955	2722	2333	2000	1225	960	600
5123	3327	3807					·	2230	1320	11 <b>50</b>	545
5124	3391	3904	3657	3315	3210	2995	2565	2340	1489	1208	710
5125	3362	3971	3625	3270	31 <b>65</b>	2984	2510	2280	1416	11 <b>40</b>	650
5126	3425	3906	3647	3322	3217	3014	2576	2445	1563	1270	790
5127	3315	3840	3654	3285	3181	2964	2495	2300	1328	1148	535
5128	3318	37 <b>95</b>		3110	3000	-		2045	1220	968	486

.

۰.

6

٠.

من من من من المانان. هوه المان من مان

idnum	refelev *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5129	3311	3894					2525	2260	1285	1020	508
5130	3137	3495	3265	2978	2880	2680		2050	1028	714	385
5131	3290	3867	<b>363</b> 5	3240	3142	2884	2286	2280	1232	956	475
5132	3530	4500	4262	3965	3865	3650	3080	2972	2017	1737	1200
5133	3492	4453	4218	3905	3803	3584	3070	2910	1919	1645	1117
5134	3372	4180	3945	3558	3454	3226	2690	2563	1588	1310	795
5135	3366	4150	3962	3570	3470	3250	2748	2588	1595	1305	760
5136	3352	4030	3846	3562	3460	3245	2714	2610	1570	1278	750
5137	3362	4095	3858	3570	3468	3262	2730	2560	1580	1290	712
5138	3357	4126	3892	3528	3426	3207	2682	2554	1570	1286	766
5139	3372	4160	3927	3552	3450	3220	2800	2637	1587	1308	778
5140	3372	4131	3895	3580	3475	3260	2605	2563	1604	1316	782
5141	3322	4115	3878	3535	3432	3230	2680	2540	1554	1270	740
5142	3317	4015	3782	3490	3390	3167	2620	2565	1510	121 <del>9</del>	675
5143	3322	4430	3797	3520	3420	31 <b>45</b>		2463	1525	1234	690
5144	3327	4080	3843	3530	3428	3206	2590	2510	1535	12 <b>46</b>	720
5145	3329	4482	3850	3530	3430	3212	2685	2522	1540	1251	725
5146	3360	4115	•					2535	1553	1266	725
5147	3327	3953									
5148	3339	4034							1472	1197	670
5149	3327	3934	3696	3315	3210	2975	2555	2424	1403	1106	585

7

06/24/1996

.

idnum	refelev *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5150	3332	3908	3668	3348	3242	3008	2570	2381	1382	1100	570
5151	3338	3970	3735	3425	3315	<b>3085</b>	2595	2405	1442	1155	630
5152	3330	<b>3954</b>	3712	3399	3295	3054	2595	2386	1429	1138	612
5153	3453	4430	4185	3840	3730	3500	3030	2790	1872	1600	1070
5154	3517	4508	4268	3945	3840	3620	3197	2891	1976	1705	1125
5155	3494	4475	4233	3905	3797	3550	3150	2852	1949	1676	1145
5158	3664	4736	4215	3970	37 <b>80</b>	3530	3390	2877	2112	1812	1250
5159	3678	4815	4445	3900	3612	3345	2862	2770	2075	1817	1301
5160	3644	4861	4517	3594	3400	3196	3025	2753	2032	1775	1276
5161	3725	4785	4431	3918	3680	3458	3368	3074	2159	1856	1295
5162	3742	4775	4448	4155	4027	3990	3460	3267	2176	1830	1235
5163	3756	4789	4462	4372	4350	4338	3612	3240	2134	1845	1307
5164	3766	4777	4471	4340	4195	3955	3637	3280	2118	1840	1308
5165	3731	4780	4450				3600	3320	2140	1840	1292
5166	3745	4760	4430	4224			3563	3192	2185	1870	1300
5167	3749	4768	<b>445</b> 2	3766	3508	3283	3047	2763	2001	1756	1240
51 <b>68</b>	3796	<b>484</b> 1	4494	3740	3585	3283	3050	2728	1974	1718	1201
-51 <b>69</b>	3771	4820	•	3920	3745	3280	3000	2713	1982	1730	1220
5170	3803	4854	4557	3990	3783	3272	3050	2744	1986	1736	1223
5171	3746	4778	4420	3840	3680	3388	3137	2790	1978	1718	1202
5173	3718	4760	4450	4226	4052	3690	3560	2866	2020	1754	1236

.

• •

8

• .•

idnum	refe <del>l</del> ev *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5174	3743	4782	4460	3870	3682	3305	3124	2784	1980	1723	1205
5175	3733	4783	4455	3847	3690	3396	3135	2784	1976	1716	1195
5176	3780	4817	4483	3795	3636	3335	3102	2780	1975	1712	1190
5177	3754	4784	4415	3910	3753	3470	3185	2815	1992	1726	1206
5179	3717	4751		3985	3825	3500	3205	2860	2020	1754	1228
5180	3744	4774	4462	3984	3820	3448	3176	2820	1982	1704	1182
5181	3708	4715	4420	4000	3840	3520	3194	2878	2012	1745	1212
5182	3783	4812	4495	4112	3929	3497	3228	2855	1996	1719	1193
5183	3761	4760	4455	4047	3875	3474	3210	2855	1976	1702	1166
5184	3795	4845	4500	3755	3612	3414	3075	2748	1956	1693	1173
5185	3701	4740	4441	4055	3912	3606	3280	2900	1996	1718	1200
5186	3727	4722	4424	4000	3866	3563	3215	2882	2003	1701	1170
5188	3727	4685	4455	3990	3845	3540	3222	2840	1982	1 <b>700</b>	1178
5189	3646	4564	4268	3807	3670	3427	3090	2733	1940	1670	11 <b>58</b>
5190	3726	4620	4370	4010	3900	3552	3208	2837	2010	1 <b>73</b> 2	1210
5191	3640	4724	4440	4000	3856	3540	3180	2874	2040	1770	1440
5192	3678	4692	4393	4060	3905	3620	3215	2920	2075	1810	1280
5193	3709	4720	4413	4030	3872	3598	3288	2906	2041	1776	1255
5194	3702	4732	4423	4018	3860	3607	3286	2910	2058	1790	1255
5195	3687	4720	4410	3982	3815	3540	3250	2895	2067	1795	1265
51 <b>96</b>	3709	4722	4415	4168	3987	3605	3325	2960	2080	1815	1274

9

06/24/1996

• -

idnum	refelev *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	base√T	baseRus
5197	3709	4754	4433	3910	3752	3460	3187	2833	2016	1754	1230
5198	3703	4760	4455	3965	3803	3605	3245	2955	2103	1850	1333
5199	3740	<b>4806</b>	4490	3926	3793	3450	3130	2909	2087	1830	1317
5200	3758	4834	4515	4331			3665	2975	2105	1836	1320
5201	<b>377</b> 3	4845	4522	4280	4180	3950	3410	3148	2156	1870	1332
5202	3762	4833	4421	4240	4140	3940	3620	3245	2195	1890	1330
5203	3763	4835	4518	4340	4170	4130	3628	3025	2106	1833	1315
<b>5204</b>	3767	4818	4497	4428	4280	4030	3642	3110	2111	1840	1315
5206	3732	4802	4488	4380			3337	2952	2097	1833	1320
5208	⁻ 3793	4903	4593	4100	<b>3984</b>	3650	3385	3060	2250	1993	1463
5209	3747	4802	4495	3983	3816	3540	3270	2966	2170	1923	1410
5210	3723	4815	4521	4132	3985	3715	3368	3088	2271	2023	1495
5211	3694	4755	4452	4028	3874	3553	3255	2928	2106	1860	1393
5212	3653	4672	4390	3985	3855	3582	3195	2957	2140	1902	1385
5214	3671	4720	4430	4065	3923	3630	3268	2976	2143	1902	1380
5216	3637	4626	4386	3993	3850	3610	3210	2916	2080	1822	1285
5217	3538	4580	4317	3975	. 3856	3586	3080	2978	2080	1780	1292
5218	3540	4575	4313	3972	<b>3853</b>	3583	3080	2977	2074	1782	1243
5219	3501	4520	4258	3910	3800	3575	3055	2869	1963	1704	1174
5220	3550	4582	4316	3997	3877	3650	3180	<b>2959</b>	2085	1814	1280
5221	3696	4755	4475	4150	<b>40</b> 10	3754	3388	3106	2282	2020	1495

•

.

06/24/1996

-

				·· ··							
idnum	refelev *	topBC	topA1	topHi	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5223	3703	4774	4495	4204	4068	3830	3425	3137	2324	2065	1535
5224	3723	4794	4510	4158	4010	3773	3400	3136	2316	2061	1586
5226	3726	5008	4712	4406	4276	4000	3590	3280	2483	2228	1707
5227	3571	5092	4758	4245	4083	3764	3426	3039	2190	1910	1365
5228	3566	5070	4675	4255	4080	3560	3135	2753	1990	1725	1230
5229	3696	4835	4573	4134	3967	3643	3387	3056	2220	1902	1440
5230	3746	4927	4617	4232	4073	3752	3255	3107	2290	2035	1515
5231	3681	4886	4581	4045	3885	3673	3376	3051	2206	1932	1410
5232	3645	4823	4185	4050	3856	3314	3108	2805	2030	1757	1230
5233	3719	4883	4555	4320	4150	3865	3518	2890	2080	1805	1304
5234	3652	4813	4448	4105	3885	3785	3425	2830	2050	1705	1240
5235	3640	4852	4493	4350	· 3805	3210	2855	2709	2070	1795	1260
5236	3643	4585	-				3560	3223	2492	2200	1632
5237	3630	4840	4475	3908	3650	3290	3100	2852	2152	17 <b>86</b>	1260
5238	3632	4770					3595	3104	2386	2112	1557
5239	3614	4772	4475				3845	2908	2195	1900	1 <b>340</b>
5240	3631	4760	4356				3052	2992	2185	1845	12 <b>40</b>
5241	3680	4754	4490	4220	4050	3885	3700	3360	2520	2230	1656
5242	3661	4985	· .				3408	3187	2490	2245	1720
5243	3659	4932					3345	3190	2472	2097	1650
5244	3661	4633	4150	37 <b>50</b>			3525	3205	2490	2202	1685

.

11

• -

idnum	refelev *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5245	3754	4950	4665	4325	4200	3966	3555	3346	2482	2224	1702
5246	3727	4875	4606	4167	4043	3765	3400	3166	2327	2083	1585
5247	3691	4762	4505	4166	4050	3795	3550	3140	2222	2015	1500
5248	3542	4560	<b>43</b> 12	4075	3890	3672	3223	2940	2020	1765	1243
5249	3552	4568	<b>431</b> 5	3985	3875	3648	3165	2948	2035	1775	1250
5250	3699	4774	45 <b>20</b>	4280	4173	4025	3480	3240	2300	2052	1546
5251	3697	4790	4535	4195	4092	3897	3372	3271	2290	2040	1541
5252	3736	4900	4635	4338	4218	3976	3550	3306	2442	2180	1655
5253	3750	4955	4690	4450	4300		3182		3182	2208	1693
5254	3735	4925	4660	4320	4205	3972	3540	3360	2432	2127	1665
5255	3740	4930	4655	4343	4228	4000	3540	3335	2460	2206	1690
5256	3732	4950	4697	4377	4267	4045	3565	3370	2470	2207	1700
5257	3711	5090	4795	4360	4237	4040	3630	3315	2495	2238	1710
5258	3636	5112	4820	4628	4430	3995	3586	3263	2450	2184	1655
5259	3704	5030	4748	4408	4288	4056	3655	3395	2550	2300	1772
5260	3734	4980	4705	4370	4245	4008	3623	3332		2322	1800
5261	3722	5022	4756	4440	4326	4075	3655	3436	2583	2272	1760
5 <b>262</b>	3728	5076	4803	4482	4362	4126	3710	3450	2593	2325	1803
5263	3616	5107	4820	•	<i>.</i>			3272	2422	2152	1620
5264	3835		·. ·		•			3070		2471	1993
5265	3780	4708	4337	3750			3241	2585	1852	1417	1090

.

• .

•

12

06/24/1996

.

• •

idnum	rerelev `	topBC	topA1	topH1	topA ²	topH2	topA3	baseCow	base124	baseVT	baseRus
5266	3734	4680	4215	3961			3400	2720	1935	1656	1130
5267	3771	4743	4336	4100			3550	2685	1852	1591	1082
5268	3758	4804	4570	4240			3730	2825	1970	1682	1140
5269	3707	4730	4350	3980			3576	3060	2130	1837	1290
5270.	3687	4650					3500	3238	2490	2003	1430
5271	3685	4721						3132	2162	1875	1310
5272	3691	4547	4178	3780			3302	2490	1803	1530	1038
5273	3687	4530	4192	3685	3395	3115	2982	2541	1790	1507	1000
5274	3619	4497	4182	3462	3302	3020	2792	2460	1720	1458	946
5275	3659	4520	4172	3780	3680		2730	2315	1786	1505	994
5276	3662							2533	1788	1507	1000
5277	3705	4538	4080	4080	3840	3540	3055	2683	1953	1680	1167
5278	3697	4610	4300				3418	3108	2168	1891	1350
52 <b>79</b>	3723	4385	3980			3540	3400	3061	2260	1985	1444
5280	3709	4615	·			·	3604	2827	1985	1718	1208
5301	3281					-	•				
5302	3214	3560	3280	2910	2790	2603	2133	1810	1060	798	484
5303	3267	3575	3355	2938	2823	2682	2340	1952	1190	932	578
5304	3675	4500	4108	3480	3390	3280	2960	2583	1795	1518	1024
5305	3553	4250	3812	3612			2803	2402	1606	1336	85 <del>5</del>
5306	3515	4204	3778	37 <b>65</b>	3150	3042	2724	2228	1550	1300	828

۰.

13

06/24/1996

٠

.

• •

idnum	ref <del>ele</del> v *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5307	3629	4494	4166	3335	3161	2932	2755	2435	1711	1445	948
5308	3590	4406	4076	3288	31 <b>29</b>	2808		1810	1610	1373	898
5309	3929								2790	2550	2060
5310	3640	·						2838	2104	1826	1333
5311	3661										
5312	3679							3017	2258	1970	1455
5313	3712	4538					3405	3087	2244	1960	1420
5314	3736	4740					·	3070	2348	2070	1538
5315	3735							3150	2422	2121	1556
5316	3712	4674	4292	4130	4010	3700	3447	3120	2202	1929	1370
5317	3768	4645						2560	1857	1587	1088
5318	3435	3265	2986	2386	2248	1960	1630	1350			620
5319	3304	2980	2710	2480	2343	•		1120			500
5320	3330	3170									
5321	3268	2930			•			·.			
5322			3520	3122	3022	2770	2400	2132	1367	1108	610
5323	3359	3820	3559	3226	3083	2884	2503	2190	1444	1188	702
5324	3309	3752	3436				2430	2138	1308	1018	530
5325	3310	3803	3562	3107	3000	2803	2369	2175	1273	1009	512
5326	3584	4419	4122	3736	3560	3220	2895	2535	1672	1404	898
5327	3572	4380	4082	3610	3440	3090	2723	2475	1635	1367	890
-	N			1.4							
Pa	age Number:		·	14					06/24	4/1996	

. .

• .•

		topBC								/ <del></del>	
idnum	refeiev *	<b>4438</b>	topA1	topH1	topA2 3394	topH2 3148	topA3	baseCow	base124	baseVT	baseRus
5328	3588	4430	41 <b>40</b>	3550	5594		2920	2537	1712	1438	930
5329	3544	4310	4026	3600	3466	3170	2865	2520	1715	1446	960
5330	3569	4397	4102	3732	3489	3150	2945	2640	1666	1403	922
5331	3562	4393	4093	3680	3502	3200	2900	2487	1632	1367	886
5332	3545	4316	4025	3639	3504	3157	2880	2534	1692	1427	940
5333	3537	4328	4033	3574	3439	31 <b>64</b>	2885	2520	1700	1438	947
5334	3564	4413	4120	3540	3404	3105	2856	2514	1680	1428	950
5335		3880						2162	1442	1190	710
5336	3378	3875	3616	3302	31 <b>90</b>	2945	2568	2272	1513	1252	763
5337	3579	4427	4146	3693	3564	3267	2975	2610	1827	15 <b>63</b> ्	1079
5338	3599	4455	4170	3688	3555	3335	3025	2650	1832	1 <b>567</b>	1078
5339	3590	4446	4162	3700	3560	3135	2883	2548	1747	1485	<b>990</b>
5340	3592	4453	4175	37 <b>90</b>	3660	3392	3003	2706	1910	1645	1140
5341	3622	4493	4220	3882	3754	3510	3075	2758	1957	1690	1173
5342	3496				,						
5343	3596	4455	4188	3865	3743	3480	3096	2823	2000	1715	1190
5344	3585	4472	4200	3856	3740	3495	3080	2827	2000	1710	1189
5345	3807	4851	4321	4073	3890	3503	3082	2565	1 <b>837</b>	1583	1070
5346	3809	4852	4482	4000	3686	3280	2830	2614	1858	1591	1080
5347	3816	4820	4437	4437	4240	3734	3268	2790	1 <b>955</b>	1645	1090
5348	3730	4665	4320	3380	3247		2918	2558	1792	1502	960

.

15

06/24/1996

•

idnum	refelev *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5349	3625	<b>4</b> 514	4210	3858	3693	3226	2989	2612	1778	1500	980
5350	3619	4478	4170	3727	3495	3045	2845	2500	1724	1454	947
5351	3655	4555	4222	3550	3371	3115	2898	2546	1740	1450	935
5352	3656	4585	4283	3840	3700	3393	3090	2720	1898	1628	1119
5353	3806	4865	4516	4124							
5354	3805	4838	4485	4025	3760	3270	2986	2605	1 <b>884</b>	1625	1105
5355	3818	4860	4523	3614	3458	3157	2954	2647	1902	1650	1130
5356	3806	4855	4500			3475	3065	2588	1898	1650	1 <b>14</b> 0
5357	3810	4846	4480	4020	3838	3554	3210	2600	1872	1631	1112
5358	3805	4842									
5359	3759	4827	·								
5360	3746	4795	4446	3960	3860	3560	3250	3003	2060	18 <b>60</b>	1317
5361	3749	4805	4474	4206	4100	3800	3490	3302	2265	1946	1345
5362	3760	4842	4510	4305	4218	3995	3610	3220	2295	1941	1350
5363	3718	4787	4422	3950	3900	3670	3427	3198	2170	1845	1250
5364	3751	4788	4452	4137	4057	3790	3486	3176	2251	1913	1318
5365	3719	4755	4439	3875	3700	3371	3112	2782	1992	1731	1215
5366	3716	4740	4432	3903	3747	3430	3146	2791	2003	1738	1220
5367	3696	4700	4408	4178	4027	3556	3177	2874	2032	1750	1230
5368	3620	4640	4366	4000	3869	3588	3180	2857	<b>204</b> 1	1768	1243
5369	3708	4730	4420	3950	3830	3480	3130	2838	2022	1753	1228
			. •								

.

16

÷.,

Ŧ,

idnum	retalev *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5370	3711	4757	4438	4340	4020	3530	3113	2873	2093	1831	1318
5371	3688	4743	4433	4160	3990	3756	3445	3030	2104	1842	1320
5372	3757	<b>4818</b>	4510	4312	4130	3880	3590	3278	2161	1875	1310
5373	3759	4822	4514	4239	4148		3566	2927	2082	1824	1315
5374	3748	4803	4497	3910	3737	3470	3200	2924	2159	1904	1386
5375	3739	4796	4482	3750	3616	3240	2970	2870	2091	1823	1314
5376	3718	4790	4490	3810	3692	3420	3195	2866	2100	1850	1344
5377	3729	4803	4364	4070	3930	3396	3130	2908	2093	1834	1324
5378	3753	4826	4507	4000	3830	3410	3180	2880	2084	1829	1315
5380	3764	4854	4493	4222	4077	3818	3480	3150	2364	2117	1600
5381	3777	4900	4600	4220	4076	3810	3410	3154	2372	2118	1603
5382	3789	4922						3070	2244	1988	1461
5383	3694	4749	4454	3973	3820	3540	3212	2947	2155	1902	1382
5384	3684	4754	4194	4050	3900	3646	3330	2990	2182	1936	1412
5385	3672	4712	4418	3940	3800	3553	3246	2922	2113	1858	1332
5386	3676	4720	4420	3940	3787	3398	3212	2896	2110	1857	1320
5387	3684	4747	4460	4094	3950	3705	3410	3052	2208	1962	1444
5389	3642	4640	4347	4024	3873	3594	3210	2922	2093	1821	1290
5390	3666	4680	4400	4037	3908	3670	3283	3020	2200	1945	1428
5391	3683	4734	4460	4167	4030	3790	3400	3100	2283	2023	1 <b>492</b>
5392	3686	4737	4455	4100	3960	37 <b>06</b>	3324	3060	2250	1996	1480

•

idnum	refelev *	topBC	topA1	topH1	topA2	topH2	topA3	baseCow	base124	baseVT	baseRus
5393	3739	4827	4545	4252	4123	3892	3496	3185	2388	2122	1602
5394	3777	4883	4554	4185	4040		3466	3164	2377	2128	1608
5395	3773	4920	4620	4270	4124	3856	3470	3188	2390	2141	1614
5396	3761	4876	4592	4240	4100	3832	3420	3192	2400	2162	1648
5397	3766	4907	4610	4262	4120	3840	3526	3172	2378	2134	1612
5398	3645	4770					3535	3230	2441	2150	1580
5399	3572	4935		•			3816	2950	2270	2008	1476
5400	3572	4878					3774	3 <b>279</b>	2400	2091	1508
5401	3664	4875	4575	4315	4124	3943	3510	2938	2114	1852	1330
5402	3587	5015	4690	3992	3830	3581	3276	2986	2168	1890	1340
5403	3773	4860	4540	3950	3771	3474	3260	2964	2192	1930	1415
5404					•						
5405											
5406			1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	•							
5407											
5408	•	ар "									
				. •		. ·					
P	age Number:			18					06/2	24/1996	

*The source data table and this report were created by Dennis W. Powers using Rbase 5.5, a commercial relational database available from Micronim, Inc. Reference elevations and depths to stratigraphic horizons are given in feet. The relational column within the database is the idnum, an identifier unique to the drillhole. Data were checked corrected with checkprints.

.

,

## Appendix C

Structural Elevation Data for

## Drillholes with Geophysical Data

Dennis W. Powers

Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstlr
-760		807	985	1139		1249	2015	2253	2729
-653	391	-383			335	748	1680	1 <del>9</del> 62	2457
	-124	-73	47	1015	1096	1197	1751	2005	2475
-774	-497	-155	-14	251	561	979	1794	2057	2551
	-404	-310	-221	-102	446	896	1772	2058	2559
	-430	81	190	418	746	1013	1769	2037	2518
					584	857	1767	2053	2560
	-559	-235	-127	<del>9</del> 8	536	796	1688	1983	2496
-717	-482	-152	-45	173	624	893	1847	2144	2675
-878	-581	24	162	489	717	1079	1869	2145	2662
-843	-553	225	385	570	787	1103	1889	2154	2668
-840	-540	140	303	560	835	1063	1951	2162	2659
-855	-558	-36	120	497	723	1051	1879	2157	2666
-886	-591	4	142	406	648	1022	1858	2136	2657
-854	-5 <del>5</del> 6	-75	78	392	678	1015	1890	215 <del>9</del>	26 <b>50</b>
-870	-574	-67	58	513	773	1123	18 <b>86</b>	2148	2635
-855	-560	-20	125	349	608	993	1870	2143	2634
-875	-582	-8	117	455	702	1025	184 <b>8</b>	21 <b>2</b> 7	26 <b>22</b>
-871	-563	-336	54	49 <b>9</b>	704	1074	1874	2149	2659
-880	-584	-51	109	444	667	1023	1853	2131	2687
	-760 -653 -774 -774 -717 -878 -843 -840 -855 -886 -854 -854 -854 -855 -886 -854 -855 -855 -875 -875	-760 -653 -391 -124 -124 -497 -404 -404 -430 -430 -430 -559 -717 -482 -878 -559 -559 -878 -581 -843 -553 -840 -540 -855 -558 -886 -591 -855 -558 -886 -591 -855 -556 -870 -574	-760       807         -653       -391       -383         -124       -73         -774       -497       -155         -404       -310         -430       81         -717       -432       -152         -717       -482       -152         -878       -553       225         -843       -553       225         -840       -540       140         -855       -558       -36         -886       -591       4         -886       -591       4         -855       -556       -75         -870       -574       -67         -855       -560       -20         -875       -582       -8         -871       -563       -336	-760         807         985           -653         -391         -383         -           -124         -73         47           -774         -497         -155         -14           -404         -310         -221           -430         81         190           -777         -482         -152         -127           -717         -482         -152         -45           -878         -581         24         162           -843         -553         225         385           -840         -540         140         303           -855         -558         -36         120           -886         -591         4         142           -854         -556         -75         78           -870         -574         -67         58           -875         -582         -8         117           -871         -563         -336         54	-760         807         985         1139           -653         -391         -383         -           -124         -73         47         1015           -774         -497         -155         -14         251           -404         -310         -221         -102           -430         81         190         418           -559         -235         -127         98           -717         -482         -152         -45         173           -878         -581         24         162         489           -843         -553         225         385         570           -840         -540         140         303         560           -855         -558         -36         120         497           -886         -591         4         142         406           -854         -556         -75         78         392           -870         -574         -67         58         513           -875         -582         -8         117         455           -871         -563         -336         54         499	-760 $807$ $985$ $1139$ $-653$ $-391$ $-383$ $335$ $-124$ $-73$ $47$ $1015$ $1096$ $-774$ $-497$ $-155$ $-14$ $251$ $561$ $-404$ $-310$ $-221$ $-102$ $446$ $-430$ $81$ $190$ $418$ $746$ $-430$ $81$ $190$ $418$ $746$ $-559$ $-235$ $-127$ $98$ $536$ $-717$ $-482$ $-152$ $-45$ $173$ $624$ $-878$ $-581$ $24$ $162$ $499$ $717$ $-843$ $-553$ $225$ $385$ $570$ $787$ $-840$ $-540$ $140$ $303$ $560$ $835$ $-855$ $-558$ $-36$ $120$ $497$ $723$ $-886$ $-591$ $4$ $142$ $406$ $648$ $-854$ $-556$ $-75$ $78$ $392$ $678$ $-870$ $-574$ $-67$ $58$ $513$ $773$ $-855$ $-560$ $-20$ $125$ $349$ $608$ $-875$ $-582$ $-8$ $117$ $455$ $702$ $-871$ $-563$ $-336$ $54$ $499$ $704$	-760         807         985         1139         1249           -653         -391         -383         335         748           -124         -73         47         1015         1096         1197           -774         -497         -155         -14         251         561         979           -404         -310         -221         -102         446         896           -430         81         190         418         746         1013           -559         -235         -127         98         536         796           -717         -482         -152         45         173         624         893           -878         -581         24         162         489         717         1079           -843         -553         225         385         570         787         1103           -840         -540         140         303         560         835         1063           -855         -558         -36         120         497         723         1051           -866         -591         4         142         406         648         1022	-760 $807$ $985$ $1139$ $1249$ $2015$ $-653$ $-391$ $-383$ $335$ $748$ $1680$ $-124$ $-73$ $47$ $1015$ $1096$ $1197$ $1751$ $-774$ $-497$ $-155$ $-14$ $251$ $561$ $979$ $1794$ $-404$ $-310$ $-221$ $-102$ $446$ $896$ $1772$ $-430$ $81$ $190$ $418$ $746$ $1013$ $1769$ $-430$ $81$ $190$ $418$ $746$ $1013$ $1769$ $-430$ $81$ $190$ $418$ $746$ $1013$ $1769$ $-430$ $81$ $190$ $418$ $746$ $1013$ $1769$ $-430$ $81$ $190$ $418$ $746$ $1013$ $1769$ $-430$ $81$ $190$ $418$ $746$ $1013$ $1769$ $-430$ $81$ $190$ $418$ $746$ $1013$ $1769$ $-559$ $-235$ $-127$ $98$ $536$ $796$ $1688$ $-717$ $-482$ $-152$ $-455$ $173$ $624$ $893$ $1847$ $-878$ $-581$ $24$ $162$ $489$ $717$ $1079$ $1869$ $-840$ $-540$ $140$ $303$ $560$ $835$ $1063$ $1951$ $-856$ $-558$ $-36$ $120$ $497$ $723$ $1051$ $1890$ $-874$ $-556$ $-75$ $78$ $392$ $678$ $1015$ $1890$ <td>-760         807         985         1139         1249         2015         2253           -853         -391         -383         335         748         1680         1962           -774         -497         -155         -14         251         561         979         1794         2057           -774         -497         -155         -14         251         561         979         1794         2057           -404         -310         -221         -102         446         896         1772         2058           -430         81         190         418         746         1013         1769         2037           -559         -235         -127         98         536         796         1688         1993           -717         -482         -152         -45         173         624         893         1847         2144           -878         -581         24         162         489         717         1079         1869         2154           -843         -553         225         385         570         787         1103         1859         2157           -846         -551         <td< td=""></td<></td>	-760         807         985         1139         1249         2015         2253           -853         -391         -383         335         748         1680         1962           -774         -497         -155         -14         251         561         979         1794         2057           -774         -497         -155         -14         251         561         979         1794         2057           -404         -310         -221         -102         446         896         1772         2058           -430         81         190         418         746         1013         1769         2037           -559         -235         -127         98         536         796         1688         1993           -717         -482         -152         -45         173         624         893         1847         2144           -878         -581         24         162         489         717         1079         1869         2154           -843         -553         225         385         570         787         1103         1859         2157           -846         -551 <td< td=""></td<>

## Structure Data - Brine Reservoir Area

• .

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5014	-834	-540	-246	-100	294	626	991	1871	2148	2642
5015	-880	-595	-167	-35	244	633	917	1725	1999	2489
5016	-876	-589	-113	36	289	659	955	1761	2033	2424
5019	-863	-570	-123	20	389	672	1019	1812	2077	2567
5020	-870	-577	-7	135	415	780	1072	1852	2108	2588
5021	-885	-603	-189	-52		590	943	1755	2029	2530
5022	-877	-583	-68	65	432	732	1067	1818	2081	2567
. 5023	-881	-586	-471	72	267	887	987	1863	2117	2597
5024	-870	-590	-429	-260	280	665	945	1759	2035	2535
5025	-859	-575	-88	58	210	606	<b>94</b> 2	1799	2071	2568
5027	-928	-592	-88	57	302	592	962	1762	2039	2544
5028	-878	-513	-253	-108	209	597	<b>7</b> 913	1717	1986	2502
5029	-884	-614	-214	-129	199	563	8 881	1671	1946	2473
50 <b>30</b>	-867	-529	-279	-129	82	421	1 833	1738	1926	2449
5032	-880	-603	-158	-28	254	648	B 920	1704	1975	<b>24</b> 77
5033	-886	-664	-234	111	206	54:	3 878	1682	1959	2458
5034	-876	-599	-276	-157	99	509	9 849	1661	1941	2449
5035	-872	-592	-200	-72	187	572	2 <b>8</b> 95	1693	1966	2463
5036	-876	-591	-266	-141	144	54	4 864	1674	1955	2456
5037	-872	-591	-148	-18	287	599	9 944	1716	1990	2480
5038	- <b>88</b> 3	-618	-263	-141	128	52	2 772	1602	1889	2407
<b>-</b>										

• .

٦.

Date Printed: 07/10/1996

• -

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5039	-870	-550	-273	-149	.130	518	790	1625	1912	2422
5040	-849	-582	-230	-104	166	673	832	1653	1933	2441
5041	-867	592	-214	-104	196	583	875	1674	1949	2456
5042	-882						918		1889	2397
5043	-863	-589	-270	-140	151	544	856	1657	1928	2448
5044	-865						777		1890	2409
5045	-895	-614	-253	-130	160	572	840	1635	1910	2433
5046	-911	-639	-329	-214	26	451	720	1631	1850	2378
5047	-922	-647	-287	-168	-77		746	1657	1858	2384
5048	-863	-513	-281	-157	116	517	843	1645	191 <b>8</b>	2438
5049	-851			·			752		1880	2402
5050	-864	-602	-329	-210	26	•	736		1879	2403
5051	-891	-629	-279	-159	101	513	768	1610	1900	2414
5052	-872	-617	-234	-144	128	541	790	1641	1922	2432
5053	-880	-619	-275	-55	240	510	762	1600	1892	2408
5054	-884	-624	-280	-166	73	576	776	1635	1922	2436
5055	-879	-617	-289	-174	76	526	761	1610	1900	2409
5056	-973	-684	-338	-228	22	452	718	1600	1875	2400
5057	-974	-722	-392	-280			653	1556	1831	2361
505 <b>8</b>	-219								2304	2709
5059	-230								2461	2759

• .

Date Printed: 07/10/1996

.

۰.

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5060	-238	108			645	1200	1500	2175	2445	2805
5061	-356						1017			2785
5062	-335	58	386	518	869	1177	1529	2299	2586	2805
5063	-343	-61	406	536	756	1056	1412	2203	2479	2824
5064	-409	-72	218	298	733	998	1292	2088	2366	2713
5065	-382	-83	374	505	715	1028	1375	2155	2421	2758
5066	-411			·					2326	2662
5068	-866	-489	11	136	486	1151	1211	1906	2171	2681
5069	-815	-448	-18		432	622	1186	1911	2187	2690
5070	-838	-503					1187	1922	2186	2669
5071	-827	-557	160	330	623	808	1148	1897	2170	2673
5072	-838	-521	294	464	698	868	1159	1899	2168	2664
5073	-807	-498	-473	-211	227	502	1237	1977	2222	2672
5075	-827	-517	-132	108	408	642	!	1941	2188	2676
5076	-850	-534	131	304	501	739	1061	1895	2173	2676
5079	-713	-375	-340	-100	. 85	478	890	1703	1980	2490
5080	-708				• •	485	5 890	1705	1979	2485
5081	-793	-418	-103	17	382	782	2 1012	1765	2037	2537
5082	-809	-511	-321	-71	386	691	952	1799	2081	2589
5084	-458	-192	162	272	542	897	1208	1946	2202	2696
5085	-473	-201	69	199	619	919	9 1233	1979	2246	2737

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5086	-441				,				2245	2732
5087	-433	-188	112	162		722	1296	2047	2304	2769
5088	-861					790	1108	1880	2152	2665
5089	-458	-181	214	324	614	974	1244	2010	2274	2754
5090	-446	-176	244	357	596	940	1239	1982	2241	2732
5091	-341	-65	203		673	1068	1378	2163	2438	2768
5092	-437	-163	189	323	570	1037	1254	2037	2300	2627
5093	-446			259	504	964	1244	2042	2324	2642
50 <b>94</b>	-426	-128	297	422		1092	1292	2073	2334	2672
5095	-424	-117	228				1243	2045	2312	2668
5096	-426	-156	221	349	609	970	1269	2059	2324	2684
5097	-423	-156	136	267	569	964	1284	2076	2339	2667
5098	-437	-162	223	343	555	952	1260	2048	2311	2638
5099	-438	-153	199	317	577	947	1242	2035	2299	2707
5100	-453	-163	192	307	552	937	1250	2012	2279	2737
5101	-434	-136	1 <b>59</b>	.282	527	917	1237	2034	2304	2632
5102	-447	-177	138	265	<b>518</b>	903	1231	2041	2306	2671
5103	-487	-231	141	246	481	851	1131	1881	2145	2626
5104	-425	-165	180				1206	1960	2225	2720
5105	-439	-174	146	256	484	9 <b>06</b>	1190	1 <b>943</b>	2203	2648
5106	-438	-171	152	267	512	896	12 <b>10</b>	1962	2230	27 <b>2</b> 7

<u>.</u>

Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
-442	-178	166	278	524	926	1196	1956	2221	2708
-444	-219			561	921	1216	<b>197</b> 1	2237	2737
-431	171	204	312	554	923	1194	1960	2 <b>224</b>	2714
-447	-185			738	1018	1229	1993	2332	2638
-447	-54	159	273	553	993	1227	2000	2270	2588
-438	-178	120	210	520	880	1214	1979	2155	2745
-443	-163	45	225	508	870	1225	1983	2248	2745
-448	-183	150	261	527	917	1237	2037	2313	2627
-508	-255	92	219	432	922	1217	2019	2292	2792
-518	-271	84	187	419	869	1077	1957	2237	2724
-513			207	437	767	1045	1977	2265	2772
-499	-256	84	224	424	974	1038	19 <b>8</b> 9	2270	2776
-471	-228	121	224	434	879	9 1074	1989	2259	2744
-508			·	203	805	5 1072	1980	2263	2760
-444	-179	157	266	499	888	3 1221	1996	2261	2621
-480				· · ·		1097	2007	2177	2782
-513	-266	76	181	396	826	6 1051	1902	2183	2681
-609	-263	92	197	378	852	2 1082	1946	2222	2712
-481	-222	103	208	411	84	9 980	1862	2155	2635
-525	-33 <b>9</b>	30	134	351	820	0 1015	1987	2167	2780
-477		208	318			1273	2098	2350	2832
	-442 -444 -431 -447 -447 -438 -443 -443 -448 -508 -513 -513 -499 -471 -508 -444 -480 -513 -480 -513 -609 -481 -525	-442       -178         -444       -219         -431       -171         -447       -185         -447       -54         -438       -178         -438       -178         -443       -163         -443       -163         -443       -163         -443       -255         -518       -271         -513       -256         -471       -228         -508       -256         -471       -228         -508       -179         -480       -179         -480       -179         -480       -256         -513       -266         -508       -263         -513       -266         -508       -263         -513       -266         -509       -263         -481       -222         -525       -339	-444-219-431-171204-447-185159-447-54159-438-178120-443-16345-448-183150-508-25592-513-26684-444-179157-444-179157-446-179157-447-26392-508-26392-444-179157-480-26392-481-222103-525-33930	-442       -178       166       278         -444       -219	-442 $-178$ $166$ $278$ $524$ $-444$ $-219$ 561 $-431$ $-171$ $204$ $312$ $554$ $-447$ $-185$ 738 $-447$ $-54$ $159$ $273$ $553$ $-438$ $-178$ $120$ $210$ $520$ $-443$ $-163$ $45$ $225$ $508$ $-443$ $-163$ $45$ $225$ $508$ $-448$ $-183$ $150$ $261$ $527$ $-508$ $-255$ $92$ $219$ $432$ $-518$ $-271$ $84$ $187$ $419$ $-513$ $-276$ $84$ $224$ $424$ $-471$ $-228$ $121$ $224$ $434$ $-508$ $-275$ $82$ $203$ $414$ $-508$ $-266$ $76$ $181$ $396$ $-480$ $-263$ $92$ $197$ $378$ $-481$ $-222$ $103$ $208$ $411$ $-525$ $-339$ $30$ $134$ $351$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-442 $-178$ $166$ $278$ $524$ $926$ $1196$ $-444$ $-219$ 561 $921$ $1216$ $-431$ $-171$ $204$ $312$ $554$ $923$ $1194$ $-447$ $-185$ 738 $1018$ $1229$ $-447$ $-54$ $159$ $273$ $553$ $993$ $1227$ $-438$ $-178$ $120$ $210$ $520$ $880$ $1214$ $-443$ $-163$ $45$ $225$ $508$ $870$ $1225$ $-448$ $-183$ $150$ $261$ $527$ $917$ $1237$ $-508$ $-255$ $92$ $219$ $432$ $922$ $1217$ $-513$ $-271$ $84$ $187$ $419$ $869$ $1077$ $-513$ $-276$ $84$ $224$ $424$ $974$ $1038$ $-471$ $-228$ $121$ $224$ $434$ $879$ $1074$ $-508$ $-275$ $84$ $224$ $424$ $974$ $1038$ $-471$ $-228$ $121$ $224$ $434$ $879$ $1074$ $-508$ $-275$ $84$ $224$ $424$ $974$ $1038$ $-471$ $-228$ $121$ $226$ $499$ $888$ $1221$ $-480$ $-179$ $157$ $266$ $499$ $888$ $1221$ $-480$ $-225$ $92$ $197$ $378$ $852$ $1082$ $-481$ $-222$ $103$ $208$ $411$ $849$ $980$ $-525$ <	-442 $-178$ $166$ $278$ $524$ $926$ $1196$ $1956$ $-444$ $-219$ 561 $921$ $1216$ $1971$ $-431$ $-171$ $204$ $312$ $554$ $923$ $1194$ $1960$ $-447$ $-185$ 738 $1018$ $1229$ $1993$ $-447$ $-54$ $159$ $273$ $553$ $993$ $1227$ $2000$ $-438$ $-178$ $120$ $210$ $520$ $860$ $1214$ $1979$ $-443$ $-163$ $45$ $225$ $508$ $670$ $1225$ $1983$ $-448$ $-183$ $150$ $281$ $527$ $917$ $1237$ $2037$ $-508$ $-255$ $92$ $219$ $432$ $922$ $1217$ $2019$ $-513$ $-271$ $84$ $187$ $419$ $869$ $1077$ $1957$ $-513$ $-278$ $84$ $224$ $424$ $974$ $1038$ $1989$ $-471$ $-228$ $121$ $224$ $434$ $879$ $1074$ $1989$ $-508$ $-273$ $265$ $499$ $888$ $1221$ $1996$ $-444$ $-179$ $157$ $266$ $499$ $888$ $1221$ $1992$ $-513$ $-266$ $76$ $181$ $396$ $826$ $1051$ $1902$ $-480$ $-222$ $103$ $208$ $411$ $849$ $960$ $1862$ $-525$ $-339$ $30$ $134$ $351$ $820$ $1015$ $1987$ <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Page Number: 6

• •

• _

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5129	-583					786	1051	2026	2291	2803
5130	-358	-128	159	257	457		1087	2109	2423	2752
5131	-577	345	50	148	406	1004	1010	2058	2334	2815
5132	-970	-732	-435	-335	-120	450	558	1513	1793	2330
5133	-961	-726	-413	-311	-92	422	582	1573	1 <b>84</b> 7	2375
5134	-808	-573	-186	-82	146	682	809	17 <b>84</b>	2062	2577
5135	-784	-596	-204	-104	116	618	778	1771	2061	2606
. 5136	-678	-494	-210	-108	107	638	742	1782	2074	2602
5137	-733	-496	-208	-106	100	632	802	1782	2072	2650
5138	-769	-535	-171	-69	150	675	803	1787	2071	2591
5139	-788	-555	-180	-78	152	572	735	1785	2064	2594
5140	-759	-523	-208	-103	112	767	809	1768	2056	2590
5141	-793	-556	-213	-110	92	642	782	1768	2052	2582
5142	-698	-465	-173	-73	150	697	752	1807	2098	2642
5143	-1108	-475	-198	- <del>9</del> 8	177		859	1797	2088	2632
5144	-753	-516	-203	-101	121	737	817	1792	2081	2607
5145	-1153	-521	-201	-101	117	644	807	1789	2078	2604
5146	-755		· .	· ·			825	1807	2094	2635
5147	-626									
5148	-695	· .						1867	2142	2669
5149	-607	-369	12	117	352	772	903	1924	2221	2742
Page Numb	er: 7		តុង្ខាំង ខេត្តកំរំ 				ľ	Date Printed: 07/1	0/1996	

------

• .

.

.

.

• •

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5150	-576	-336	-16	90	324	762	951	1950	2232	2762
5151	-632	-397	-87	23	253	743	933	1896	21 <b>8</b> 3	2708
5152	-624	382	-69	35	276	<b>73</b> 5	<b>944</b> .	1901	21 <b>9</b> 2	2718
5153	-977	-732	-387	-277	-47	423	663	1581	1853	2383
5154	-991	-751	-428	-323	-103	320	626	1541	1812	2392
5155	-981	-739	-411	-303	-56	344	642	1545	1818	2349
515 <b>8</b>	-1072	-551	-306	-116	134	274	787	1552	1852	2414
5159	-1137	-767	-222	66	333	816	908	1603	1861	2377
5160	-1217	-873	50	244	448	619	891	1612	18 <b>69</b>	2368
51 <b>61</b>	-1060	-706	-193	45	267	357	651	1566	1869	2430
5162	-1033	-706	-413	-285	-248	282	475	1566	1912	2507
5163	-1033	-706	-616	-594	-582	144	516	1622	1911	244 <del>9</del>
5164	-1011	-705	-574	-429	-189	129	486	1648	1926	2458
5165	-1 <b>049</b>	-719				131	411	1591	1891	2439
5166	-1015	-685	-479	• •		182	553	1560	1875	2445
5167	-1019	-703	-17	241	466	702	2 986	1748	1993	2509
5168	-1045	-698	56	211	513	746	5 1068	1822	2078	25 <b>95</b>
5169	-1049		-149	26	491	771	1058	1789	2041	2551
5170	-1051	-754	-187	20	531	753		1817	2067	2580
5171	-1032	-674	<b>-9</b> 4	66	358	609		1768	2028	2544
5173	-1042	-732	-5 <b>08</b>	-334	28	158	852	1698	1964	2482
Page Num	nhar: 9			•			ورون در در در	Data Data di 07	140400e	

• .

.

۰.-

IDNUM	Bell Cnyn	Тор А1	Top H1	Top A2	Тор Н2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5174	-1039	-717	-127	61	438	619	959	1763	2020	2538
5175	-1050	<b>-</b> 722	-114	43	337	598	949	1757	2017	2538
5176	-1037	703	-15	144	445	678	1000	1805	2068	2590
5177	-1030	-661	-156	1	284	569	939	1762	2028	2548
5179	-1034		-268	-108	217	512	857	1697	1963	2489
5180	-1030	-718	-240	-76	296	568	924	1762	2040	2562
5181	-1007	-712	-292	-132	188	514	830	1696	1963	2496
5182	-1029	-712	-329	-146	286	555	928	1787	2064	2590
5183	-999	-694	-286	-114	287	551	906	1785	2059	2595
5184	-1050	-705	40	183	381	720	1047	1839	2102	2622
5185	-1039	-740	-354	-211	95	421	801	1705	1983	2501
5186	-995	-697	-273	-139	164	512	845	1724	2026	2557
5188	-958	-728	-263	-118	187	505	887	1745	2027	2549
5189	-918	-622	-161	-24	219	556	913	1706	1976	2488
5190	-894	-644	-284	-174	174	518	889	1716	1994	2516
5191	-1084	-800	-360	-216	100	460	766	1600	1870	2200
5192	-1014	-715	-382	-227		463	758	1603	1868	2398
5193	-1011	-704	-321	-163	111	421	803	1668	1933	2454
5194	-1030	-721	-316	-158	95	416	792	1644	1912	2447
5195	-1033	-723	-295	-128	147	437	792	1620	1892	24 <b>22</b>
5196	-1013	-706	-459	-278	104	384	749	1629	1894	2435
Deve Mussel	0 ¹						-			

9

Date Printed: 07/10/1996

.

. -

**,** • ,

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5197	-1045	-724	-201	-43	249	522	876	1693	1955	2479
5198	-1057	-752	-262	-100	98	458	748	1600	1853	2370
5199	-1066	750	-186	-53	290	610	831	1653	1910	2 <b>423</b>
5200	-1076	-757	-573			93	783	1653	1922	2438
5201	-1072	-749	-507	-407	-177	363	625	1617	1903	2441
5202	-1071	-659	-478	-378	-178	142	517	1567	1872	2432
5203	-1072	-755	-577	-407	-367	135	738	1657	1930	2448
5204	-1051	-730	-661	-513	-263	125	657	1656	1927	2452
5206	-1070	-7 <del>5</del> 6	-648			395	780	1635	1899	2412
5208	-1110	-800	-307	-191	143	408	733	1543	1800	2330
5209	-1055	-748	-236	-69	207	477	781	1577	1824	2337
5210	-1092	-798	-409	-262	8	355	635	1452	1700	2228
5211	-1 <b>061</b>	-758	-334	-180	141	439	766	1588	1834	2301
5212	- <b>10</b> 19	-737	- <b>332</b>	-202	71	458	696	1513	1751	2268
5214	-1049	-759	-394	-252	41	403	695	1528	1769	2291
5216	-989	-749	-356	-213	27	427	7 721	1557	1815	2352
5217	-1042	-779	-437	-318	-48	458	560	1458	1758	2246
5218	-1035	-773	-432	-313	-43	460	563	1466	1758	2297
5219	-1019	-757	-409	-299	-74	44	6 632	1538	1797	2327
5220	-1032	-766	-447	-327	-100	37(	0 591	1465	1736	2270
5221	-1059	-779	-454	-314	-58	30	8 590	1414	1676	5 2201

-

• •

٠. .

.

•.

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5223	-1071	-792	-501	-365	-127	278	566	1379	1638	2168
5224	-1071	-787	-435	-287	-50	323	587	1407	1662	2137
5226	-1282	. <b>-98</b> 6	-680	-550	-274	136	446	1243	1498	2019
5227	-1521	-1187	-674	-512	-193	145	532	1381	1661	2206
5228	-1504	-1109	-689	-514	6	431	813	1576	1841	2336
5229	-1139	-877	-438	-271	53	309	640	1476	1794	2256
5230	-1181	-871	-486	-327	-6	491	639	1456	1711	2231
. 5231	-1205	-900	-364	-204	8	305	630	1475	1749	2271
5232	-1178	-540	-405	-211	331	537	840	1615	1888	2415
5233	-1164	-836	-601	-431	-146	201	829	1639	1914	2415
5234	-1161	-796	-453	-233	-133	227	822	1602	1947	2412
5235	-1212	-853	-710	-165	430	785	931	1570	1845	2380
5236	-942	·				83	420	1151	1443	2011
5237	-1210	-845	-278	-20	340	530	778	1478	1 <b>844</b>	2370
5238	-1138					37	528	1246	1520	2075
5239	-1158	-861				-231	706	1419	1714	<u>22</u> 74
5240	-1129	-725				579	639	1446	1 <b>78</b> 6	2391
5241	-1074	-810	-540	-370	-205	-20	320	1160	1450	2024
5242	-1324			-		253	474	1171	1416	1941
52 <b>43</b>	-1273		· · ·			314	469	1187	1562	2 <b>009</b>
5244	- <del>9</del> 72	-489	-89			136	456	1171	1459	1976

• .

.

,

Date Printed: 07/10/1996

.

. .

•

IDNUM	Beil Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstlr
5245	-1196	-911	-571	-446	-212	199	408	1272	1530	2052
5246	-1148	-879	-440	-316	-38	327	561	1400	1644	2142
5247	-1071	. <b>-814</b>	-475	-359	-104	141	551	1469	1676	2191
5248	-1018	-770	-533	-348	-130	319	602	1522	1777	2299
5249	-1016	-763	-433	- <b>3</b> 23	-96	387	604	1517	1777	2302
5250	-1075	-821	-581	-474	-326	219	459	1399	1647	2153
5251	-1093	-838	-498	-395	-200	325	426	1407	1657	2156
5252	-1164	-899	-602	-482	-240	186	430	1294	1556	2081
5253	-1205	-940	-700	-550		568	l	568	1542	2057
5254	-1190	-925	-585	-470	-237	195	375	1303	1608	2070
5255	-1190	-915	-603	-488	-260	200	405	1280	1534	2050
5256	-1218	-965	-645	-535	-313	167	362	1262	1525	2032
5257	-1379	-1084	-649	-526	-329	81	396	1216	1473	2001
5258	-1476	-1184	-992	-794	-359	50	) 373	1186	1452	1981
5259	-1326	-1044	-704	-584	-352	49	309	1154	1404	1932
5260	-1246	-971	-636	-511	-274	, . <b>11</b> 1	402		1412	1934
5261	-1300	-10 <b>34</b>	-718	-604	-353	67	7 286	1139	1450	1962
5262	-1348	-1075	-754	-634	-398	18	8 278	1135	1403	1925
5263	-1491	-1 <b>204</b>		•	•		344	1194	1464	19 <b>96</b>
5264				- Ng ti			765		1364	1842
5265	-928	-557	30	• • •		53	9 1195	1928	2363	2690
Page Nur	nber: 12							Date Printed: 07	7/10/1996	
•	• •	<i>.</i> .			•					

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5266	-946	-481	-227			334	1014	1799	2078	2604
5267	-972	-565	-329			221	1086	1919	2180	2689
526 <b>8</b>	-1046	_. -812	-482			28	933	1788	2076	2618
5269	-1023	-643	-273			131	647	1577	1870	2417
5270	-963					187	449	1197	1684	2257
5271	-1036						553	1523	1810	2375
5272	-856	-487	-89			389	1201	1888	2161	2653
. 5273	-843	-505	2	292	572	705	1146	1897	2180	2687
5274	-878	-563	157	317	5 <b>9</b> 9	827	1159	1899	2161	2673
5275	-861	-513	-121	-21		929	1344	1873	2154	2 <del>6</del> 65
5276							1129	1874	2155	2662
<b>527</b> 7	-833	-375	-375	-135	165	650	1022	1752	2025	2538
5278	-913	-603				279	589	1529	1806	2347
5279	-662	-257			183	323	662	1463	1738	2279
5280	-906					105	882	1724	1991	2501
5301					. • *					
5302	-346	-66	304	424	<b>611</b>	1081	14 <b>04</b>	2154	2416	2730
5303	-408	-88	329	444	585	927	1315	2077	2335	2689
5304	-825	-433	195	285	395	715	1092	1880	2157	2651
53 <b>05</b>	-697	-259	-59			750	1151	1947	2217	2698
5306	-689	-263	-250	365	473	791	1287	1965	2215	2 <b>687</b>
<b>_</b>										

• .

,

.

١.

.

•

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5307	-865	-537	294	468	697	874	1194	1918	2184	2681
5308	-816	-486	302	461	782		1780	1980	2217	2692
5309		•					· .	1139	1379	1869
5310							802	1536	1814	2307
5311										
5312							662	1421	1709	<u>222</u> 4
5313	-826					307	<b>62</b> 5	1468	1752	2292
. 5314	-1004						666	1388	1666	2198
5315	_		·				585	1313	1614	2179
5316	-962	-580	-418	-298	12	265	592	1510	1783	2342
5317	-877						1208	1911	2 <b>18</b> 1	2680
5318	170	449	1049	1187	1475.	1805	2085			2815
5319	324	594	824	961			2184			2804
5320	160	·								
5321	338						94. -			
5322										
5323	-461	-200	133	276	475	856	1169	1915	2171	2657
5324	-443	-127	· · ·	•		879	1171	2001	2291	2779
5325	-493	-252	203	310	507	941	1135	2037	2301	2798
5326	-835	-538	-152	24	364	689	1049	1912	2180	2686
5327	-808	-510	-38	132	482	849	1097	1937	2205	2682

• .

¹

•

-----ŧ

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5328	-850	-552	38	194	440	668	1051	1876	2150	2658
5329	-766	-482	-56	78	374	679	1024	1829	2098	2584
5330	-828	. <b>-533</b>	-163	80	419	624	929	1903	2166	2647
5331	-831	-531	-118	60	362	662	1075	1930	2195	2676
5332	-771	-480	-94	41	388	665	1011	1853	2118	2605
5333	-791	-496	-37	98	373	652	1017	1837	2099	2590
5334	-849	-556	24	160	459	708	1050	1884	2136	2614
. 5335										
5336	-497	-238	76	188	433	810	1106	1865	2126	2615
5337	-848	-567	-114	15	312	604	969	1752	2016	2500
5338	~856	-571	-89	44	264	574	949	1767	2032	2521
5339	-856	-572	-110	30	455	707	1042	1843	2105	2600
5340	-861	-583	-198	-68	200	589	886	1682	1947	2452
5341	-871	-598	ء -260	-132	112	547	864	1665	1932	2449
5342			·				·.			
5343	-859	-592	-269	-147	116	500	773	1596	1881	2406
5344	-887	-615	-271	-155	90	505	758	1585	1875	23 <b>96</b>
5345	-1044	-514	-266	-83	304	725	1242	1970	2224	2737
5346	-1043	-673	-191	123	529	979	1195	1951	2218	2729
5347	-1004	-621	-621	-424	82	548	1026	1861	2171	2736
		•		•	02					
5348	-935	-590	350	483		812	1172	1938	2228	2750

• .

Date Printed: 07/10/1996

.

-

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Тор АЗ	Base Cwdn	Base MB124	Base VT	Base Rstir
5349	-889	-585	-233	-68	399	636	1013	1847	2125	2645
5 <b>350</b>	-859	-551	-108	124	574	774	1119	1895	2165	2672
5351	-900	567	105	284	540	757	1109	1915	2205	2720
5352	-929	-627	-184	-44	263	566	936	1758	2028	2537
5353	-1059	-710	-318							
5354	-1033	-680	-220	45	535	819	1200	1921	2180	2700
5355	-1042	-705	204	360	661	864	1171	1916	2168	2688
. 5356	-1049	-694			331	741	1218	1908	2156	2666
5357	-1036	-670	-210	-28	256	600	1210	1938	2179	2698
5358	-1037									
5359	-1068	. •	·							
5360	-1049	-700	-214	-114	186	496	5 743	1686	1886	2429
5361	-1056	-7,25	-457	-351	-51	259		1484	1803	2404
5362	-1082	-750	<b>-545</b>	-458	-235	150	) 540	1465	1819	2410
5363	-1069	-704	-232	-182	48	291	520	1548	1873	2468
5364	-1037	-701	-386	-306	-39	26	5 575	1500	1838	2433
5365	-1036	-720	-156	19	348	607	7 937	1727	1988	2504
5366	-1024	-716	-187	-31		570	925	1713	1978	2496
5367	-1004	-712		-331	140		9 822	1664	1946	2466
5368		-746			32			1579	1852	
5369	-1022	-712	•	-122					1955	
5303	-1022	-1 14	<b>-24</b> 2	-122	220	57		1000	1995	. 2400

• •

.

÷

IDNUM	Bell Chyn	Top A1	Top H1	Top A2	Top H2	Top A3	Base Cwdn	Base MB124	Base VT	Base Rstir
5370	-1046	-727	-629	-309	<u>,</u> 181	598	838	1618	1880	2393
5371	-1055	-745	-472	-302	-68	243	658	1584	1846	2368
5372	-1061	-753	-555	-373	-123	167	479	1596	1882	2447
5373	-1063	-755	-480	-389		193	832	1677	1935	2444
5374	-1055	-749	-162	11	278	548	824	1589	1844	2362
5375	-1057	-743	-11	123	499	769	869	1648	1916	2425
5376	-1072	-772	-92	26	298	523	852	1618	1868	2374
5377	-1074	-635	-341	-201	333	599	821	1636	1895	2405
5378	-1073	-754	-247	-77	343	573	873	1669	1924	2438
5380	-1090	-729	-458	-313	-54	284	614	1400	1647	2164
5381	-1123	-823	-443	-299	-33	367	623	1405	1659	2174
5382	-1133					• •	719	1545	<b>18</b> 01	2328
5383	-1055	-760	-279	-126	154	482	747	1539	17 <b>92</b>	2312
5384	-1070	-510	-36 <b>6</b>	-216	38	354	694	1502	1748	2272
5385	-1040	-746	-268	-128	119	426	750	1559	1814	2340
5386	-1044	-744	-264	-111	278	464	780	1566	1819	2356
5387	-1063	-776	-410	-266	-21	274	632	1476	1722	2240
5389	-998	-705	-382	-231	48	432	720	1549	1821	2352
53 <b>90</b>	-1014	-734	-371	-242	-4	383	646	1466	1721	2238
5391	-1051	-777	-484	-347	-107	283	5 <b>83</b>	1400	1660	2191
5392	-1051	-769	-414	-274	-20	362	626	1436	1690	2206

. .

IDNUM	Bell Cnyn	Top A1	Top H1	Top A2	Top H2	Тор АЗ	Base Cwdn	Base MB124	Base VT	Base Rstir
5393	-1088	-806	-513	-384	-1,53	243	554	1351	1617	2137
5394	-1106	-777	-408	-263		311	613	1400	164 <b>9</b>	216 <b>9</b>
53 <del>9</del> 5	-1147	. <b>-84</b> 7	-497	-351	-83	303	585	1383	1632	2159
5396	-1115	-831	-479	-339	-71	341	569	1361	1599	2113
5397	-1141	-844	-496	-354	-74	240	594	1388	1632	2154
5398	-1125					110	415	1204	1495	2065
5399	-1363					-244	622	1302	1564	2096
5400	-1306					-202	293	1172	1481	2064
5401	-1211	-911	-651	-460	-279	154	726	1550	1812	2334
5402	-1428	-1103	-405	-243	· 6	311	601	1419	1697	2247
5403	-1087	<b>-76</b> 7	-177	2	299	513	809	1581	1843	2358
5404			. *			•				
5405										
5406										
5407	•									
5408					. •					

Date Printed: 07/10/1996

1.11. See

The source data table and this report were created by Dennis W. Powers using Rbase 5.5, a commercial relational database available from Microrim, Inc. Elevation data for each horizon is given in feet. The relational column within the database is the idnum, an identifier unique to the drillhole. Data were partially checked for basic computations and report setup.

Appendix D

Thickness (Isopach) Data for

Drillholes with Geophysical Data

Dennis W. Powers

.

÷.

·

se e 

,

ID #	Brine			Thickne	ss of Ur	nits* ·							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2	Castile halite		BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
1104	1		1567	1745	1899				2009		2775	3013	348 <del>9</del>
1149	0	262	270					988	1401	1139	2333	2615	3110
1150	0					1139	101 <del>9</del>			1321			
1153	0	277	619	760	1025	748	607	1335	1753	1476	2568	2831	3325
1158	D					302	213			1300			
1159	1					848	739			1443			
1168	0												
1175	0					657	549			1355		``	
1243	0.	235	565	672	890	655	548	1341	1610	1375	2564	2861	3392
5000	0	297	902	1040	1367	1070	932	1595	1957	1660	2747	3023	3540
5002	0	290	1068	1228	1413	1123	963	1630	1946	1656	2732	2997	3511
5004	0	300	980	1143	1400	1100	937	1675	1903	1603	2791	3002	3499
5005	0	297	819	975	1352	1055	899	1578	1 <b>906</b>	1609	2734	3012	3521
5006	Ó	295	890	1028	1292	997	859	1 <b>534</b>	1908	1613	2744	3022	3543
5007	0	298	779	932	1 <b>246</b>	948	795	1532	1869	1571	2744	3013	3504
5008	Ō	296	803	928	1383	1087	962	1643	1993	1697	2756	3018	3505
5009	0	295	835	980	1204	909	764	1463	1848	1553	2725	2998	3489

## Basic Stratigraphic Data - Isopachs *

Page Number:

• .

1

Checkprint for computational setup, report format

Date Printed: 06/28/1996

ID #	Brine		•	Thickne	ss of Ur	nits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2	Castile halite	Total Castile	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
5010	0	293	867	992	1330	1037	912	1577	1900	1607	2723	3002	3497
5011	0	308	535	925	1370	1062	672	1575	1945	1637	2745	3020	3530
5012	٥	296	829	989	1324	1028	868	1547	1903	1607	2733	3011	3567
5014	1	294	588	734	1 <b>128</b>	834	688	1460	1825	1531	2705	2982	3476
5015	0	285	713	845	1124	839	707	1513	1797	1512	2605	2879	3369
5016	; O	287	763	912	1165	878	729	1535	1831	1 <b>544</b>	2637	2909	3300
5019	0	293	740	883	1252	959	816	1535	1882	1589	2675	2940	3430
5020	0	293	863	1005	1285	992	850	1650	1 <b>94</b> 2	1649	2722	2978	3458
5021	0	282	696	833				1475	1828	1546	2640	2914	3415
5022	2 0	294	809	<del>9</del> 42	1 <b>309</b>	1015	882	1609	1944	1650	2695	2958	3444
5023	8 0	295	410	953	1148	853	310	1768	1868	1573	2744	2998	3478
5024	L 0	280	441		1150	870	701	1535	1815	1535	2629	2905	3405
5025	50	284	771	917	1069	785	639	1465	1 <b>801</b>	1517	2658	2930	3427
- <b>502</b> 7	7 0	336	840	985	1230	894	749	1520	1890	1554	2690	2967	3472
502	3 O	365	625	770	. 1 <b>087</b>	722	577	1475	1791	1426	2595	2864	3380
502	9 0	270	670	755	1083	<b>1</b> 813	728	1447	1765	1495	2555	2830	3357
503	0.0	338	588	738	949	611	461	1288	1700	1362	2605	2793	3316
503	20	277	722	852	11 <b>34</b>	857	727	1528	1800	1523	2584	2855	3357

·2

Checkprint for computational setup, report format

Date Printed: 06/28/1996

ID #	Brine			Thickne	ss of U	nits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2		e Total Castile	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
5033	٥	222	652	775	1092	870	747	1429	17 <del>6</del> 4	1542	2568	2845	3344
5034	٥	. 277	600	719	975	698	57 <b>9</b>	1385	1725	1448	2537	2817	3325
5035	٥	280	672	800	105 <del>9</del>	779	651	1444	1767	1487	2565	2838	3335
5036	0	285	610	735	1020	735	610	1420	1740	1455	2550	2831	3332
5037	0	281	724	854	115 <del>9</del>	878	748	1471	1816	1535	2588	2862	3352
5038	٥	265	620	7 <b>42</b>	1011	7 <b>4</b> 6	624	1405	1655	1390	2485	2772	3290
5039	٥	320	597	721	1000	680	556	1388	1660	1340	2495	2782	3292
<b>5040</b>	0	267	619	745	1015	748	622	1522	1681	1414	2502	2782	3290
5041	0	275	653	763	1063	7 <b>88</b>	678	1450	1742	1467	2541	2816	3323
5042	٥								1800			2771	3279
5043	0	274	593	723	1014	740	610	1407	1719	1445	2520	2791	3311
5044	0	•							1642			2755	3274
5045	0	281	642	765	1055	774	651	1467	1735	1454	2530	2805	3328
5046	0 ~	272	582	697	937	665	550	1362	1631	1359	2542	2761	3289
5047	0	275	635	754	845	570	451		1668	1393	2579	2780	3306
5048	0	350	582	706	979	<del>629</del>	505	1380	17 <b>06</b>	1356	2508	2781	3301
5049	0			•					1603			2731	3253
5 <b>050</b>	0	262	535	<b>654</b>	890	628	509		1600	1338		2743	3267
				н							*		

• •

- 3

Checkprint for computational setup, report format

.

Date Printed: 06/28/1996

ID #	Brine		•	Thickne	ss of Ur	nits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1 <b>A2H2</b>	Castile halite		BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
5051	٥	262	612	732	992	730	610	1 <b>404</b>	1659	1397	2501	2791	3305
5052	0	· 255	638	728	1000	745	655	1413	1662	1407	2513	2794	3304
5053	0	261	605	825	1120	859	639	1390	1642	1381	2480	2772	3288
 5054	0	260	604	718	957	697	583	1460	1660	1400	2519	2806	3320
5055	0	262	<b>590</b>	705	955	693	578	1405	1640	1378	2489	2779	3288
5056	0	289	635	745	995	706	596	1425	1691	1402	2573	2848	3373
5057	0	252	582	694					1627	1375	2530	2805	3335
<b>5058</b>	0											2523	2928
5059	0					·						2691	2989
5060	0	346			883	537		1 <b>438</b>	1738	1392	2413	2683	3043
5061	٥						• •		1373				3141
5062		277	721	853	1 <b>204</b>	927	795	1512	1864	1587	2634	2921	3140
5063		282	749	879	1099	817	687	1399	1755	1473	2546	2822	3167
5064	÷	337	627	707	1142			1407	1701	1364	2497	2775	3122
5065		299	756	887	1097	. 798	667	1410	1757	1458	2537	2803	3140
5066			, .									2737	3073
5068		377	877	1002	1352	975	850	2017	2077	1700	2772	3037	3547
5069	) ()	367	797		1247	880		1 <b>437</b>	2001	1634	2726	3002	3505

.

۰.

4

.

Checkprint for computational setup, report format

.

Date Printed: 06/28/1996

ľ	D#	Brine		•	Thickne	ss of Ui	nits*							
			BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2	Castile halite	Total Castile	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
	5070	0	335				•			2025	1690	2760	3024	3507
	5071	0	270	987	1157	1450	1180	1010	1635	1975	1705	2724	2997	3500
	5072	0	317	1132	1302	1536	1219	1049	1706	1997	1680	2737	3006	3502
	5073	0	309	334	596	1034	725	463	1309	2044	1735	2784	3029	3479
	5075	0	310	695	935	1235	925	685	1469			2768	3015	3503
	5076	0	316	981	1154	1351	1035	862	1589	1911	1595	2745	3023	3526
	5079	0	338	373	613	798	460	220	1 <b>191</b>	1603	1265	2416	2693	3203
	5080	0							1193	1598		2413	2687	3193
:	5081	0	375	690	810	1175	800	680	1575	1805	1430	2558	2830	3330
:	5082	0	298	488	736	1195	897	647	1500	1761	1463	2608	2890	3398
ł	5084	0	266	620	730	1000	734	624	1355	1666	1400	2404	2660	3154
ł	5085	0	272	542	672	1092	820	<b>690</b>	1392	1706	1434	2452	2719	3210
ł	5086	0		• •	·								2686	3173
:	<b>5087</b>	0	245	545	595				1155	1729	1484	2480	2737	3202
į	5088	0							1651	1969		2741	3013	3526
į	5089	0	277	672	782	1072	795	685	1432	17 <b>02</b>	1425	2468	2732	<b>32</b> 12
ţ	5 <b>090</b> -	0	270	690	803	1042	772	659	1386	1685	1415	2428	2687	3178
Ę	5091	0	276	544		1014	738		1409	1719	1443	2504	2779	31 <b>09</b>
					•									

• •

5

.

Checkprint for computational setup, report format

.

Date Printed: 06/28/1996

.

.

ID:	# E	Brine		•	Thickne	ss of Ur	nits*							
			BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2	Castile halite		BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
50	92	0	274	626	760	1007	733	599	1474	1691	1417	2474	2737	3064
50	93	0			705	950			1410	1 <b>690</b>		2488	2770	3088
50	94	O	298	723	848				1518	1718	1420	2499	2760	3098
	95	0	307	652						1667	1360	2469	2736	3092
50	96	0	270	647	775	1035	765	637	1396	1695	1425	2485	2750	3110
50	97	0	267	559	690	992	7 <b>2</b> 5	594	1387	1707	1440	2499	2762	3090
50	98	0	275	660	780	992	717	597	1389	1697	1422	2485	2748	3075
50	) <b>99</b> -	0	285	637	755	1015	730	612	1385	1680	1395	2473	2737	3145
51	00	0	290	645	760	1005	715	600	1390	1703	1413	2465	2732	3190
51	101	0	298	593	716	961	663	540	1351	1671	1373	2468	2738	3066
51	102	0	270	585	712	965	695	568	1350	1678	1408	2488	2753	3118
5'	103	٥	256	<b>628</b>	733	968	712	607	1338	1618	1362	2368	2632	3113
5	104	0	260	605						1631	1371	2385	2650	3145
5	1 <b>0</b> 5 _.	0	265	585	695	923	658	548	1345	1629	1364	2382	2642	3087
. 5	1 <b>0</b> 6	0	267	590	705	. 950	683	568	1334	1648	1381	2400	2668	3165
5	107	0	264	608	720	966	702	<b>590</b>	1368	1638	1374	2398	2663	3150
5	109	- 0	225	•	•	1005	780		1365	1660	1435	2415	2681	3181
5	110	.0	260	635	743	985	725	617	1354	1625	1365	2391	2655	3145

6

Checkprint for computational setup, report format

Date Printed: 06/28/1996

.

ID #	Brine		Thickness of Units*										
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2		e Total Castile	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
5111	D	262			1185	923		1465	1676	1414	2440	2779	3085
5112	0	393	606	720	1000	607	493	1440	1674	1281	2447	2717	3035
 5113	0	260	558	648	958	698	608	1318	1652	1392	2417	2593	3183
5114	0	280	488	668	951	671	491	1313	1668	1388	2426	2691	3188
5115	0	265	<b>598</b>	709	975	710	59 <del>9</del>	1365	1685	1420	2485	2761	3075
5116	0	253	600	727	940	687	560	1430	1725	1472	2527	2800	3300
5117	0	247	602	705	937	690	587	1387	1595	1348	2475	2755	3242
5118	0			720	950			1280	1558		2490	<b>2778</b>	3285
5119	0	243	583	723	923	680	540	1473	1537	1294	2488	276 <b>9</b>	3275
5120	0	243	592	695	905	662	559	1350	1545	1302	2460	2730	3215
5121	0		1		711		•	1313	1580		2488	2771	3268
5122	0	265	601	710	943	678	569	1332	1665	1400	2440	2705	3065
5123	0								1577		2487	2657	3262
5124	0	247	589	694	909	662	557	.133 <b>9</b>	15 <b>64</b>	1317	2415	2696	3194
51 <b>25</b>	Ó	346	701	<b>806</b> ·	987	641	536	1461	1691	1345	2555	2831	3321
51 <b>26</b>	0	259	<b>584</b>	689	892 _	633	528	1330	1461	1202	2343	2636	3116
5127	0	186	555	659	876	690	586	1345	1540	1354	2512	2692	3305
51 <b>28</b>	1		685	795					1750		2575	2827	3309

• .

7

----

. . . . . . .

_

Checkprint for computational setup, report format

.

Date Printed: 06/28/1996

• -

ID #	Brine		•	Thickne	ss of Ur	Jnits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2	Castile halite	Total Castile	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
5129	0		,					1369	1634		2609	2874	3386
5130	0	- 230	517	615	815	585	487		1445	1215	2457	2781	311 <b>0</b>
5131	0	232	627	725	983	751	653	1581	1587	1355	2635	2911	3392
5132	0	238	535	635	850	612	512	1420	1528	1290	2483	2763	3300
5133	0	235	548	650	869	634	532	1383	1543	1308	2534	2808	3336
5134	0	235	622	726	954	719	615	1490	1617	1382	2592	2870	3385
5135	0	188	580	680	900	712	612	1402	1562	1374	2555	2845	3390
513 <b>6</b>	0	184	468	570	785	601	499	1316	1420	1236	2460	2752	3280
5137	0	237	525	627	833	<b>59</b> 6	494	1365	1535	1298	2515	2805	3383
5138	0	234	598	700	919	685	583	1444	1572	1338	2556	2840	3360
5139	0	233	608	710	940	707	605	1360	1523	1290	2573	2852	3382
5140	0	236	551	656	871	635	530	1526	1568	1332	2527	2815	3349
5141	0	237	<b>580</b>	683	885	648	545	1435	1575	1338	2561	2845	3375
5142	. <b>0</b>	233	525	625	848	615	- 51 <b>5</b>	1395	1450	1217	2505	2796	3340
5143	i 0	633	910	1010	. 1285	652	552		1967	1334	2905	3196	3740
5144	0	237	550	652	874	<b>637</b>	535	1490	1570	1333	2545	2834	3360
5145	i. O _.	632	952	1052	1270	638	538	1797	1960	1328	2942	3231	3757
5146	; 0					:			1580		2562	2849	3390

.

8

Checkprint for computational setup, report format

• •

 Date Printed: 06/28/1996

ID #	Brine			Thickne	ess of U	nits*							
		BC-A	1 BC-H1	BC-A2	BC-H2	H1A2H2		e Total Castile	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
						,	halite	Casule					
514	70												
514	80										2562	2837	3364
514	90	238	619	724	959	721	616	1379	1510	1272	2531	2828	3349
515	0 0	240	560	666	900	660	554	1338	1527	1287	2526	2808	3338
515	1 0	235	545	655	885	650	540	1375	1565	1330	2528	2815	3340
515	20	242	555	659	900	658	554	1359	1568	1326	2525	2816	3342
515	30	245	590	700	930	685	575	1400	1640	1395	2558	2830	3360
515	4 D	240	563	668	888	648	543	1311	1617	1377	2532	2803	3383
515	50	242	570	678	925	683	575	1325	1623	1381	2526	2799	3330
515	в о	521	766	956	1206	685	495	1346	1859	1338	2624	2924	3486
515	€ 0	370	915	1203	1470	1100	812	1953	2045	1675	2740	2998	3514
516	0 0	344	1267	1461	1665	1321	1127	1836	2108	1764	2829	3086	35 <b>85</b>
516	1 0	354	867	1105	1327	973	735	1417	1711	1357	2626	2929	3490
5162	2 0	327	620	748	785	458	330	1315	1508	1181	259 <del>9</del>	2945	3540
5163	3 0	327	417	439	451	124	102	1177	1549	1222	2655	2944	3482
5164	4 O	306	437	582	822	516	371	1140	1497	11 <b>91</b>	2659	2937	346 <del>9</del>
5165	5.0	330		· .				1180	1460	1130	2640	2940	3488
5166	6 0	330	536		·			1197	1568	1238	2575	2890	3460
			•										

•

Checkprint for computational setup, report format

•

Date Printed: 06/28/1996

<u>.</u> -

. ..

. .

ID #	Brine			Thickne	ss of Ur	nits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2	Castile halite	Total Castile	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
516	70	316	1002	1260	1485	1169	911	1721	2005	1689	2767	3012	3528
516	30	· 347	11 <b>01</b>	1256	1558	1211	1056	1791	2113	1766	2867	<b>3</b> 123	3640
516	90		900	1075	1540			1820	2107		2838	3090	3600
517	0 0	297	864	1071	1582	1285	1078	1804	2110	1813	2868	3118	3631
517	1 0	358	938	1098	1390	1032	872	1641	1988	1630	2800	3060	3576
517	30	310	534	708	1 <b>070</b>	760	586	1200	1894	1 <b>584</b>	2740	3006	3524
517	4 0	322	912	1100	⁻ 1477	1155	967	1658	1998	1676	2802	3059	3577
517	50	328	936	1093	1387	1059	902	1648	1999	1671	2807	3067	3588
517	60	334	1022	1181	1482	1148	989	1715	2037	1703	2842	3105	3627
517	70	369	874	1031	1314	945	788	159 <del>9</del>	1969	1600	2792	3058	3578
517	90		766	926	1251			1546	1891		2731	2997	3523
518	0 0	312	790	954	1326	1014	850	1598	1954	1642	2792	3070	3592
518	1 O	295	715	875	1195	900	740	1521	1837	1542	2703	2970	3503
518	12 O	317	700	883	1315	998	815	1584	1957	1640	2816	3093	3619
518	13 O	305	713	885	1286	981	809	1550	1905	1600	2784	3058	3594
518	14 0	345	1090	1233	1431	<b>1086</b>	943	1770	2097	1752	2889	3152	3672
518	35 0	299	685	828	1134	835	692	1460	1840	1541	2744	3022	3540
518	96 0	298	722	856	1159	861	727	1507	1840	1542	2719	3021	3552

• •

۰.

.

Checkprint for computational setup, report format

Date Printed: 06/28/1996

,

• .

ID #	Brine		,	Thickne	ss of Ur	nits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2		e Total Castile	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
							raile	Casule					
51 <b>88</b>	0	230	695	840	1145	915	770	1463	1845	1615	2703	2985	3507
5189	0	296	757	894	1137	841	7 <b>04</b>	1474	1831	1535	2624	2894	3406
5190	0	250	610	720	1068	818	708	1412	1783	1533	2610	2888	3410
5191	0	284	724	868	1184	900	756	1544	1850	1566	2684	2954	3284
5192	0	299	632	787	1072	773	618	1477	1772	1473	2617	2882	3412
51 <b>93</b>	0	307	690	848	1122	815	657	1432	1814	1507	2679	2944	3465
5194	0	309	714	872	1 <b>125</b>	816	658	1446	1822	1513	2674	2942	3477
5195	0	310	738	905	1180	870	703	1470	1825	1515	2653	2925	3455
51 <b>96</b>	0	307	554	735	1117	810	629	1397	1762	1455	2642	2907	3448
5197	0	321	844	1002	1294	973	815	1567	1921	1600	2738	3000	3524
51 <b>98</b>	0	305	795	957	1155	850	688	1515	1805	1500	2657	2910	3427
51 <b>99</b>	0	316	880	1013	1356	1040	907	1676	1897	1581	2719	2976	3489
5200	0	319	503					1169	1859	1540	27 <b>29</b>	2998	3514
5201	0	323	565	665	895	572	472	1435	1697	1374	2689	2975	3513
5202	0	412	593	693	893	481	381	1213	1588	1176	2638	2943	3503
5203	0	317	495	665	705	388	218	1207	1810	1493	27 <b>29</b>	3002	3520
5204	. 0	321	390	538	788	467	319	1176	17 <b>08</b>	1387	2707	2978	3503
5206	0	314	422					1465	1850	1536	2705	2969	3482

11

.

Checkprint for computational setup, report format

.

Date Printed: 06/28/1996

.

•

•

ID #	Brine			Thickne	ss of Ur	nits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2	Castile halite		BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
5208	0	310	803	919	1253	943	827	1518	1843	1533	2653	2910	3440
5209	0	· <b>30</b> 7	819	986	1262	955	788	1532	1836	1529	2632	2879	3392
5210	0	294	683	830	1100	806	659	1447	1727	1433	2544	2792	3320
5211	0	303	727	881	1202	899	745	1500	1827	1524	2649	2895	3362
5212	0	282	687	817	1090	808	678	1477	1715	1433	2532	2770	3287
5214	0	290	655	797	1090	800	658	1452	1744	1454	2577	2818	3340
5216	0	240	633	776	1016	776	633	1416	1710	1470	2546	2804	3341
<b>5217</b>	0	263	605	724	994	731	612	1500	1602	1339	2500	2800	3288
5218	0	262	603	722	992	730	611	1495	1598	1336	2501	2793	3332
5219	0	262	610	720	945	683	573	1465	1651	1389	2557	2816	3346
5220	0	266	585	705	932	666	546	1402	1623	1357	2497	2768	3302
5221	0	280	605	•	1001	721	581	1367	1649	1369	2473	2735	3260
5223	0	279	570	706	944	665	529	1349	1637	1358	2450	2709	3239
5224	0	284	636	784	1021	737	589	1394	1658	1374	2478	2733	3208
5226	i O	296	602	732	. 1008	.712	582	1418	1728	1432	2525	2780	3301
5227	0	334	847	1009	1328	<b>. 994</b>	832	1666	2053	1719	2902	3182	3727
5228	<b>I</b> 0	395	815	990	1510	1115	940	1935	2317	1922	3080	3345	3840
5229	0	262	701	868	1192	930	763	1448	1779	1517	2615	2933	3395

• •

12

.

Checkprint for computational setup, report format

۰.

.

Date Printed: 06/28/1996

ID #	Brine			Thickne	ss of Ur	nits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2		e Total Castile	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
5230	0	310	695	854	1175	865	706	1672	1820	1510	2637	2892	3412
5231	0	· 305	841	1001	1213	908	748	1510	1835	1530	2680	2954	3476
5232	0	638	773	967	1509	871	677	1715	2018	1380	2793	3066	3593
5233	O	328	563	733	1018	690	<b>520</b>	1365	1 <b>993</b>	1665	2803	3078	3579
5234	O	365	708	928	1028	663	443	1388	1 <b>983</b>	1618	2763	31 <b>08</b>	3573
5235	0	359	502	1047	1642	1283	738	1997	2143	1784	2782	3057	3592
5236	0							1025	1362		2093	2385	2953
5237	0	365	932	1190	1 <b>550</b>	1185	927	1740	1 <b>988</b> .	1623	2688	3054	3580
5238	0							1175	1666		2384	2658	3213
5239	0	<b>29</b> 7						927	1864	1567	2577	2872	3432
52 <b>40</b>	0	404					• •	1708	1 <b>768</b>	1364	2575	2915	3520
5241	0	264	534	704	869	605	435	1054	1 <b>394</b>	11 <b>30</b>	2234	2524	3098
5242	0							1577	17 <b>98</b>		2 <b>49</b> 5	2740	3265
52 <b>43</b>	0							1587	1742		2460	2835	3282
5244	Ó	483	883	,				11 <b>08</b>	1428	945	2143	2431	2948
5245	0	285	<b>625</b>	750	984	<b>699</b>	574	1395	1604	131 <b>9</b>	2468	2726	3248
5246	0	269	708	832	1110	841	717	1475	1709	1440	2548	2792	3290
5247	0	257	596	712	<b>96</b> 7	710	594	1212	1622	1365	2540	2747	3262

Checkprint for computational setup, report format

n de Anne e Stand De Stander Date Printed: 06/28/1996

.

.

ID #	Brine		•	Thickne	ss of Ur	nits*							
·		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2	Castile halite		BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
5248	0	248	485	670	888	640	455	1337	1620	1372	2540	2795	3317
524 <del>9</del>	0	253	583	693	920	667	557	1403	1620	1367	2533	2793	3318
5250	0	254	494	.601	749	495	388	1294	1534	1280	2474	2722	3228
 5251	0	255	595	698	893	638	535	1418	1519	1264	2500	2750	3249
5252	0	265	562	682	924	659	539	1350	1594	1329	2458	2720	3245
5253	٥	265	505	655				1773			1773	2747	3262
5254	0	265	<b>605</b> ·	720	953	688	573	1385	1565	1300	2493	2798	3260
<b>5255</b>	0	275	587	702	930	655	540	1390	1595	1320	2470	2724	3240
5256	0	253	573	683	905	652	542	1385	1580	1327	2480	27 <b>43</b>	3250
5257	0	295	730	853	1050	755	632	1460	1775	1480	2595	2852	3380
5258	0	292	484	682	1117	825	627	15 <b>26</b>	1849	1557	2662	2928	3457
5259	0	282	622	742	974	692	572	1375	1635	1353	2480	2730	3258
5260	0	275	610	735	972	697	572	1357	1 <b>648</b>	1373		2658	3180
5261	0	266	582	696	947	681	567	1367	1586	1320	2439	2750	3262
5262	Ő	273	594	714	950	677	557	1366	1626	1353	2483	2751	3273
5263	0	287			• •				1835	1548	2685	2955	3487
5264	0				•	•							
5265	0	371	958		· · ·			1467	2123	1752	2856	3291	3618

. .

[.]14

Checkprint for computational setup, report format

.

Date Printed: 06/28/1996

ID #	Brine		•	Thickne	ss of Ur	nits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2		e Total Castile	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
5266	0	465	719					1280	1960	1495	2745	3024	3550
5267	0	.407	643					1193	2058	1651	2891	3152	3661
5268	0	234	564					1074	1979	1745	2834	3122	3664
5269	0	380	750					1154	1670	1290	2600	2893	3440
5270	0							1150	1412		2160	2647	3220
5271	0								1589		2559	2846	3411
5272	0	369	767					1245	2057	1688	2744	3017	3509
5273	0	338	845	1135	1415	1077	787	1548	1989	1651	2740	3023	3530
5274	0	315	1035	1 <b>195</b>	1477	1162	1002	1705	2037	1722	2777	3039	3551
5275	1	348	740	840				1790	2205	1857	2734	3015	3526
5276	0												
5277	0	458	458	698	998	540	300	1483	1855	1397	2585	2858	3371
5278	0	310						1192	1502	1192	2442	2719	3260
5279	0	405			845	440		985	1324	919	2125	2400	2941
5280	0							1011	1788		2630	2897	3407
5301	O												
5302	0	280	650	770	957	677	557	1427	1750	1470	2500	27 <b>62</b>	3076
5303	0	320	737	852	<b>99</b> 3	673	558	1335	1723	1403	2485	2743	3097

15

Checkprint for computational setup, report format

. .

Date Printed: 06/28/1996

·

	1D #	Brine		•	Thickne	es of lin	nike*							
			BC-A1				H1A2H2	Castile halite		BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
							•	T PLATE	Vacure					
	5304	0	392	1020	1110	1220	828	738	1540	1917	1525	2705	2982	3476
	5 <b>305</b>	<b>1</b>	. 438	638	-				1447	1848	1410	2644	2914	3395
	5306	1	426	439	1054	1162	736	121	1480	1976	1550	2654	2904	3376
.a	5307	1	328	1159	1333	1562	1234	1060	17 <b>39</b>	2059	1731	2783	3049	3546
	5308	1	330	1118	1277	1598	1268	1109		2596	2266	2796	3033	3508
	5309	0												
	5310	0								·				
	5311	0												
	5312	٥					د ۱							
	5313	0				•			1133	1451		2294	2578	3118
	5314	0						• •		1670		2392	2670	3202
	5315	0												
	5316	٥	382	544	664	974	592	472	1227	1554	1172	2472	2745	3304
	5317	<b>0</b> Sec. 1								2085		2788	3058	3557
	5318	Q	279	879	1017	1305	1026	888	1635	1915	1 <b>636</b>			2645
	5319	0	270	500	637					1860	1590			2480
	5320	. 0.			•									
	5321	0		•		· .								

16

Checkprint for computational setup, report format

Date Printed: 06/28/1996

	1D #	Brine		•	Thickne	ss of Ur	nits*							
			BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2		Totai C <b>astile</b>	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
	5322	0					750	650			1388			
	5323	0	261	594	737	936	675	532	1317	1630	1369	2376	2632	3118
	5324	0	316						1322	1614	1298	2444	2734	3222
·	5325	0	241	6 <b>96</b>	803	1000	759	652	1434	1628	1387	2530	27 <b>94</b>	3291
	5326	1	297	683	859	1199	902	726	1524	1884	1587	2747	3015	3521
	5327	1	298	770	940	1290	992	822	1657	1905	1607	2745	3013	3490
	53 <b>28</b>	1	298	888	1044	1290	992	836	1518	1901	1603	2726	3000	3508
	53 <b>29</b>	0	284	710	844	1140	856	722	1445	1790	1506	2595	2864	3350
	5330	0	295	665	908	1247	952	709	1452	1757	1462	2731	2994	3475
	5331	0	300	713	891	1193	893	715	1493	1906	1606	2761	3026	3507
	53 <b>32</b>	0	291	677	812	1159	868	733	1436	1782	1491	2624	2889	3376
	53 <b>33</b>	. 0	295	754	889	1164	869	734	1443	1808	1513	2628	2890	3381
	5334	0	293	873	1009	1308	1015	879	1557	1899	1606	2733	2985	3463
	5335	0								1718		2438	2690	3170
	5336	0	259	573	685	930	671	559	1307	1603	1344	2362	2623	3112
	5337	1	281	734	863	1160	879	750	1452	1817	1536	2600	2864	3348
	<b>5338</b> .	1	285	767	900	1120	835	7 <b>02</b>	1430	1805	1520	2623	2888	3377
	5 <b>339</b>	1	284	746	886	1311	1027	887	1563	1898	1614	2699	2961	3456

. _ _ _ . . . . .

- -

- - -

Page Number:

17

.

Checkprint for computational setup, report format

Date Printed: 06/28/1996

• •

(D #	Brine		•	Thickne	ss of Ur	nits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2	Castile halite		BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
						,		00000					
5340	1	278	663	<b>79</b> 3	1061	783	653	1 <b>450</b>	1747	1469	2543	2808	3313
5341	0	. 273	611	739	983	710	582	1418	1735	1462	2536	2803	3320
5342	0												
5343	0	267	590	712	975	708	586	1359	1632	1365	2455	2740	3265
5344	0	272	616	732	977	7 <b>05</b>	589	1392	1645	1373	2472	2762	3283
5345	0	530	778	961	1348	818	635	1769	2286	1756	3014	3268	3781
5346	0	370	852	1166	1572	1202	888	2022	2238	1868	2994	3261	3772
5347	0	383	383	580	1086	703	506	1552	2030	1647	2865	3175	3740
5348	1	345	1285	1418				1747	2107	1762	2873	3163	3685
5349	0	304	656	821	1288	984	819	1525	1902	1598	2736	3014	3534
5350	0	308	751	983	1433	1125	893	1633	1978	1670	2754	3024	3531
5351	0	333	1005	•	1440	1107	928	1657	2009	1676	2815	3105	3620
5352	0	302	7 <b>45</b>	885	11 <b>92</b>	890	750	1 <b>49</b> 5	1865	1563	2687	2957	3466
5353	i 0	349	741						۰.				
5354		353	813	1078	1568	1215	950	1852	2233	1880	2954	3213	3733
5355	5 Q	337	1246	1402	1703	1366	1210	1906	2213	1876	2958	3210	3730
5356	5 O	355	· ·		1380	1025		1790	2267	1912	2957	3205	3715
5357	<b>'</b> 0	366	826	1008	1292	926	744	1 <b>636</b>	2246	1880	2974	3215	3734
					1997 - 1997 - 199 <del>7</del> 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	•						•	

• •

18

Checkprint for computational setup, report format

Date Printed: 06/28/1996

-

ID#	Brine		•	Thickne	ss of Ur	nits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2	Castile halite	Total Castile	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
						,	n Lance	Cubule					
5358	0												
5359	0												
5360	0	349	835	935	1235	886	786	1545	1792	1443	2735	2935	3478
5361	0	331	599	705	1005	674	568	1315	1503	1172	2540	2859	3460
5362	0	332	537	624	847	515	428	1232	1622	1290	2547	2901	3492
5363	0	365	837	887	1117	752	702	1360	1589	1224	2617	2942	3537
5364	0	336	651	731	998	662	582	1302	1612	1276	2537	2875	3470
5365	1	316	880	1055	1384	1068	893	1643	1973	1657	2763	3024	3540
5366	1	308	837	993	1310	1002	846	1594	19 <b>49</b>	1 <del>6</del> 41	2737	3002	3520
5367	0	292	522	673	1144	852	701	1523	1826	1534	2668	2950	3470
5368	0	274	640	771	1052	778	647	1460	17 <b>83</b>	1509	2599	2872	3397
5369	0	310	780	900	1250	940	820	1600	1892	1582	2708	2977	3502
5370	0	319	417	737	1227	908	588	1644	1884	1565	2664	2926	3439
5371	0	310	583	753	987	677	507	1298	1713	1403	2639	2901	3423
5372	0	308	506	688	938	630	448	1228	1540	1232	2657	2943	3508
5373	0	308	583	674				1256	1895	1587	2740	2998	3507
5374	0	306	893	1066	1333	1027	854	1603	1879	1573	2644	2899	3417
5375	0	314	1046	1180	1556	1242	1108	1826	1926	1612	2705	2973	3482

Checkprint for computational setup, report format

•

•

Date Printed: 06/28/1996

ID #	Brine		•	Thickne	ss of Ur	nits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2	Castile halite		BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
5376	0	300	980	1098	1370	1070	952	1595	1924	1624	2690	2940	3446
5377	0	439	733	873	1407	968	828	1673	1895	1456	2710	2969	3479
5378	0	319	826	996	1416	1097	927	1646	1946	1627	2742	2997	3511
5380	0	361	632	777	1036	675	530	1374	1704	1343	2490	2737	3254
5381	0	300	680	824	1090	790	646	1490	1746	1446	2528	2782	3297
5382	1								1852		2678	2934	3461
5383	0	295	776	929	1 <b>209</b>	914	761	1537	1802	1507	2594	2847	3367
5384	0	560	704	854	1108	548	398	1424	1764	1204	2572	2818	3342
5385	0	294	772	<b>9</b> 12	1159	865	725	1466	1790	1496	25 <b>99</b>	2854	3380
5386	0	300	780	933	1322	1022	869	1508	1824	1524	2610	2863	3400
5387	0	287	653	797	1 <b>042</b>	755	611	1337	1695	1408	2539	2785	3303
5389	0	293	616		1046	753	602	1430	1718	1425	2547	2819	3350
5390	0	280	643	772	1010	730	601	1397	1660	1380	2480	2735	3252
5391	0	274	567	704	944	670	533	1334	1634	1360	2451	2711	3242
5392	2 1	282	637	777	. 1031	.749	609	1413	1677	1395	2487	2741	3257
5393	3 ()	282	575	704	935	653	524	1331	1642	1360	2439	2705	3225
5394	k 1	329	698	843				1417	1719	1390	2506	2755	3275
5395	50	300	650	796	1064	764	618	1 <b>450</b>	1732	1432	2530	2779	3306

20

Checkprint for computational setup, report format

Date Printed: 06/28/1996

ID #	Brine			Thickne	ss of Ui	nits*							
		BC-A1	BC-H1	BC-A2	BC-H2	H1A2H2		e Total Castile	BC-Cow	A1-Cow	BC-124	BC-VT	BC-Rust
							TRAILLE	Casule					
5396	0	284	636	776	1044	760	. <b>620</b>	1456	1684	1400	2476	2714	3228
5397	0	297	645	787	1067	770	628	1381	1735	1438	2529	2773	3295
5398	0							1235	1540		232 <del>9</del>	2620	3190
5399	0							1119	1985		2665	2927	345 <del>9</del>
5400	O							11 <b>04</b>	1599		2478	2787	3370
5401	O	300	560	751	932	632	441	1365	1937	1637	2761	3023	3545
5402	0	325	1023	1185	1434	<b>1109</b>	947	1739	2029	1704	2847	3125	3675
5403	٥	320	910	1089	1386	1066	887	1600	1896	1576	2668	2930	3445
5404	1												•
5405	1												
5406	1							•					
5407	1												
5408	1		·										
Page N	umber:	21							г	ate Printe	d: 06/28/	1996	
		Ch	eckprint fo	or computa	itional set	up, report f	ormat						

* The source data table and this report were created by Dennis W. Powers using Rbase 5.5, a commercial relational database available from Microrim, Inc. Thickness of each interval is given in feet. The relational column within the database is the idnum, an identifier unique to the drillhole. Data computations were checked partially for correct setup of data tables and report.

• •

•

. . _____

. 

.

### Appendix E

#### Thickness Data for Bell Canyon to Cowden Interval with Estimates and Justification

Dennis W. Powers

## Bell Canyon to Base Cowden Data And Estimated Thickness

ID num	Brinehit	State X	State Y	lsocow	Justification
1104	1	682279	521970	2009	Est BC elev to calc thickness. Prob + or - 25 ft.
1149	0	667317	509876	1401	
1150	0	667700	513751	1797	Est elev of BC about - 600 ft used to estimate depth and thickness. Prob + or -
1153	0	679951	51 <b>3567</b>	1753	
1158	0	663885	506464	1550	Add 250 ft est A1 thickness to A1toCow. Prob + or - 50 ft.
1159	1	667371	504068	1693	Add 250 ft est A1 thickness to A1 to Cow. Prob + or - 50 ft.
1168	0	667301	498887	1532	Est elev BC -675 to calc thickness. Prob + or - 50 ft.
1175	0	672206	493563	1605	Add d250 ft est A1 thickness to A1toCow. Prob + or - 50 ft.
1243	0	665559	486111	1610	·
5000	0	687453	517817 ·	1957	
5002	0	685143	517807	1946	
5004	0	683697	51 <b>7798</b>	1903	
5005	0	685149	516803	1906	
5006	O‴	687459	51 <b>6799</b>	1908	
5007	0	683829	516803	1869	· · · · · · · · · · · · · · · · · · ·
5008	0	684173	515489	1993	
5009	0	685062	51 <b>5399</b>	1848	
5010	0	<b>68</b> 6144	515490	1900	
					Data Britan 07404000

Page Number:

1

Date Printed: 07/10/1996

,

. .

ID num	Brinehit	State X	State Y	isocow	Justification
5011	0	687775	519132	· 1 <b>945</b>	
5012	0	686469	51 <b>6801</b>	1903	
5014	<b>1</b> ·	682845	516790	1825	
5015	٥	682796	509554	1797	
 5016	0	682885	511198	1831	
5019	0	682877	512529	1882	
5020	0	682869	513845	1942	
5021	0	683872	511208	1828	· .
5022	0	683537	5125 <b>29</b>	1944	
5023	0	683529	513841	1868	
5024	0	684860	511537	1815	
5025	0	<b>684852</b>	512857	1801	
5027	0	686504	512529	1890	
5028	0	685202	509565	1791	
5029	0	687857	507261	1765	·. •
5030	Ō	686552	504607	1700	
5032	0	683563	508250	1800	
5033	0	683570	506937	1764	
5034	. 0	683579	505578	1725	
5035	0	682803	507264	1767	

۰.

2

Date Printed: 07/10/1996

.

....

. . . .

ID num	Bri <b>nehi</b> t	State X	State Y	isocow	Justification
5036	0	682812	505893	· 1740	
5037	0	682796	508580	1816	
5038	0 ·	682604	499315	1655	· · ·
5039	0	682601	500402	1660	
5040	0	682599	501631	1681	
5041	0	682744	503275	1742	
5042	0	685241	500628	1800	
5043	0	684906	502953	1719	
5044	0	683925	499308	1642	
5045	0	686559	501978	1735	
5046	0	683605	497005	1631	
5047	0	685247	497996	1 <b>668</b> .	
5048	0	686227	503289	1706	
5049	0	682760	498050	1603	
5050	. 0	681299	496693	1600	
<b>505</b> 1	0	680158	498061	1659	
5052	0	678359	498083	1662	
5053	0	681039	498331	1642	
5054	0	678367	496708	1660	
5055	0	680015	496696	1640	

3

ID num	Brin <b>ehi</b> t	State X	State Y	lsocow	Justification
5056	0	682660	491396	1691	
5057	0	685311	490031	1627	
5059	0.	640217	538905	-999	DELETE. Off main map area, no nearby wells.
 5060	0	640127	538904	1738	
5061	0	648187	525723	1373	
5062	0	640263	523060	1864	·
5063	0	644237	523079	1755	
5064	0	651176	520437	1701	
5065	0	646880	521743	1757	
5066	0	652480	521752	1700	Nearby wells extrapolated, not constrained to N. + or - 50 ft. $\square$
5068	0	688075	524406	2077	
5069	0	686429	5243 <b>99</b>	2001	
5070	0	686437	523087	2025	
5071	0	687770	520448	1975	
5072	2 _ 0	686445	521756	1997	
5073	3 0	683807	520428	2044	
5075	5 0	685127	520435	1980	Based on nearby wells. Prob + or - 25 ft. []
5070	6 0	686453	520440	1911	
5079	90	688026	531008	1603	
5080	0 0	688186	530998	1598	
 Page Nur	nber:	4			Date Printed: 07/10/1996

• _ '

.

ΙE	) num	Brin <b>ehit</b>	State X	State Y	isocow	Justification
	5081	0	688045	528376	180 <del>5</del>	
	5082	٥	688059	527034	1761	
	5084	0 ·	654502	515157	1666	
	5085	0	652656	516740	1706	
	5086	0	652168	515145	1680	Based on nearby wells. Prob + or - 25 ft. $\Box$
	5087	0	652292	519352	1729	
	5088	0	686461	518138	1969	
	5089	0	652115	518300	1702	
	5090	0	653438	516467	1685	
	5091	0	644112	517803	1719	
	5092	0	650327	515728	1691	
	5093	0	648433	515137	1690	• • •
	5094	0	650945	519123	1718	
	5095	0	650793	518134	1667	
	5096	_ 0 ~	649478	517807	1695	· · · · · · · · · · · · · · · · · · ·
	5097	0	648081	51 <b>645</b> 1	1707	· · ·
	5098	0	64948 <del>9</del>	516124	1697	
	5099	0	650807	51 <b>6458</b>	1680	
	5100	0	650818	51 <b>4982</b>	1703	
	<del>5</del> 101	0	649679	515140	1671	

۰.

5

Date Printed: 07/10/1996

. .

IC	) num	Brinehit	State X	State Y	Isocow	Justification
	5102	0	649472	5151 <b>42</b>	· 1678	
	5103	0	656517	507932	1618	
	5104	0.	652468	5111 <b>80</b>	1631	
	5105	0	653458	512523	1629	
- <b>- 73-</b>	5106	5 O	652138	512516	1 <del>648</del>	
	5107	0	653460	513839	1638	
	5109	0	652140	51 <b>3832</b>	1660	
	5110	) 0	651813	510184	1625	
	5111	0	649916	511440	1676	
	5112	2 0	649501	511172	1674	•
	5113	30	651144	512 <b>689</b>	1652	
	5114	<b>\$</b> 0	<b>65</b> 1151	513733	<b>1668</b> .	· •
	5115	5 0	<b>64821</b> 1	513943	1685	
	5116	60	654924	488781	1725	
	511	7 0	656248	493126	1595	
	511	8 0	656263	490090	1558	
	511	90	654945	490094	1537	
	512	00	652484	491463	1545	
	512	1 0	655815	<b>491378</b>		· .
	512	20	649498	51 <b>2506</b>	1665	
· D	ana Nu	mbor	E			Date (

6

ID num	Brin <b>ehit</b>	State X	State Y	isocow
5123	0	653880	490100	· 1577
5124	0	656234	497001	1564
5125	0	655598	494097	1691
5126	0	656552	499922	1461
5127	0	656055	486279	1540
5128	1	653563	486310	1750
5129	0	655287	484839	1634
5130	0	637575	475238	1445
5131	0	652320	470288	1587
5132	0	686664	473054	1528
5133	0	683072	478191	1543
5134	0	670866	477804	1617
5135	0	669534	480782	1562
5136	0	668207	480778	1420
5137	0	668532	481620	1535
5138	0	668221	478099	1572
5139	0	669545	477786	1523
5140	0	669525	481862	1568
5141	0	666705	478105	1575
5142	0	665259	4 <b>794</b> 17	1 <b>450</b>

7

Date Printed: 07/10/1996

Justification

	1D num	Brinehit	State X	State Y	isocow	Justification
	5143	0	665254	478108	1592	Orig BC top prob error, alt pick used.
	5144	0	666887	480967	1570	
	5145	0 ·	666707	479421	1591	Orig BC pick prob in error, alt pick used.
	5146	0	666896	479418	1580	
	5147	0	658934	482782	1570	Based on nearest wells, not well constrained. Prob + or - 50 ft.[]
	5148	0	662386	478118	1500	Based on nearest wells, not well constrained. Prob + or - 100 ft $\Box$
	5149	0	658924	485883	1510	
	5150	0	657800	486514	1527	
	5151	0	660269	485996	1565	
	5152	2 0	659943	484664	1568	
	5153	3 0	682702	487402	1640	
	5154	4 O	<b>685369</b>	483466	1617	• • •
	5155	5 0	684036	484770	1623	
	5158	30	715576	512845	1859	
·	5159	9 0	719299	507585	2045	
	5160	0 0	719651	504941	2108	
	516	1 0	713055	507207	1711	
	516	2 0	711 <b>890</b>	505887	1508	
	5163	30	711774	504537	1 <b>549</b>	
	Page Nu	mber:	8	•		Date Printed: 07/10/1996

ID num	Brinehit	State X	State Y	Isocow
5164	0	710784	504523	1497
5165	0	711772	504864	1460
5166	0.	712743	504551	1568
5167	0	707811	506124	2005
5168	0	705128	508426	2113
5169	0	706130	507124	2107
5170	0	704937	507436	2110
5171	0	704824	505759	1988
5173	0	707493	504806	1894
5174	0	706145	505775	1998
517 <b>5</b>	0	704962	504975	1999
5176	0	704158	507100	2037
5177	O	704170	505751	1969
5179	0	702868	504415	1891
5180	0	702851	506059	1954
5181	0	701542	504730	1837
5182	0	702509	507416	1957
51 <b>8</b> 3	0	701519	507402	1905
51 <b>84</b>	0	704139	509067	2097
5185	0.	697249	506004	1840

9

Date Printed: 07/10/1996

Justification

. . •

ID num	Brinehit	State X	State Y	isocow	Justification
5186	0	694250	508981	· 1840	
5188	0	692941	508635	1845	
5189	0.	688841	508765	1831	
5190	0	691960	507160	1783	
5191	0	697274	502059	1850	
5192	: O	703873	500772	1772	
5193	0	702536	503708	1814	•
51 <b>9</b> 4	6	703864	502131	1822	
5195	5 0	705188	502158	1825	
5196	i 0	706503	502505	1762	
5197	<b>7</b> 0	705507	503807	1921	
5196	8 0	710224	499756	1805	 
5199	90	714066	501040	1897	
5200	0	714102	501921	1859	
520	1 O	714068	502597	1697	•
5202	2 0	714475	503927	. 1 <b>588</b>	
5203	30	713073	502259	1810	
5204	4 0	711784	503533	1708	
520	6 0	710807	501189	1850	
520	B 0 _.	715786	<b>49867</b> 1	1843	
					<b>.</b> .

. ...

10

ID num	Brinehit	State X	State Y	isocow
5209	٥	713148	498645	1836
5210	0	711731	495498	1727
5211	0 ·	710485	498569	1827
5212	0	706900	493891	1715
5214	• 0	709193	495630	1744
5216	0	702247	498452	1710
5217	0	692059	492737	1602
5218	0	691954	492737	1598
5219	0	689284	488859	1651
5220	0	697351	491465	1623
5221	0	709225	492852	1649
5223	5 O	709223	491671	1637
5224	0	710208	492972	1658
5226	6 0	726303	489144	1728
5227	0	739511	489206	2053
5228	0	743432	491880	2317
5229	0	724919	497052	1779
5230	) 0	722064	496705	1820
5231	0	726246	495713	1835
5232	20	726170	502337	2018

11

Date Printed: 07/10/1996

Justification

.

	ID num	Brinehit	State X	State Y	isocow	Justification
	5233	0	721313	503306	1993	
	5234	0	722146	507594	1983	
	5235	0.	723492	506273	2143	
	5236	0	731330	514213	1362	DELETE. Prob over reef.
•	5237	0	726123	506282	1988	
	5238	0	727370	514213	1666	
	5239	0	723435	511549	1864	
	5240	0	720922	510222	1768	· · ·
	5241	0	723435	5181 <b>49</b>	1394	
	5242	0	731495	5171 <b>59</b>	1798	DELETE. Prob over reef.
	5243	0	730365	51 <b>5509</b>	1742	DELETE. Prob over reef.
	5244	0	728715	515179	1428	•
	5245	0	713552	486079	1604	
	5246	6 0	709293	486352	1709	
	5247	` 0 بي	702426	483394	1622	алар • •
	5248	3 O	690620	483483	. 1620	
	5249	0	693473	482355	1620	
	5250	0	702718	478364	1534	
	5251	0	703103	479385	1519	
	5252	20	710648	481391	1594	
			. –			

12

	D <b>nu</b> m	Brinehit	State X	State Y	Isocow	Justification
	5253	0	711983	478484	· 1670	Based on nearest wells, not well constrained. Prob + or - 50 ft. $\Box$
	5254	0	710666	478366	1565	
	5255	0.	711612	480841	1595	
	5256	0	713292	474527	1580	
	5257	0	731282	486206	1775	
	5258	0	735569	483904	1849	
	5259	0	725384	483523	1635	· · ·
	5260	0	723696	486489	1648	
	5261	0	721203	478534	1586	
	5262	0	726068	478256	1626	
	5263	0	738219	482615	1835	
	5264	0	715700	543100	<b>-999</b> .	DELETE. Out of map area, behind reef.
	5265	0	697111	523186	21 <b>23</b>	
	5266	0	701049	524549	1960	
	5267	0	701403	521883	2058	
	5268	0	706351	520629	1979	
	5269	0	706324	524620	1670	
	5270	0,	711605	523380	1412	
	5271	0	709968	522005	1589	
	5272	0	689062	524415	2057	
_			-			D-1- D-1-1 4 07/10/1000

13

Date Printed: 07/10/1996

• -

		Brinehit	State X	State Y	isocow	Justification
	5273	٥	693156	522136	[.] 1989	
	5274	0	688762	520119	2037	
	5275	1	689070	523103	2205	
s	5276	0	691829	523133	1979	Est BC elev from map to calc thickness. Isopach contour est 2025. $+$ or $-25$ ft
	5277	0	695745	527104	1855	
	5278	D	703668	528559	1502	
	5279	0	706307	528583	1324	DELETE? May be over reef.
	5280	0	701038	527167	1788	
	5301	0	641866	537582	-999	DELETE. Off map area.
	5302	0	645242	520102	1750	
	5303	0	651831	520109	1723	
	5304	0	687611	525719	1917	
	5305		679839	528315	1848	
	5306		678521	524326	1976	
	5307		687762	521764	2059	
	5305		685122 716900	521752 540250	2596 -999	DELETE. Prob over reef.
	5310		691747	536332	-999	DELETE. Prob over reef.
	5311		691724	538989	-999	DELETE. Prob over reef.
	Page Nur		14			Date Printed: 07/10/1996

ID n <b>um</b>	Brinehit	State X	State Y	isocow	Justification
5312	0	699664	535095	~999	DELETE. Prob over reef.
5313	0	702335	531157	1451	DELETE. Prob over reef.
5314	0.	707257	531208	1670	DELETE. Prob over reef.
5315	0	710253	<b>527301</b>	-999	DELETE. Prob over reef.
5316	0	705323	527224	1554	·
5317	0	695776	523170	2085	
5318	0	605975	5165 <b>26</b>	1915	
5319	0	597850	515250	1860	
5320	0	604394	505900	-999	DELETE. Off main map area to west near Danford.
5321	0	593929	506028	-999	DELETE. Off main map area to west near Danford.
5322	0	651450	510150	1650	From isopach map. No control to south. Prob + or - 25 ft. $\square$
5323	0	654900	510000	1630	· · ·
5324	0	644179	498036	1614	
5325	0	653887	488787	1628	
5326	1	685129	519123	1884	
5327	1	683812	519115	1905	
5328	1	686455	51 <b>9124</b>	1901	
5329	0	680237	51 <b>5105</b>	1790	
5330	0	682839	517800	1757	
5331	0	682828	519113	1906	

.

15

Date Printed: 07/10/1996

۰.,

łC	) num	Brinehit	State X	State Y	isocow	Justification
	5332	0	680200	516400	1782	
	5333	0	680850	515250	1808	
	5334	0.	682863	514819	1899	
	5335	0	657463	517615	1718	
	5336	0	657789	509389	1603	
	5337	1	681576	509860	1817	
	5338	. 1	681568	511172	1805	
	5339	1	684844	514173	1898	· · · · · · · · · · · · · · · · · · ·
	<b>5340</b>	1	685216	507264	1747	
	5341	0	686544	505923	1735	· · · · · · · · · · · · · · · · · · ·
	5342	0	674707	505867	-999	No BC or Cowden data. No nearby wells.
	5343	0	682933	498982	1632	•
	5344	0	684027	498226	1645	
	5345	0	706377	516673	2286	
	5346	<b>0</b>	702432	515309	223 <del>8</del>	
	5347	0	701090	519263	2030	
	5348	1	697134	51 <b>9223</b>	2107	
	5349	0	689111	516479	1902	
	5350	0	688768	519007	1978	· · · ·
	5351	0	693182	5 <b>17875</b>	2009	· · · · · · · · · · · · · · · · · · ·

16

ID ni	m	Brinehit	State X	State Y	lsocow	Justification
5	5352	0	689152	510880	1865	
5	353	0	704165	509787	2125	Est from isopach contours. Prob + or - 25 ft.□
ŧ	354	0.	703788	512676	2233	
5	355	0	703458	511356	2213	
	5356	0	704823	511448	2267	· · ·
ŧ	357	0	705090	512723	2246	
5	358	0	705153	510128	2175	Est from isopach contours. Prob + or - 50 ft.
5	5359	0	711819	511456	1950	Est from isopach contours. Prob + or - 100 ft.□
ŧ	5 <b>360</b>	0	714045	507207	1792	
ŧ	5361	0	714051	505880	1503	
5	362	0	714060	504564	1622	
5	363	0	711910	507207	1589	•
5	364	0	711735	505887	1612	
5	365	1	706154	504786	1973	
5	366	<b>1</b>	704185	504435	1 <b>949</b>	
5	367	0	693293	504667	1826	
5	368	0	693314	499351	17 <b>83</b>	
5	369	0	704183	503788	1892	
5	370	0	709485	500842	1884	
5	371	0	<b>7094</b> 91	499529	1713	

Date Printed: 07/10/1996

• -

.

17

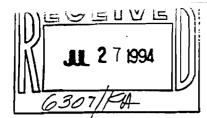
ID num	Brinehit	State X	State Y	isocow	Justification
5372	0	713074	503575	⁻ 1540	
5373	0	712107	501921	1895	
5374	0	713409	499262	1879	. · · · ·
5375	0	713126	500954	1926	
5376	0	712130	499893	1924	
5377	0	711795	500552	1895	
5378	0	710800	502232	1946	
5380	0	715772	493995	1 <b>704</b>	
5381	0	717086	494153	1746	
5382	! 1	717041	498309	1852	
5383	5 0	710172	496920	1802	
5384	0	710179	495917	1764	• •
5385	5 0	709089	497007	1790	
5386	5 0	709176	498222	1824	
538	7 _ 0	709212	494256	1695	•
538	9 0	704225	498483	1718	
539	0 0	<b>7069</b> 13	492866	1660	
539	1 0	707918	491618	1634	
539	2 1	708236	492940	1677	
539	30	710868	490662	1642	

18

#### Bell Canyon to Base Cowden Data And Estimated Thickness

	ID num	Bri <del>ne</del> hit	State X	State Y	Isocow	Justification
	5394	1	717094	493357	1719	
	5395	0.	718414	493357	1732	
	5396	0	718084	491707	1684	
	5397	0	719534	493027	1735	
	5398	0	728360	514543	1540	
	5399	0	739333	506351	1985	
	5400	0	738013	508991	1599	
	5401	0	724872	500986	1937	
	5402	0	735512	493164	2029	
	54 <b>04</b>	1	719791	493060	1735	Adjacent drillhole thickness 1735. Prob + or - 20 ft.
	5405	1	713107	496962	1770	Interpol from nearby drillholes, contours. Prob + or - 20 ft.
	5406	1	608294	509896	-999	DELETE? No direct data, off map, no nearby drillholes.D
	5407	1	728806	499702	1925	Est fro contours and nearest drillholes. Prob + or - 25 ft. $\square$
	5408	1	730127	499712	1925	Est fro contours and nearest drillholes. Prob + or - 25 ft.
Ρ	age Num	ber: 19			. •	Date Printed: 07/10/1996

The source data table and this report were created by Dennis W. Powers using Rbase 5.5, a commercial relational database available from Microrim, Inc. The thickness of each interval is given in feet. The rational column within the database is the idnum, and identifier unique to the drillhole. Data without justification are directly from geophysical log interpretations. Other data have been modified or estimated according to the notes. DELETE indicates a drillhole that should be eliminated from use in maps or geostatistics.


۰.'

Values of -999 are defaults indicating no estimate made.

Appendix F

Letter Report on Brine Occurrences

R.F. Kehrman (Westinghouse)



. Lapoin

WS:94:03255 DA:94:11100

Waste Isolation Division

Box 2078 Caristad New Mexico 88221 July 20, 1994

Westinghouse Electric Corporation Government Operations

Mr. Wendell Weart Sandia National Laboratories P.O. Box 5800 Albuquerque, NM 87185-1345

# Subject: RECENT OCCURRENCES OF PRESSURIZED BRINE IN THE CASTILE FORMATION

Dear Mr. Weart:

Within the last month members of my staff completed a review of records on oil and gas wells drilled within an 864 square mile area surrounding the WIPP. The records that were review are maintained by the New Mexico Oil Conservation Division offices located in Artesia and Hobbs. One of the areas examined by this review, that may be of interest to Sandia, are occurrences of pressurized brine in the Castile formation that were not previously referenced in Brine Pocket Occurrences in the Castile Formation, Southeastern New Mexico (TME 3080) or Brine Reservoirs in the Castile Formation, Southeastern New Mexico (TME 3153). A table and map detailing the locations of these new occurrences and copies of the drilling records documenting the occurrences are attached.

The Bureau of Land Management Form 3160-5, Sundry Notice and Reports on Wells, was the record used to identify the occurrence of brine flow. There is no requirement for a driller to report occurrences of pressurized brine on this form and therefore this list of new occurrences of pressurized brine can not be considered all inclusive.

The Environmental Evaluation Group (EEG) recently identified the occurrence of a brine flow at 2000 feet for Lincoln Federal No. 1 in Section 26, T21S, R32E. This well was not identified in our review of records. The driller did not report the occurrence of brine on the Sundry Notice. The EEG identified the occurrences of this brine flow by reviewing the driller's daily drilling logs. The OCD does not have the daily driller's logs on file. They stated that the Petroleum Information Corporation in Midland, Texas could be a source of more detailed information if required.

Mr. Weart

:00: SIL - 2 -₩5:94:03255

Should you have any question please call Mr. Larry Madl of my staff at (505) 234-8400.

Sincerely,

Lol

R.F. Kehrman, Manager Regulatory Compliance

LJM:kds

cc:

R. A. Bills - CAO P. A. Davis - SNL P. Davies - SNL A. Lappin - SNL J. A. Mewhinney - CAO D. Powers - IT OCCURRENCES OF PRESSURIZED DRINE IN THE CASTILE FORMATION

-				21	, - ·					22						- 2 2			-
	1	12	13	24	25	36	–	12	13	24	25	36	-	12	13	24	25	36	
	2	=	14	53	26	35	~	=	14	23	26	35	2	=	14	23	26	35	
	٤	10	5	22	27	34	~	10	15	22	27	34	ñ	10	15	22	27	34	
	4	٥	16	21	28	33	4	6	16	21	28	33	· 4.	0	16	21	28	33	R-33-E
	5	8	17	20	29	32	5	8	17	02 20	59	32	\$	=	12	20	59	32	
	<b>,</b>	~	18	19	30	31	\$	2	18	19	30	31	\$	~	18	19	30	31	
	-	12	13	24	25	36	-	12	5	24	<b>2</b> 5	36•	-	12	13	24	25	36	
	2	=	14	53	<b>#</b> 26	35	~	=	14	23	26	35	2	=	14	53	26	35	
I	3	10	15	22	27	34	ñ	10	15	22	27	34	۳	10	15	22	27	34	ų
	4	0	16	21	28	33	• 4	6	16	21	28	33	4	0	16	21	28	33	R-32-E
	5	8	17	20	29	32	5	8	=	20	59	32	5	<b>67</b>	12	50	29	32	
	9	~	18	19	30	• 31	9	1	18	19	30	31	9	~	18	19	õ	31	
	-	12	13	24	25	36	a	°12	13	24	25	36	1	12	13	24	25	36	
	2	=	14	23	• 26	••	2	e <u>1</u> 1	14	23	26	35	2	=	14	23	26	35	
	£	10	5	22	27	34	3	10	S	- Cu - Cu	27	34	m	10	15	22	27	34	R-31-E
	4	6	16	21	28	33	4	6	91	51	58	33	4	0	16	21	28	33	Å
	2	8	1	50	29	32	S.	. 60		0Ż	ŝ	32	5	80	17	20	29	32	
	9	~	18	19	30	31	9	~	81	6	30	Š.	Ŷ	~	18	19	30	31	
	-	12	- 13 *	24	25	36	-	12	13	54	25	36	•	12	13	24	25	36	
	۶.	:	14	23	26	35	2	:	14	23	26	35	2	=	14	23	26	35	
ļ	£	10	15	22	27	34	£	10	15	22	27	34	۶	9	ž	22	27	34	R-30-E
	4	0	16	21	28	33	, 7,	م	16	21	28	ŝ	4	ø	16	21	28	33	
	s	80	17	20	53	32	S	80	17	20	29	32	5	80	17	50	29	32	
	Ŷ	~	18	19	30	۳. ۲	9	2	18	19	30	31	9	7	18	19	30	31	
	1	12	13	24	25	36	-	12	13	24	25	36	ţ	12	13	24	25	36	
	2	:	14	23	26	35	2	11	14	23	26	35	2	11	14	23	26	35	R-29-E
	£	10	15	.22	27	34	2	10	15	22	27	34	S	10	15	22	27	34	ex.
	4	٥	91	51	28	53	4	0.0	16	21	28	33	. 7	0	16	21	28	33	

Recent Occurrences of Pressurized Bring in the Castile Formation

Pressurized Brine in the Castile Formation (IME 3080 and IME 3153)

#### NEW OCCURRENCES OF PRESSURIZED BRINE IN THE CASTILE FORMATION

OPERATOR	LEASE NAME	LOCATION	COMMENTS
Yates Petroleum Corp.		SEC.11 T-22-S, R-31-E 660 FSL, 1650 FEL	Drilling 3311' encountered 80 ppm H2S bearing water flow
Yates Petroleum Corp.	Martha "AIK" Federal #4	SEC.11 T-22-S, R-31-E 1980 FSL, 1650 FEL	Encountered water flow at 3750'
Yates Petroleum Corp.	Unocal AHU Federal #1	SEC.1 T-22-S, R-31-E 660 FNL, 1980 FEL	Drilling 3068' encountered 100+ ppm H2S bearing water flow
Pogo Producing Corp.	Federal "12" #8	SEC.12 T-22-S, R-31-E 330 FNL, 1650 FWL	Hit water flow at 3050'; flow Contained a max of 1700 ppm H2S; rate of flow: between 1-2 BPM
Yates Petroleum Corp.	Kiwi AKX State #1	SEC.16 T-22-S, R-32-E 330 FSL, 330 FEL	Well was flowing ~40/bbls/hr while running casing and prior to running casing
Pogo Producing Corp.	Red Tank 34 Federal #1	SEC.34 T-22-S, R-32-E 660 FNL, 1650 FEL	Hit water flow at 3590'-4489' at a max rate of 240 bbls per hour and 700 ppm H2S at shaker; water flow lasted 45 hours
Phillips Petroleum Corp.	Lost Tank SWD #1	SEC.31 T-21-S, R-32-E 1980 FNL, 660 FWL	Water flow encounter at approximately 3050'
Collins & Ware, Inc.	Lincoln Federal #1	SEC. 26 T-21-S, R-32-E 1980 FNL, 660 FWL	Brine flow encountered at 2000'

•	•		
m 3160-5	UNI	TED :: FATES	FORM APPROVED
nc 1990)	DEPARTMEN	NT OF THE INTERIOR	Budget Bureau No. 1004-0135 Expires: March 31, 1993
	BUREAU OF	LAND MANAGEMENT	5. Lease Designation and Serial No.
<b>9</b>	SUNDER NOTICES	AND REPORTS ON WELLS	NM 65417
To not use this		fill or to deepen or reentry to a different reservoir.	6. If Indian, Allonce or Tribe Name
		R PERMIT—" for such proposals	N/A
			7. If Unit or CA, Agreement Designatic
	SUBMIT	IN TRIPLICATE	
Type of Well	· _		<u>N/A</u>
			8. Well Name and No.
Name of Operator	LEUM CORPORATION		Martha AIK Federal #
Address and Telephon			30-015-26723
· · · · ·	th St., Artesia, NH	f 88210 (505) 748-1471	10. Field and Pool, or Exploratory Area
	ousge, Sec., T., R., M., or Survey D		Livingston Ridge De
Unit 0, 660'	' FSL & 1650' FEL,	Sec. 11-T22S-R31E	11. County or Parish, State
•			Eddy, NM
CHEC	K APPROPRIATE BOX	s) TO INDICATE NATURE OF NOTICE, REPOR	T, OR OTHER DATA
TYPE O	F SUBMISSION	TYPE OF ACTION	·
Notic	ze of latent	Abandonment	Change of Plans
2	•	Recompletion	New Construction
C Subse	equent Report	Plugging Back	Non-Routine Fracturing
	Abandooment Notice	Casing Repair	
	Adaptoniners House	Alteriag Casing Caller Report H _n S Encounter	Dispose Water
			(Nute: Report scales of multiple completion on 1
. Describe Proposed or	Completed Operations (Clearly state a	I pertinent details, and give pertinent dues, including estimated date of starting	Completion or Recompletion Report and Log (or zany proposed work. If well is directionally di
give subsurface le	ocations and measured and true verti-	cal depths for all markers and zones perinent to this work.)*	
5_13_01	D-1114- 22111 -	80 ppm (55)	
mud weig	the ll nng. Kil	ncountered ^V H ₂ S bearing water flow? Sh l well. Resumed drilling.	lut well in. Raised
Reported 5-13-91.	to Shannon Shaw,	BLM, Carlsbad, NM, by Tim Bussell, Yat	es Petroleum Corporati
		• • • • • • • • • • • • • • • • • • •	
	• 		
	4		
		•	
	· ·	· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·
<ol> <li>I hereby certify that the second secon</li></ol>	he foregoing is true and correct	Broduction Supervision	5 77 01
Signa Lece	antesperded	Tile Production Supervisor	Desc 5-13-91
(This space for Feder	al or State office use)	· · · · · · · · · · · · · · · · · · ·	•
oproved by inditions of approve	l if your	Title	
Annual of approve	,		ACCEPTED FOR RECORD

Tale 18 U.S.C. Sections 1001, makes it a crime for any jersion knowingly the willfully to make to any department or agency of the United tates my fulder ficinious of ferblutent states

	Ì		•	
DEPARTN BUREAU SUNDRY NOTIO Do not use this form for proposals t		MENT 5 ON WELLS pr reentry to a different re:	. 6. 1	FORM APPROVED Budget Buress No. 1004-0135 Expire: March 31, 1993 case Designation and Serial No. NM 65417 f Indian, Allottee or Tribe Name
	FOR PERMIT-" for	ACCORCU	7. 1	I Unit or CA. Agreement Design
	MIT IN TRIPLICAT			
I. Type of Well           I. Type of Well         Ges           Image: Second Se	•		1. V	/ell Name and No.
L Name of Operator YATES PETROLEUM CORPORATION		ARTESIA OFFICE		rtha AIK Federal
I. Address and Telephone No.			·	30-015-26724
105 South 4th St., Artesia,		(505) 748-1471		Field and Pool, or Exploratory A
4. Location of Well (Footage, Sec., T., R., M., or Sur Unit J, 1980' FSL & 1650' F	•	S-R31E		vingston <u>Ridge De</u> County of Parish, Sume Eddy, NM
2. CHECK APPROPRIATE E	OX(S) TO INDICAT	E NATURE OF NOTICE	REPORT,	OR OTHER DATA
TYPE OF SUBMISSION		TYPE OF	ACTION	
Notice of Iment		Abandooment Recompletion		Change of Plans
Subsequent Report		Plugging Back	Ĩ	Non-Routine Fracturing
Final Abandonment Notice		] Casing Repair ] Altering Casing # Other <u>Report water f</u> ]		Water Shat-Off Conversion to Injection Dispose Water Near Report results of moltiple completion
3. Describe Proposed or Completed Operations (Clearly		•	Ċ	completion or Recompletion Report and I
give subsurface locations and measured and the Per conversation on 9-9-9 Petroleum, intermediate c flow at 3750%. Water flo point. Casing was cement -, on 1st stage and 275 sx c	1 between Shann asing set at 43 w (10 spm) was 1 ed in 2 stages v	on Shaw, BLM, Carls 02' (B. of salt at 4 killed with 10.6 pp with DV tool at 2898	4165'). H g mud afte	Incountered water or reaching casing
•	•			
•		•		
		•		
•	_			
14. I hereby percify that the foregoing is true food corr		roduction Superviso	r <u>.</u>	9-16-91
Signal ( State affice use)		ter a suite	AC	CEPTED FOR RECON
Approved by Conditions of approval. If any:	Tide	·····		533 SEP 20 1991

Take 18 U.S.C. Section 1001, makes it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent stat or representations as to any maker within its jurisdiction.

i

		المالية المراجع والمراجع والم		, ³
DEPARTMEN	TED STATES TOF THE INTE			FORM APPROVED Builget Barcase No. 1004-0135 Expires: March 31, 1993 5. Leave Designation and Serial No.
SUNDRY NOTICES this form for proposals to dr Use "APPLICATION FO	ill or to deepen o	or reentry to a dl		NM 43556 6. If Indian, Allouer or Tribe Name N/A
SUBMIT	IN TRIPLICAT	E internet		7. If Unit or CA, Agreement Designation
			4 1991	- N.A
Well Other		Hitt	- 1331	I. Well Name and No. Unocal AHU Federal #1
TROLEUM CORPORATION	·	,		9. API Well No. 30-015-26698
ch 4th St., Artesia, NM		(505) 74	8-1471	10. Field and Provil, or Exploratory Area
fell (Finnage, Sec., T., R., M., or Survey D	·			Livingston Ridge-Delz 11. County or Parish, State
FNL & 1980' FEL, Sec	L-TZZS-RJLE			Eddy, NM
HECK APPROPRIATE BOX	s) TO INDICATI	E NATURE OF	NOTICE, REPOI	RT, OR OTHER DATA
YPE OF SUBMISSION			TYPE OF ACTION	
Notice of Intern		Abandonment	······································	
Subsequent Report		Recompletion Mugging Back		New Construction
		Casing Repair		Water Shut-Off
Final Abandonment Notice		Altering Casing		Conversion to Injection
•	l l	Other REDUIC H	2 encounter	Dispose Water INne: Report results of multiple complexion on Complexion of Recomplexion Report and Log 4-
oved or Completed Operations (Clearly state all urface incluions and measured and intervente L. Drilling 30684 enco cimately 40-50 BPH whil	untered H.S.	and zones pertinent to the bearing. Wate	his work)" "T flow? (100+	Ppm H25).
) ppm H2S. At casing p	oint raised	mud weight t	to 12.3 ppg to	4 ppg to control run casing.
nd cemented casing. Led Shannon Shaw, BLM,				
	Callsbad, MM	, or had end	ouncer.	
- •			•	
• • •	·			•
		•		
		* .		·
		•		· · ·
	·			
•		. · · ·		
that the (excepting is the and content		<u></u>		
inte Andlow	Title Pro	duction Sup	ervisor	Dere 4-30-91 20.20
sicrai or State office use)	•		· []	ACCEPTED FOR RECORD
oval, if any:	Title			MAY 1 3 1991
(UI)1, makes it a crime for any person	knowingly and willfully a	n make to any department	nt or agency of the United	States any false, ficturing on franchist
any monter within its jurisdiction.				

"See instruction on Reverse Side

Pogo Producing Co.       9. Art Well Ne.         3. Address and Telephone No.       9. Art Well Ne.         P.O. Box 10340, Midland, TX 79702-7340 (915-682-6822)       10. Field and Pool, or Explore         4. Locones of Well (Foreige, Sec., T. R., M., or Servey Description)       10. Field and Pool, or Explore         330' FNL, 1650' FWL, Section 12, T-22-S, R-31E       10. Field and Pool, or Explore         12. CHECK APPROPRIATE BOX(s) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA         TYPE OF SUBMISSION       TYPE OF ACTION         II. Describe of Inters       Abandomment         IV Subsequent Report       Proging Back         II. Subsequent Report       Other Mater flow         II. Describe Proposed or Completed Operations (Clearly uses all periment deside, and give periment data of starting ary proposed werk, If well is dire give rebunding to the werking and mentages and taxes periment data of starting ary proposed werk, If well is dire give rebunding to the werking depth for all mentages and taxes periment data of starting ary proposed werk, If well is dire give rebunding to the werking depth for all mentages and taxes periment data of starting ary proposed werk, If well is dire give rebunding to the werking depth for all mentages and taxes periment data of starting ary proposed werk, If well is dire give rebunding to the werking depth for all mentages and taxes periment to the work, If well is dire give rebunding to the werking depth for all mentages and taxes periment to the work, If well is dire give rebunding to the werking depth for all mentages and taxes periment to the work, If well is dire give rebunding to the werking dept	(June 1990)	DEPARTME	ITED STATES INT OF THE INTERIOR	Budg. Ex	DRM APPROVE s Bureau No. 100- pires: March 31.
SUNDRY NOTICES AND REPORTS ON WELLS         On not use this form for proposals to diffi or to degen or renerity to a different reservoir.         Use "APPLICATION FOR PERMIT—" for such proposals         SUBMIT IN TRIPLICATE         1. Type of Well         Conce         If Use of CA.         Number of the colspan="2">A well have not be.         Pogo Producing Co.         If Use of CA.         Number of the colspan="2">Number of the colspan="2">Number of the colspan="2">A well have not be.         Pogo Producing Co.         If Use of CA.         Number of the colspan="2">Number of the colspan="2">Number of the colspan="2">Number of the colspan="2">A well have not be.         If Use of Colspan="2">Number of the colspan="2">A well have not be.         If Use of Colspan="2">Number of the colspan="2">A well have colspan= "2" have colspan="2" have colspan="2" have colspan="2"		BUREAU OF	LAND MANAGEMENT	1	•
Do not use this form for proposals to drill or to despen or reentry to a different reservoir.       APR 2 : AP		SUNDRY NOTICE	S AND REPORTS ON WELLS		
SUBMIT IN THIPLICATE         1. Type of Wat       Construct       CONTENTIAL       The Wat Notes and Mathematication         2. Mean and Tappane Na.       CONTENTIAL       Federal '12" #8         3. Address and Tappane Na.       CONTENTIAL       Federal '12" #8         4. Leases of Wat Integers Na.       GOOD       GOOD       Federal '12" #8         3. Address and Tappane Na.       GOOD       GOOD       GOOD       GOOD         9. Loose of Wat Integers Na.       GOOD       GOOD       GOOD       GOOD       GOOD         4. Loose of Wat Integers Na.       GOOD       GOO	Do not				APR 2 3
EX Star       Over       PONTION FILL ENTIAL       5. Web News and New         2. News of Concerns       5. UNITION       Federal "12" #8         3. Address of Telepaste New       9.00. Drawing New       30-015-26942         4. Losses of Web (Tomps, See, T. R. M., or Servery Description)       30-015-26942       In Federal "12" #8         330' FNL, 1650' FWL, Section 12, T-22-S, R-31E       In Federal Web, See Edges       In Federal Web, See Edges         10. Concernstructure       CHECK APPROPRIATE BOX(s) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA       In Federal Web, See Edges         10. Notice of Inters       Progeness New       Progeness New       Change of File         10. Notice of Inters       Progeness New       Progeness New       Change of File         10. State-specer Report       Progeness New       Progeness New       Progeness New Concerns         10. Decode Progeness New       Progeness New Concerns       Progeness New Concerns       Progeness New Concerns         10. Decode Progeness New Concerns       Progeness New Concerns       Progeness New Concerns       Progeness New Concerns         10. Decode Progeness Concerns       New Concerns       Progeness New Concerns       Progeness New Concerns         10. Decode Progeness Concerns       New Concerns       Progeness New Concerns       Progeness New Concerns         10. Dec		7. If Unit o	CA. Agreement I		
1. Name of Generating       U UNITIULIIIIL       Federal "12" #8         Pogo Producing Co.			0 ONFIDENTIAL	a. Well New	e and No.
3. Address out Tolephone No.       30-015-25942         9. Address out Tolephone No.       30-015-25942         1. Laceba of Well France, Sec. T. R. M. or Serving Description       30-015-25942         330' FNE, 1550' FNL, Section 12, T-22-S, R-31E       In Field and Fod. or Experimental Eddy Co., NM         12. CHECK APPROPRIATE BOX(s) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA         TYPE OF SUBMISSION       TYPE OF ACTION         III. Charge of Flam       New Competed         IX. Schwappen Report       Dampies for         IX. Schwappen Report       Catego of Flam         III. Competed Operations (Clearly aread) performed death, and grow performed and of deating any performance of the schwappen West. 11 well hadres         III. Description Provided Operations (Clearly aread) performed death, and grow performed and of deating any performance of the schwappen Schwappen West. 11 well hadres         III. Description Provided Operations (Clearly aread) performed death, and grow performed and and of deating any performed and and of deating any performance of the schwappen Schwappen West. 11 well hadres         III. Description Provided Operations of Clearly aread and grow performed and and of deating any performance of the schwappen Sc	2. Name of	Operator	- CUNTIDENHAL	Federa	1 "12" #8
P.O. Box 10340, Midland, TX 79702-7340 (915-682-6822)       IA. Fedd and Nail, or Experiment Livingston Ridg         4. Locase of Well (Process, Sec., T. R., M., or Servey Description)       Livingston Ridg         330' FNL, 1650' FWL, Section 12, T-22-S, R-31E       Eddy Co., NM         12. CHECK APPROPRIATE BOX(s) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA TYPE OF SUBMISSION       TYPE OF ACTION         13. Decide of Jacca       Atandament Rescription       New Constraints         14. Field and fore of Jacca       Atandament Rescription       New Constraints         15. Decide of Jacca       Atandament Rescription       New Constraints         16. Field Atandament Rescription       New Constraints       New Constraints         17. Decide of Jacca       Atandament Rescription       New Constraints         18. Science of Jacca       Atandament Rescription       New Constraints         19. Decide Atandament Rescription       New Constraints       New Constraints         19. Decide Atandament Rescription       New Constraints       New Constraints         19. Decide Atandament Rescription       New Constraint and Street Filow       Dispose Water Constraint and Street Conference of Atandament Rescription         19. Decide Atandament Rescription       New Constraint and Street Filow       Scient of Atandament Rescription and Street Filow         19. Decother Propond and Contain and Street Filow was between			ingen and the second		
4. Locates of Weil (Fourge, Se., T. R. M., of Servy Decription)       Livingston Ridgy         330' FNL, 1650' FNL, Section 12, T-22-S, R-31E       Livingston Ridgy         12. CHECK APPROPRIATE BOX(s) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA         TYPE OF SUBMISSION       TYPE OF ACTION         In Notice of Inter       Attendencest         IN Notice of Inter       Recomption         IN Decription Operations (Clearly and all primer details, and give protocol date, including commend due of Inter Science Transmission         ID Decription Operations (Clearly and all primer details, and give protocol date, including commend due of Inter Science Transmission Transmission of Inter & Science Transmission Transmission of Clearly and Intermediate hole @ 30509 3-31-92. Flow contain maximum PPm H2S @ Flowline: Rate of water flow was between 1 & 2 BPM. Indian Fire & Safety all monitoring and safety equipment. Pogo continued drilling 11" hole to a T.D. of w/ a rotating packoff. 8 5/8" csg was set & cmt'd 4-2-92. Flow ceased.         M. Interpretenting packoff. 8 5/8" csg was set & cmt'd 4-2-92. Flow ceased.	-	•	79702-7340 (915-682-6822)		
330' FNL, 1650' FNL, Section 12, T-22-S, R-31E       H. Cherry or Putch, See Eddy Co., NH         12. CHECK APPROPRIATE BOX(s) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA         13. Decide of Jusca       TYPE OF SUBMISSION         13. Decide of Jusca       Abadiances         13. Decide of Jusca       Abadiances         13. Decide Frequence Report       Calleg Repire         13. Decide Frequence of Complexed Optimum (Carry and in profile death, and give profession data of Jusca       None Report         13. Decide Frequence of Complexed Optimum (Carry and in profile death, and give profession data of Jusca and Jus	4. Locacion	of Well (Footage, Sec., T., R., M., or Sarvey	Description)		-
CHECK APPROPRIATE BOX(S) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA      TYPE OF SUBMISSION     TYPE OF ACTION     Automation     Notice of Inter     Type of Action     Type of Actin     Type of Action     Type of Action     Type of Action     Ty				L	
TYPE OF SUBMISSION       TYPE OF ACTION         Indice of laters       Absolutions       Change of Plan         It Subsequence Report       Preging Back       New Reside Fracturing         Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce         Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce         Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce         Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce         Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce         Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce         Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce         Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce         Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce       Image: Press Netce         Im	330'	FNL, 1650' FWL, Section	12, T-22-S, R-31E	Eddy	Co., NM
Image: State of Sources       Abandoments       Change of Films         It Subsequent Report       Progging Back       Non-Remine Fracting         If Find Abandoments Notice       Change Caling       Concerning         It. Describe Proposed or Completed Operations (Clearly some all periment deals, and give periment date, including entimed and two extends of the markers and assess periments to the work. If the term of the work of the sone of the work. If the sone of the work of the sone of the work. If the sone of the work of the sone of the work of the sone of the work. If the sone of the work of the sone of the work of the sone of the work. If the sone of the work of the sone of the work of the sone of the work of the sone of the work. If the sone of the work of the sone of the sone of the work of the sone of the w	12.	CHECK APPROPRIATE BO	X(s) TO INDICATE NATURE OF NO	TICE, REPORT, OR O	THER DATA
Image: Subsequent Report       Image: Report       Ima		TYPE OF SUBMISSION	TYI	PE OF ACTION	
Image: Subsequence Report       Image: Subseq Report       Image: Subs		Notice of Intent			
Graing Repair     Graing		Y Subacana Barnat			
Image: Starting Control of Comparison in Supervision and Starting Control of Conversion on Supervision of Conversion on Supervision Control of Conversion Control of Control of Conversion Control of		Card another weber			-
Construct Proposed or Completed Operations (Clearly uses all periment deals, and give periment date, including calculated date of starting any perpenditive depths for all members and near periment to this work.)*      Hit water flow while dril 11" intermediate hole @ 30509 3-31-92. Flow contain maximum PPm H2S @ Flowline. Rate of water flow was between 1 & 2 BPM. Indian Fire & Safety all monitoring and safety equipment. Pogo continued drilling 11" hole to a T.D. of 4 w/ a rotating packoff. 8 5/8" csg was set & cmt'd 4-2-92. Flow ceased.      Het water flow the horegoing is per and correct to the set of		Final Abandonment Notice			
13. Describe Proposed or Completed Operations (Clearly sees all periods decide, and give periods decides, including estimated decides of starting any periods work. If well is dire give redeviates to the work.)* 14. Thereby cereby the the foregoing is uses and correct signal decides. The direct section of the decides of the section of the decides of the section of the s			Other Water flow		-
<ul> <li>13. Describe Proposed or Completed Operations (Clearly uses all perifices desile, and give perifere desce, including estimated data of starting any proposed work. If well is derive a periferent to this work of the starting any periferent work of the starting any periferent work of the starting and periferent work of the starting periferent work of the starting and periferent work of the starting periferent work of the starting periferent work of the starting and periferent work of the starting periferent starting periferent periferent work of the starting periferent pe</li></ul>					
Hit water flow while dri 11" intermediate hole @ 30509 3-31-92. Flow contain maximum PPm H ₂ S @ Flowline. Rate of water flow was between 1 & 2 BPM. Indian Fire & Safety all monitoring and safety equipment. Pogo continued drilling 11" hole to a T.D. of w/ a rotating packoff. 8 5/8" csg was set & cmt'd 4-2-92. Flow ceased. W/ a rotating backoff. 8 5/8" csg was set & cmt'd 4-2-92. Flow ceased. 4. Ibereby certify that the foregoing is yes and correct Signal				inneed date of starting any proposed	
<ul> <li>PPm H2S @ Flowline. Rate of water flow was between 1 &amp; 2 BPM. Indian Fire &amp; Safety all monitoring and safety equipment. Pogo continued drilling 11" hole to a T.D. of w/ a rotating packoff. 8 5/8" csg was set &amp; cmt'd 4-2-92. Flow ceased.</li> <li>W/ a rotating be foregoing is you and correct for the foregoing is you and correct firm</li></ul>			mical depths for all markers and tenes pertinent to this w		
<ul> <li>PPm H2S @ Flowline. Rate of water flow was between 1 &amp; 2 BPM. Indian Fire &amp; Safety all monitoring and safety equipment. Pogo continued drilling 11" hole to a T.D. of w/ a rotating packoff. 8 5/8" csg was set &amp; cmt'd 4-2-92. Flow ceased.</li> <li>W/ a rotating be foregoing is you and correct for the foregoing is you and correct firm</li></ul>	give				
Signed	-	• • •			•
Signed	Hit PPm all	water flow while drl 11" H ₂ S @ Flowline. Rate of monitoring and safety eq	intermediate hole @ 30509 3- water flow was between 1 & 2 muinment. Pogo continued drif	31-92. Flow conta BPM. Indian Fire ling 11" hole to a	& Safety
Signed	Hit PPm all	water flow while drl 11" H ₂ S @ Flowline. Rate of monitoring and safety eq	intermediate hole @ 30509 3- water flow was between 1 & 2 muinment. Pogo continued drif	31-92. Flow conta BPM. Indian Fire ling 11" hole to a	& Safety
Signed	Hit PPm all	water flow while drl 11" H ₂ S @ Flowline. Rate of monitoring and safety eq	intermediate hole @ 30509 3- water flow was between 1 & 2 muinment. Pogo continued drif	31-92. Flow conta BPM. Indian Fire ling 11" hole to a	& Safety
Signed	Hit PPm all	water flow while drl 11" H ₂ S @ Flowline. Rate of monitoring and safety eq	intermediate hole @ 30509 3- water flow was between 1 & 2 muinment. Pogo continued drif	31-92. Flow conta BPM. Indian Fire ling 11" hole to a	& Safety
Signed	Hit PPm all	water flow while drl 11" H ₂ S @ Flowline. Rate of monitoring and safety eq	intermediate hole @ 30509 3- water flow was between 1 & 2 muinment. Pogo continued drif	31-92. Flow conta BPM. Indian Fire ling 11" hole to a	& Safety
signed <u>Rithkiskichith</u> , <u>Div. Operations Supvr.</u> <u>4-24-92</u>	Hit PPm all	water flow while drl 11" H ₂ S @ Flowline. Rate of monitoring and safety eq	intermediate hole @ 30509 3- water flow was between 1 & 2 muinment. Pogo continued drif	31-92. Flow conta BPM. Indian Fire ling 11" hole to a	& Safety
Signed	Hit PPm all	water flow while drl 11" H ₂ S @ Flowline. Rate of monitoring and safety eq	intermediate hole @ 30509 3- water flow was between 1 & 2 muinment. Pogo continued drif	31-92. Flow conta BPM. Indian Fire ling 11" hole to a	& Safety
Signed	Hit PPm all	water flow while drl 11" H ₂ S @ Flowline. Rate of monitoring and safety eq	intermediate hole @ 30509 3- water flow was between 1 & 2 muinment. Pogo continued drif	31-92. Flow conta BPM. Indian Fire ling 11" hole to a	& Safety
Signed	Hit PPm all	water flow while drl 11" H ₂ S @ Flowline. Rate of monitoring and safety eq	intermediate hole @ 30509 3- water flow was between 1 & 2 muinment. Pogo continued drif	31-92. Flow conta BPM. Indian Fire ling 11" hole to a	& Safety
	Hit PPm all	water flow while drl 11" H ₂ S @ Flowline. Rate of monitoring and safety eq	intermediate hole @ 30509 3- water flow was between 1 & 2 muinment. Pogo continued drif	31-92. Flow conta BPM. Indian Fire ling 11" hole to a	& Safety
	Hit PPm all W/ a	water flow while drl 11" H ₂ S @ Flowline. Rate of monitoring and safety ec rotating packoff. 8 5/	intermediate hole @ 30509 3- water flow was between 1 & 2 uipment. Pogo continued dril 8" csg was set & cmt'd 4-2-92 Div. Operations	31-92. Flow conta BPM. Indian Fire ling 11" hole to a . Flow ceased.	& Safety T.D. of 4-24-92

Tide 18 U.S.C. Section 1001, makes it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent

•

•

			Form C-103 ( )
no conce	y, Mineian and Natural Reso	surces Department	. Revised 1-1-89
	CONSERVATION P.O. Box 2088		WELL API NO. 30-025-31576
<u>RICT II</u> Drawer DD, Anesia, NM 22210	ICT II Santa Fe, New Mexico 87504-2088 Gwer DD, Anesia, NM 88210		
RICT III Rio Brazos Rd., Artec, NM 87410	<u>.</u>		6. State Oil & Gae Lease No. VB 134
SUNDRY NOTICES	ND REPORTS ON WELL	S	
O NOT USE THIS FORM FOR PROPOSAL DIFFERENT RESERVOIR. (FORM C-101) FO	LS TO DRILL OR TO DEEPEN O USE "APPLICATION FOR PERI DR SUCH PROPOSALS.)	R PLUG BACK TO A	7. Lease Name or Unit Agreement Name
Type of Well: 	OTHER		Kiwi AKX State
Name of Operator ATES PETROLEUM CORPORATION	N		& Well No. I
Address of Operator			9. Pool name or Wildcat
05 South 4th St., Artesia	, NM 88210	-	East Livingston Ridge Delaware
Well Location Unit Letter P : 330 Fe	et From The South	<u>Line and</u> 330	Feet From The East Line
Section 16 To	ownship 22S Ran		NMPM Lea County
	10. Elevation (Show whether D 3704 'GI	2	
Check Appro	opriate Box to Indicate N	lature of Notice, R	eport, or Other Data
		SUB	SEQUENT REPORT OF:
		REMEDIAL WORK	
	CHANGE PLANS	COMMENCE DRILLING	
		CASING TEST AND CE	
ier:*:	LJ·	OTHER Intern	ediate Casing &
Describe Proposed or Completed Operations (C work) SEE RULE 1103.			
shoe set 4535'. Float c 205 sx PSL w/1/4# Cellos sx "C" with 2% CaCl2 (yi 900 sx PSL w/1/4# Cellos sx "C" with 2% CaCl2 (y WOC. NOTE: Well was fl and afterward. Notified	ollar set 4491'. DV eal, 10# salt, 5# Gi eld 1.33, wt 14.8). eal, 10# salt, 5# Gi ield 1.33, wt 14.8). owing 40±/bbls/fr wi Joan with NMOCD, Ho	7 tool set 3175 Lisonite (yield PD 2:30 PM 5- Lisonite (yield PD 5:00 PM 5 nile running ca obbs, NM, prior	nd J-55 casing set 4535'. Guide '. Cmtd' in 2 stages: Stage 1: 1.94, wt 12.9).Tailed in w/200 5-92. Circulated 200 sacks. Sta 1.94, wt 12.(). Tailed in w/1C -5-92. Circulated 144 sacks. sing and prior. Dead after 1st to cementing. Did not witness. educed hole to 7-7/8" and resume
	•		

	mation above is true and complete to the beat of my knowl		e. Production Supervisor	5-12-92
TTE OR FRONT NAME	Juanita Goodlett		•	TELEPHONE NO. 505/748-1
This spece for State Use) (	DRIGINAL SIGNED BY JERRY SEXTON DISTRICT I SUPERVISOR			May 13 [.] 92
STROVED BY-		TILE		DATE
בגעפאיזא ייס צאמרונסיב.	<b>7</b> ANY:	•		• •

• • • •

ASTER-S ASTER-S (1990) S. H. 93 UNITED DEPARTMENT OF	N. M. DIL CONS. COMMISSION STATES P. O. BOX 1980	FORM APPROVED Builget Bureau No. 1004-0133
	OF THE INTERCOR, NEW MEXICO 88240 ID MANAGEMENT	Expire: March 31, 1993 3. Lesse Designation and Serial No. NM-27060
Do aprose this form for proposals to drill of	D REPORTS ON WELLS r to deepen or reentry to a different reservoir. ERMIT—" for such proposals	4. If Indian, Allonce of Tribe Name
	TRIPLICATE	7. If Unit or CA. Agreement Designant
1. Type of Well Oll Gas Well Other	·	Ked Tame and No.
2. Name of Operator POGO PRODUCING COMPANY 1. Address and Telephone No.		2. AFI Well No.
P. O. BOX 10340, MIDLANI 4. Locanos al Well (Forage, Sec., T., R., M., or Servey Descript	D, TEXAS 79702	30-025-31720
660' FNL AND 1650' FEL ( SEC.34, I-22-S, R-32-E,	OF Unit B	WILDCAT
CHECK APPROPRIATE BOXISI TO	O INDICATE NATURE OF NOTICE, REPOR	LEA COUNTY, NEW MEXIC
TYPE OF SUBMISSION	TYPE OF ACTION	
Notice of Intent	Absorberres Recompletions Plugging Back	Change of Plans  New Construction  New Rowing Fracturing
Final Abaadoenten Notice	Casing Repair	Witer Shut-Off
	XI cuber Water Flow	-L Dispose Water . (Hene: Report results of an-hopic sumplements of Completion or Recomptones Report and 1 or loss
L. Describe Proposed or Completed Operations (Clearly state all perior give subsurface locations and measured and true version) dep	nene details, and give persistent dates, including estimated date of starting a	iny proposed work. If well is directionally de
Water Flow Encountered water flow on 9/29/92	2 F/3590'-4489' ata:maximum rate of	F 240 bb1s per
Water Flow Encountered water flow on 9/29/92		F 240 bbls per
Water Flow Encountered water flow on 9/29/92	2 F/3590'-4489' ata:maximum rate of	F≂ 240 bb1s per
Water Flow Encountered water flow on 9/29/92	2 F/3590'-4489' ata:maximum rate of	F 240 bb1s per
Water Flow Encountered water flow on 9/29/92	2 F/3590'-4489' ata:maximum rate of	F 240 bb1s per Sind Sind 3.1993
Water Flow Encountered water flow on 9/29/92	2 F/3590'-4489' ata:maximum rate of	Sun 3. 1993
<u>Water Flow</u> Encountered water flow on 9/29/92 Hour ^a and H ₂ S with 700 PPM at shall - 1 hereby certify that the foregoing is and and correct	2 F/3590'-4489' at a maximum rate of ker. Water flow lasted 45 hours.	January 19, 19

or agency of the United States any false, fictitious or frawlyticas sta de II U.S.C. Section 1001, autra is a crime for any p represestations as to any maner within its jurisdiction. 477 7 • # ike in hey dej

merty 0-331. DEPARTMENT OF THE INTERTOL TO THE WAS	1 12 (172) 86710
BUREAU OF LAND MANAGEMENT	6 IF INULAY, ALLOTTEE OF TRIAL
SUNDRY NOTICES AND REPORTS ON WELLS (Ito not use this form for proposals to drill or to deepen or plug back to a different reservoir. Use "APPLICATION FOR PERMIT-" for such proposals.)	
	7. UBIT AGREEMENT NAME
OIL GAN OTRES	1
NAME OF OPERATOR	8. FARM OF LEASE WANE
Phillips Petroleum Company	Lost Tank (Swo) Luke Federal
ADORESS OF OFELATOR	9. WELL FG.
4001 Penbrook St., Odessa, Texas 79762	1
LOCATION OF WELL (Report location clearly and in accordance with any State requirements."	10. FIELD AND POOL, OR WILDCAT
See also apace IT below.) At surface N	E Livingston Ridge ()
	11. SEC. T. A. N. DE BLE. AND
nit E, 1980' FNL & 660' FWL	SURTET OF AREA
	Sec. 31, T-21-S, R
PERNIT NO. , 15. ELEVATIONS (Show whether DF. ET. 64. etc.)	12. COUNTY OF PARIEN 12. STATE
30-025-31443 3646' GR	Lea N:
Check Appropriate Box To Indicate Nature of Notice, Report, or (	Other Data
NOTICE OF INTENTION TO :	CENT ESPOST OF :
TEAT WATER RECT-OFF TO FULL OR ALTER CASING WATER REUT-OFF	BEPATEING WELL
PRACTICE TREAT	
RHUOT GE ACIDIZE ABANDON"	ABANDORMENT®
REFAIL VELL CHANGE PLANS	
Nurr: Report realize	of maitiple completion on Well
ulist Risk individed of Record Completing of Record distance all pertinent details, and give pertinent dates.	letion Report and Log form .
DUE TO A WATER FLOW ENCOUNTER AT APPROXIMATELY 3050 THE 8-	5/8" CASING
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
DUE TO A WATER FLOW ENCOUNTER AT APPROXIMATELY 3050 THE 8-2 CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO CIRCULATION INTO THE WATER FLOW ZONE WHILE CEMENTING.	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO CIRCULATION INTO THE WATER FLOW ZONE WHILE CEMENTING.	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO CIRCULATION INTO THE WATER FLOW ZONE WHILE CEMENTING.	5/8" CASING DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO CIRCULATION INTO THE WATER FLOW ZONE WHILE CEMENTING.	DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO CIRCULATION INTO THE WATER FLOW ZONE WHILE CEMENTING.	DITE 11-21-91
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO CIRCULATION INTO THE WATER FLOW ZONE WHILE CEMENTING.	DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO CIRCULATION INTO THE WATER FLOW ZONE WHILE CEMENTING.	DSSIBILITY OF LOST
CEMENT PROGRAM WILL BE REVISED AS FOLLOWS TO MINIMIZE THE PO CIRCULATION INTO THE WATER FLOW ZONE WHILE CEMENTING.	DITE 11-21-91

- .

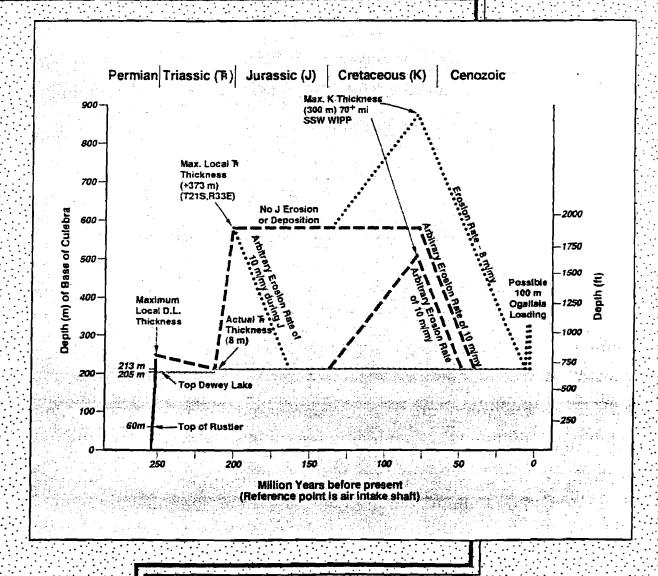
This 11 11 I.C. Setting 1001, makes it a crime for any person knowingly and willfully to make to any descent on another

#### Appendix G

Regional Geological Processes Affecting Rustler Hydrogeology

> Dennis W. Powers and Robert M. Holt

#### (report by IT Corporation)


. 

• • • •

¥6 . .

. . .

# GEOLOGICAL PROCESSES AFFECTING RUSTLER HYDROGEOLOGY



•

.

w.

#### REGIONAL GEOLOGICAL PROCESSES AFFECTING RUSTLER HYDROGEOLOGY

Prepared for:

Westinghouse Electric Corporation P.O. Box 2078 Carlsbad, New Mexico 88221

Prepared by:

Dennis W. Powers Consulting Geologist HC 12, Box 87 Anthony, Texas 79821

Robert M. Holt IT Corporation 5301 Central Avenue NE, Suite 700 Albuquerque, New Mexico 87108

April 1995

#### **EXECUTIVE SUMMARY**

This executive summary is prepared for the general reader rather than as a strict summary of the technical material. The executive summary includes broader information about the context of the study and general implications. It also includes limited explanations of the technical approach not included in the abstract. While this report was written mainly for the professional geologist, the technical community at large should be able to follow the thrust of the arguments with occasional reference to the American Geological Institute Glossary of Geology to understand some technical terms.

The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being constructed to isolate transuranic radioactive waste from U.S. defense programs from the environment by emplacing it within the bedded salt of the Permian Salado Formation. The Culebra Dolomite Member of the Permian Rustler Formation is the most significant hydrological unit overlying the Salado. Geological processes operating since Rustler deposition have contributed to the evolution of Culebra hydrological properties. These properties are being extensively evaluated.

This report addresses the timing, magnitude, and areal extent of these regional geological processes with respect to the Culebra. In another document, we will more directly address the relationship between hydrological properties and factors such as overburden or thickness of halite in the Rustler. While these geological processes have been considered at one level or another in previous reports for the WIPP, we address some in much more detail, and all are cast in terms of their effects on the Culebra.

Evaporites in the Delaware Basin have partially been dissolved, and Culebra hydrological properties have commonly been associated with dissolution of halite from either the Rustler or the Salado. The analyses have not always been provided in detail, and we have reexamined both the Salado and the Rustler.

The upper half of the Salado was subdivided into intervals for comparison of geophysical logs from the area. From the WIPP site to the southeast, the intervals change little in thickness and represent the depositional sequence. West of the WIPP site, the upper interval of the Salado (from Marker Bed 103 to the top of the Salado) declines greatly in thickness across a

i

horizontal distance of about 2 miles (about 3 kilometers). The zone of thinning underlies Livingston Ridge, the eastern boundary of Nash Draw, and very closely parallels its trend. The zone then runs to the southeast. Several of the Nash Draw drillholes used for hydrological monitoring lie on this trend or west of it, and they show the effects of subsidence after dissolution. Along the southern part of the mapped area, highly variable thicknesses signify considerable Salado dissolution in the Big Sinks and Phantom Banks areas. Furthermore, the dissolution in the southern part of the map area has reversed the eastward dip on the Culebra and created an anticline (the "Remuda Basin anticline") that trends from the Remuda Basin to the southeast.

The structure contour map of the Culebra indicates some of the tectonic activity that has affected the unit and can change hydrologic characteristics. The Culebra shows a general eastward dip like the formations under the evaporites, but it is further deformed locally. Northeast of the WIPP site, at the location of drillhole ERDA 6, the Castile Formation has been deformed, and the Culebra has been arched into an anticline. The effects of this deformation extend to the northeastern corner and to the eastern side of the WIPP site. South of the WIPP site, the Remuda Basin anticline formed from a combination of regional eastward dip and westward reversal of dip caused by subsidence over an area of Salado dissolution. More subtle structural changes across the WIPP site have been isolated by comparing the present Culebra structure to the estimated regional structure—a regular eastward dip of about 1°. The main feature is a negative deviation, along the north side of the WIPP site, from this estimated regional structure. The feature is larger than can be accounted for by halite dissolution, and the Dewey Lake is thicker in the same area, indicating that it apparently down-warped moderately before late-Cenozoic erosion. This analysis, comparing structure to an estimate of regional structure, is limited because of assumptions, but it also has power to delineate subtle activity superimposed on regional structure.

Geophysical logs of the Rustler were carefully interpreted to map the presence of halite within three members of the formation. In contrast to some earlier studies, the unnamed lower member was separated into two mudstone/halite units to emphasize the location of halite immediately under the Culebra. Some earlier studies depended more on cuttings and core for information. Our work may indicate halite when it is absent, whereas studies depending on cuttings and core may miss some halite. There is general agreement, however, between the two methods. By mapping the areal extent of halite in the Rustler members, we will be able in a later document to determine how well halite thickness correlates with

ü

hydrologic parameters. In past studies, we have reported the results from shaft mapping, core descriptions, and geophysical log interpretations of the Rustler. On the basis of these studies, we concluded that halite was mainly distributed according to sedimentary processes rather than later dissolution. If so, this would minimize the effects of Rustler halite dissolution on Culebra hydrology.

The rocks at the WIPP were buried more deeply in the past, but part of the overburden has been removed by erosion. These stress changes can create or enhance fracture porosity within beds such as the Culebra. We have reconstructed some possible loading and unloading histories based on the geology of the site and region. The most likely sequence is that Triassic rocks loaded about 400 meters (about 1,300 feet) more before a lengthy period with some erosion and little deposition. Near mid-Cenozoic time, the rocks in the basin were tilted to the east. After that, the rocks across the site were eroded to a wedge-like shape, during what was likely the highest rate of unloading. Surrounding areas have thick deposits of Cretaceous rocks, but there is little to indicate thick Cretaceous deposits across the WIPP site. Data from hydrocarbon maturation more weakly indicate greater burial as well.

In this report, different regional geological processes were examined in some detail with respect to the Culebra. In a later report, these and other data will be integrated to try to correlate Culebra hydrology more closely with pertinent geological factors.

#### PREFACE

Through our studies of the Permian Rustler Formation (Holt and Powers, 1988; Powers and Holt, 1990), we began to discern different processes contributing to the development of Rustler hydrogeology. We proposed (e.g., Beauheim and Holt, 1990) some alternatives for Rustler hydrology that emphasized a history to this development. To better understand Rustler hydrology, we also believed it necessary to understand better both the underlying and overlying units and the geological history of the units since the Permian.

We began several specific studies of geology and hydrology related to the Rustler and attempted to integrate the information into a single, comprehensive volume. Like some other documents for the Waste Isolation Pilot Plant project, this volume has been cited while in draft (commonly as Holt et al., in preparation), and various figures have been used or modified for use in other documents. Several topics included in the draft have now been published or made available in other formats (e.g., Beauheim and Holt, 1990). As a result, the main topics not yet available are the geology and paleohydrology related to the Gatuña (Powers et al., in review), regional geological processes affecting Rustler hydrology (this report), and a summary paper on Rustler hydrogeology. These are being prepared and printed as separate documents, and all are expected to be available during the first half of 1995.

Besides depositional processes and features, we recognize several other processes that may contribute to the pattern of Rustler hydrogeology. This report broadly assesses several of these processes, based on new or additional information.

# Table of Contents

List of	f Tab	oles
List of	f Fig	vii
Abstra	act.	
1.0	Intro	oduction
2.0	Sala	do Dissolution
	2.1	Background Information on the Salado
	2.2	Salado Stratigraphy
	2.3	General Salado Geology in the Northern Delaware Basin
	2.4	General Methods to Evaluate Salado Dissolution 13
	2.5	Salado Thickness (Isopach) Information 18
		2.5.1 Broad Patterns 18
		2.5.2 Subintervals of the MB 123/124 to Vaca Triste Interval 24
		2.5.3 Subintervals of the Vaca Triste to Salado Interval
		2.5.4 Discussion of Thickness Data
	2.6	Cross Section Data
		2.6.1 Cross Section Details 34
		2.6.2 Discussion of Cross Section Information 42
	2.7	Summary of Evidence About Salado Dissolution
3.0	Struc	ctural Disturbance of the Culebra 46
	3.1	Background Information 46
	3.2	Data Sets and Methods 46
	3.3	General Culebra Structure Elements 46
	3.4	Discussion of Culebra Structural Features 51
	3.5	Summary of Evidence about Culebra Structure
4.0	Rustl	ler Halite Dissolution 59
	4.1	Background Information and History 59
		4.1.1 Alternate Hypotheses of Halite Distribution
		4.1.2 Reported Halite Distributions
4	4.2	Methods
4	4.3	Halite Margins in the Rustler Formation
4	4.4	Discussion
4	4.5	Summary of Evidence About Rustler Halite Distribution

.

-

#### Table of Contents (Continued)_

5.0	Loading and Unloading History of the Culebra						
	5.1	Background Information	71				
	5.2	Present Depth to Base of Culebra	71				
	5.3	History of Loading and Unloading of the Culebra	75				
	5.4	Other Inferences About Loading and Unloading History	80				
	5.5	Summary of Loading and Unloading History	81				
6.0	Con	clusions	82				
7.0	Refe		84				

Appendix A—Data for Drillholes in Holt and Powers (1988) Plus Additional Drillholes Interpreted by Powers

A-1-Locations for Rustler Formation Data Points

A-2—Table of Depths to Selected Marker Beds of the Salado Formation

A-3—Table of Data on Depth to Rustler Units

A-4—Table of Data for Depths to Dewey Lake and Santa Rosa Formations

Appendix B—Rustler Formation Stratigraphic Data from Richey (1989)

B-1—Drillhole Name and Location Data from Richey (1989)

B-2—Table of Rustler Formation Data from Richey (1989)

Appendix C—Comparison of Data Sets from Richey (1989) and Holt and Powers (1988 and Supplement)

> C-1—Table of Identical Drillholes in Richey (1989) and Holt and Powers (1988) Supplemented by Drillholes Recently Interpreted by Powers

C-2-Statistical Comparison of Rustler Data Sets

# List of Tables

Table	Title	Page
1	Typical Log Responses for Salado Rocks	15
2	Statistics Regarding Thickness of Interval from the Vaca Triste to the Top of Salado	18

# List of Figures_

.

Figure	Title	Page
1	General Stratigraphic Column Northern Delaware Basin	4
2	Approximate Edge of Ochoan (Rustler, Salado, and Dewey Lake Formation) Evaporites Superimposed on Broad Tectonic Elements	6
3	Salado Stratigraphy	9
4	Vaca Triste Log Signatures Near Continental King Well, Paduca Field	11
5	Reference Geophysical Signatures and Selected Contacts for Upper Salado Formation Near the WIPP Site	17
6	Well-Control Base Map	19
7	Well-Control Base Map of the Paduca Field	20
8	Isopach from the Base of MB 123/124 to the Base of the Vaca Triste	22
9	Isopach from the Top of the Vaca Triste to the Top of the Salado	23
10	Isopach of the Combined MB 123/124 Interval	25
11	Isopach from the Top of MB 123 to the Base of the Union Anhydrite	26
12	Isopach from the Top of the Vaca Triste to the Base of MB 109	27
13	Isopach from the Top of MB 109 to the Base of MB 103	29
14	Isopach of MB 103	30
15	Isopach from the Base of MB 103 to the Top of the Salado	31
16	Isopach of the Vaca Triste Sandstone	32
17a	Selected Acoustic Logs T23-25S	35

· 301651

# List of Figures (Continued)_____

.

# Figure

Title

17b	Selected Acoustic Logs T23-25S	36
17c	Selected Acoustic Logs T23-25S	37
18	Acoustic Logs and Natural Gamma (T23S)	38
19	Acoustic Logs and Natural Gamma (T24S)	39
20	Acoustic Logs and Natural Gamma (T25S)	40
21	Zone of Upper Salado Thinning	45
22	Structure Contour Map of Culebra Dolomite Base	. 47
23	Main Structural Elements of Culebra Dolomite	49
• 24	Well-Control Base Map Modified from Figure 6 to Include Additional Culebra Data	50
25	Difference in Elevation Between Present Culebra Base and Estimated Regional Structural Trend	52
26	Isopach of the Dewey Lake Formation	55
27	Isopach of the Santa Rosa Formation	56
28	NE-SW Cross Section through "Remuda Basin Anticline" South of WIPP	58
29	Log Character of Rustler Mudstone/Halite Intervals	60
. 30	Isopach Map of the Rustler Formation in the Vicinity of the WIPP Site Showing Dissolution Zones	63
31	Halite Margins in Rustler	65
32a	Depth to Base of Culebra	72
32b	Depth to Base of Culebra	73

ix

.

• _ •

# List of Figures (Continued)___

# Figure

# Title

33	General Topography of the Study Area	74
34	Loading and Unloading History Estimated for Base of Culebra (AIS Reference Point)	78

AL/4-95/CM/RUSTLER/REG_PROC.FIN

.

#### Abstract

The Culebra Dolomite Member of the Permian Rustler Formation is a hydrological unit that significantly affects performance analysis of the Waste Isolation Pilot Plant (WIPP). Regional geological processes following deposition of the Culebra contributed to its hydrological properties. We focused on dissolution, tectonics, and loading/unloading to determine the area, magnitude, and timing of their effects on the Culebra.

Though the Salado Formation has been extensively dissolved in the western Delaware Basin, drillhole data in the area around the WIPP show that the site has not been affected. The upper Salado thins more abruptly to the west of the WIPP, along the margin of Nash Draw, and to the southeast. Several Nash Draw boreholes have been drilled on this zone of thinning.

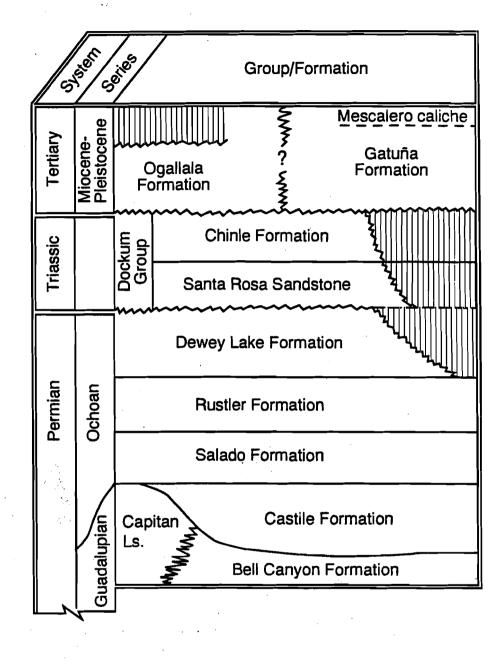
The Culebra has been deformed by regional tectonics, evaporite deformation, and dissolution of underlying rocks. The eastward dip (approximately 1°) is its main tectonic feature. At ERDA 6, a drillhole northeast of the site, the underlying evaporites have deformed, arching the Culebra well above the regional trend and forming an anticline. South of the WIPP, an anticline (the "Remuda Basin anticline") has formed where dissolution of the Salado to the west reversed the eastward regional dip. Across the WIPP site, more subtle changes in structural position of the Culebra are believed to have formed from variations in regional tectonics or from evaporite deformation, rather than from dissolution of Rustler halite.

Geophysical logs were interpreted to determine the areal extent of halite in various Rustler members in the vicinity of the WIPP. In contrast to some earlier studies, the unnamed lower member was divided into two separate mudstone/halite units. Though we believe halite in the Rustler is mainly distributed according to depositional processes, the data will permit the hydrologic parameters of the Culebra to be compared more directly with variations in thickness and other factors.

The Culebra has been physically perturbed by loading and unloading since the Permian. It is most likely that approximately 400 meters (approximately 1,300 feet) of rocks were added during the Triassic. Little, if any, additional load was added until the late Cenozoic. The bevelled edges of the Dewey Lake and Santa Rosa Formations suggest that they were eroded since regional tilting occurred about mid-Cenozoic, which may have been the most rapid

period of unloading experienced by the Culebra. Evidence based on hydrocarbon formation in formations below the evaporites suggests greater loading and unloading.

### 1.0 Introduction


The Permian Rustler Formation (Figure 1) of southeastern New Mexico overlies Permian evaporite beds of the Salado Formation. The Waste Isolation Pilot Plant (WIPP) is a facility designed to dispose of transuranic wastes (from U.S. defense programs) in the Salado. The Rustler has been intensely studied (e.g., Beauheim and Holt, 1990; Beauheim et al., 1991; Reeves et al., 1991) as a potential pathway for waste should any mechanism release waste upward from the disposal horizon.

Most of the available field work on Rustler hydrology has focused on determining in situ properties of water-bearing units (mainly the Culebra Dolomite Member) through various borehole tests. There are continuing efforts to try to understand how well the hydrologic data at boreholes represent the formation or individual units. Last, but not least, the data and generalizations about the hydrology of the Culebra have been used to assess the performance of the WIPP in isolating waste, given certain assumptions about failure scenarios.

Studies of Rustler geology mainly began from the need to describe the geology of WIPP shafts and were accelerated by differences in interpretation of the distribution of halite in the formation. Depositional features were studied and interpreted (Holt and Powers, 1988), and we began to recognize additional geological processes that contributed to the development of Rustler hydrology. Here we will concentrate on those processes, exclusive of deposition, that we believe most contribute to Rustler hydrology.

A number of regional processes likely have affected the hydrogeology of the Rustler by developing or enhancing the fracture permeability of water-bearing units, especially the Culebra. Pervasive processes, such as regional tilting, may have introduced areally extensive and relatively uniform strain, and regionally extensive processes, such as dissolution of the Salado, may have local consequences around the WIPP. In the analysis that follows, we emphasize the regional processes likely to have some local effect on hydrologic characteristics of the Culebra. In order of discussion, these are dissolution of the Salado, tectonic or other deformation of the Culebra, dissolution of Rustler halite, and the unloading history of the Culebra.

Only a few stratigraphic units are discussed in this report (Figure 1). The Salado and Rustler are considered in more detail, and some additional stratigraphic information is presented in



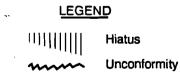
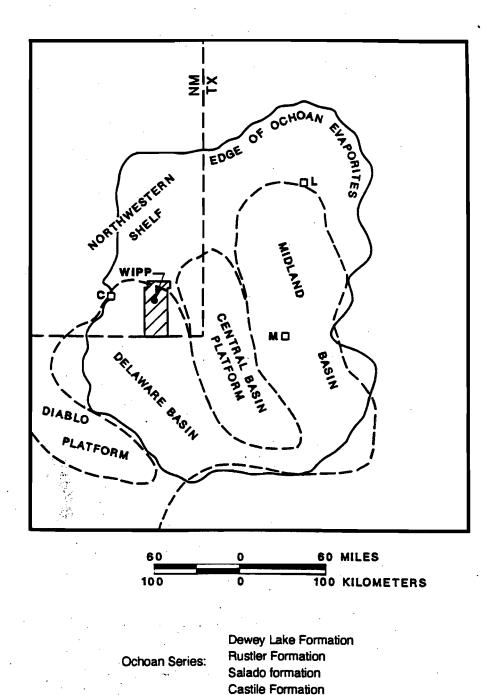




Figure 1 General Stratigraphic Column Northern Delaware Basin

later sections, as needed. (For further information on the background of the stratigraphic nomenclature, refer to Powers and LeMone [1990]. Lucas and Anderson [1993a,b] have proposed some changes in stratigraphic nomenclature for this area that we are not using until their utility is established.) Within the Delaware Basin (Figure 2), the Salado overlies the Permian Castile Formation, also an evaporite deposit, and underlies the Rustler Formation. a mixed clastic and evaporite unit (Holt and Powers, 1984, 1986a, 1986b, 1988; Powers and Holt, 1990). The overlying Permian Dewey Lake Formation and Triassic Santa Rosa Sandstone (also referred to in reports respectively as the Dewey Lake Red Beds and the Dockum Group or the Triassic undivided) are considered briefly for certain processes, especially unloading. The Mio-Pliocene Ogallala Formation of the High Plains is useful for estimating some bounds to erosion and unloading. The Miocene to Pleistocene Gatuña Formation is also briefly referred to, though it is considered separately as it relates to geological history and possible recharge (Powers and Holt, 1995). The Rustler Formation has been evaluated in detail in Holt and Powers (1988).

Data developed for this report and existing data sets used to supplement our work have varying metric and English units. The units used in differing sources are generally adopted as primary units, and conversions are provided. Conversions may be rounded, especially if an estimate is the beginning point. Thus, 300 m may show a conversion of 1,000 ft. Not all units, however, are converted. A contour line value may not be converted, and some repetitive values have been deliberately left without a conversion.

Drillhole data used in and developed for this report have a history that is demonstrated by the appendix organization. Many drillholes were initially interpreted for the Rustler study (Holt and Powers, 1988), and these drillholes provide a substantial part of our database. Appendix A presents this database, supplemented by some additional drillholes and interpreted for additional stratigraphic units. Appendix A-1 presents basic identification and location data for each drillhole. Appendices A-2, A-3, and A-4 present depth data, respectively, for the Salado, Rustler, and Dewey Lake and Santa Rosa. Appendix B reports similar location and identification data (B-1) and depths for Rustler units (B-2) provided by Richey (1989). Appendix C is a comparison of the Rustler data between the Holt and Powers data set (Appendix A-3) and the Richey data set (Appendix B-2). Topics are not introduced in the text exactly in the order of appendix information.



Modified from Jones (1972). C, M, L are Carlsbad, Midland, and Lubbock. Study Area is Hachured

#### Figure 2 Approximate Edge of Ochoan Evaporites Superimposed on Broad Tectonic Elements.

#### 2.0 Salado Dissolution

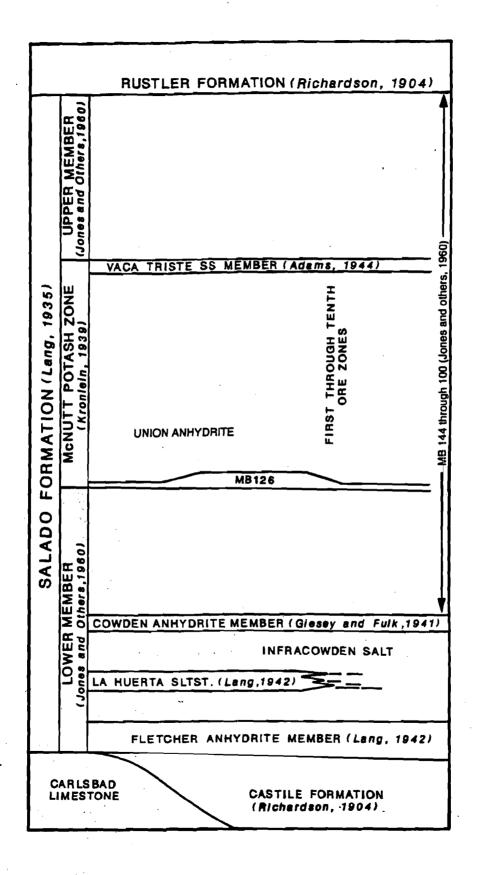
It has long been recognized that the Salado Formation has been variably dissolved, with the greatest effects occurring west of the Pecos River. Removing the thick salt deposits of the Salado significantly disrupts the overlying units, including the Rustler Formation. Within this section, we review the general geology of the Salado, including WIPP information bearing on the depositional history of the unit. Specific data on the thickness of the Salado have been developed and help to ascertain both the location of, and the potential for, disruption of the overlying units by dissolution.

#### 2.1 Background Information on the Salado

The Permian Salado Formation of southeastern New Mexico and west Texas is well known as the major domestic source of potash used as fertilizers in the United States. The Salado was deposited over a large area of the Permian Basin in New Mexico and west Texas (Figure 2), and Lowenstein (1988) considers the Salado a saline giant because of its areal extent. Over much of the area, Salado strata are readily traceable. The dominant mineral is halite, but marker beds are mainly sulfate minerals. These marker beds, consisting of anhydrite and polyhalite (or gypsum at shallow depths), are continuous over large areas. The U.S. Geological Survey (Jones et al., 1960) numbered the more prominent of these marker beds downward from 100 to 144.

The Salado displays features that have been interpreted to have formed in shallow water in a desiccating basin (Gard, 1968; Jones, 1972; Lowenstein, 1982, 1988; Holt and Powers, 1990, 1991). Depositional features from WIPP shafts have been described and interpreted by Holt and Powers (1990, 1991), indicating that water-table levels changed frequently while beds were being deposited. Argillaceous beds and features are analogous to young evaporites exposed at Death Valley, California.

#### 2.2 Salado Stratigraphy


The Castile and Rustler Formations were named by Richardson (1904) for outcrops at Castile Spring and the Rustler Hills, respectively, in Culberson County, Texas. The principal evaporite rocks are below the Rustler and were divided by Cartwright (1930) into two units: the lower and upper Castile Formations. Lang (1935) later proposed that the upper Castile Formation of Cartwright should be called the Salado Formation after Salado Wash in northern Loving County, Texas. Lang (1935) restricted the name Castile to the lower section.

Pre-Rustler evaporites belonging to the Salado were noted by Lang (1935) to generally have more than 1 percent  $K_2O$ , as well as polyhalite. Adams (1944) states that the Salado was defined by Lang (1935) "... to include all pre-Rustler evaporites containing more than 0.5 of 1 percent of potash," though this limit is not in various publications by Lang (1935, 1937, 1939, 1942) covering the Salado. A stratotype of the Salado was designated (Lang, 1935) in the Pinal Dome Means No. 1 well (southeast corner, Section 23, Block C-26, P.S.L.) in eastern Loving County, Texas. Lang (1939) considered the difficulties in designating the base of the Salado on any of several criteria:

- The base of salt over the Capitan reef
- The base of potash, including polyhalite
- The top of banded anhydrite
- The contact between anhydrite and Capitan limestones.

This was, at least partially, resolved when Lang (1942) described the anhydrite overlying Capitan reef rocks and defined the contact as the base of the Salado. Lang named this basal member of the Salado the Fletcher Anhydrite after the U.S. Potash Fletcher No. 1 core test (Section 1, T.21S., R.28E.) in Eddy County, New Mexico. By this definition, the Castile Formation was restricted to the Delaware Basin area inside the Capitan reef. Later investigators (Jones et al., 1973, p. 15; Bachman, 1984) suggest that the Fletcher Anhydrite Member may interfinger with anhydrites normally considered part of the Castile Formation elsewhere in the Delaware Basin. In a recent paper, Madsen and Raup (1988) agree with earlier proposals (e.g., Bachman, 1984) that the Castile was exposed along the western margin of the Delaware Basin before the Salado was deposited.

Several additional members or beds within the Salado have been formally or informally proposed and are used with varying frequency (Figure 3). Kronlein (1939) named the McNutt potash zone after the 250-foot (ft) (76-meter [m]) thick interval with soluble potash salts first demonstrated in the Snowden-McSweeny V.N. McNutt No. 5 drillhole. The Cowden Anhydrite Member was included in the lower Salado by Lang (1942); the Cowden was designated by Giesey and Fulk (1941) in a well in the North Cowden field in Ector County, Texas. In the northern Delaware Basin, a zone of halite below the Cowden has informally been called the infra-Cowden. Within this salt unit, Lang (1942) designated the La Huerta Siltstone Member for a 5-foot-thick (about 1.5-m-thick) red siltstone that Lang felt is common over the Capitan reef area. The name comes from La Huerta townsite, north of Carlsbad, where Lang expected the siltstone would crop out if present at the surface. In the northern Delaware Basin, a widespread unit was named the Vaca Triste Sandstone Member (Adams,



#### Figure 3 Salado Stratigraphy

1944) for Vaca Triste Draw. The type section was designated at depths between 1,555 and 1,565 ft (474 and 477 m) in the Continental King No. 1 well (Section 26, T.25S., R.32E.) in Lea County, New Mexico. Adams (1944) reports 15 ft (4.6 m) of anhydrite immediately underlying the Vaca Triste. Geophysical logs from the vicinity of Continental King No. 1 display a prominent siltstone bed at about the same depth, but there is no discernible anhydrite or sulfate unit beneath it (Figure 4). These geophysical log signatures provide a standard for the Vaca Triste, though it cannot be conclusively demonstrated to be the Vaca Triste as described by Adams (1944). The log signatures provided are similar in form and stratigraphic position to the Vaca Triste as identified in other areas (e.g., Jones et al., 1960).

Kronlein (1939) introduced a numbering system for halitic and sulfatic units within the upper Castile (Salado), but this scheme was not specifically adopted. Jones et al. (1960) provide general geophysical log responses and corresponding lithologic logs for the Salado in the potash resource area in the northern Delaware Basin and on the Northwestern Shelf. Jones et al. (1960) clarified and established informal marker bed and ore zone terminology (Figure 3) that has become standard and is used here. In addition, Jones et al. (1960) commented on the variability of marker bed thickness and lithology on the shelf north of the Delaware Basin and in the northern Delaware Basin area.

#### 2.3 General Salado Geology in the Northern Delaware Basin

The total Salado section in the eastern part of the Delaware Basin (Figure 2) consists of about 2,000 ft (600 m) of evaporites. The Salado is about the same thickness at the WIPP site in the northern part of the basin. The Salado can be considerably thinner (1,000 ft [300 m]) northwest of the WIPP site, near the potash mines.

Over the western part of the Delaware Basin, however, the Salado consists of yellowishbrown to reddish-brown, poorly consolidated argillaceous and silty sediment and blocks of gypsum that are commonly bright reddish brown. The gypsum blocks are attributed informally to incongruent solution of polyhalite beds, as most polyhalite beds are orange to reddish-brown from disseminated iron oxide. The blocks also are considered to be alteration products of one or another of the major marker beds of the Salado. These outcrops are thin, and they have been studied little because they are usually considered a residue from nearly complete dissolution of the Salado.

Between these extremes, the Salado may be thinner than it normally is in or near the depocenter, varying due to deposition, dissolution, or some combination of the two. Holt and

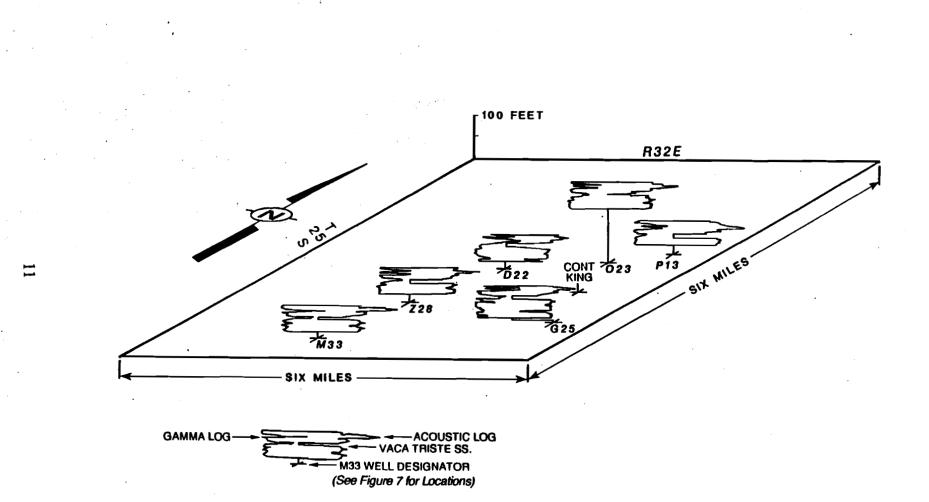



Figure 4 Vaca Triste Log Signatures near Continental King Well, Paduca Field.

Powers (1988), following Bachman (1974), demonstrated that in the Nash Draw area, dissolution removed as much as 180 ft (55 m) of upper Salado, causing collapse upward that has affected the overlying units, including the Culebra Dolomite Member of the Rustler Formation. The inference by Bachman (1974) that this occurred since formation of the Mescalero caliche is no longer maintained as correct (Bachman, 1980, p. 85), while the removed thickness is likely underestimated. The hydrologic character of the Culebra has been altered by this process in the Nash Draw area.

For this study, the upper Salado is more systematically examined over a larger area, and the objective is to assess the amount of soluble minerals that may have been removed from the upper Salado in the vicinity of the WIPP site. The objective requires that we estimate the reasonable variation in original deposition that may have occurred and the relative time of removal. A series of isopach maps of selected upper Salado beds and intervals between them demonstrates the variable thickness. Combined with analysis of geophysical log signatures and selected structure contour maps, these isopachs permit an initial assessment of how past and/or future dissolution of the upper Salado may affect Rustler hydrogeology.

From the general vicinity of the Pecos River eastward, the subsurface Salado thickens toward an area near the eastern margin of the Delaware Basin. Additional sulfate marker beds can also be distinguished in the upper Salado in the eastern Delaware Basin. Jones et al. (1960) and Bachman (1974) described how, from east to west, the Rustler lies on successively deeper marker beds of the Salado. Vine (1963) attributed the relationship to dissolution of the upper Salado. Jones et al. (1973) note that a solution residue of the Salado would probably be lumped with basal Rustler mudstones on the basis of geophysical logs. Holt and Powers (1984, 1988) recognize erosion and channeling in basal mudstones of the Rustler at the WIPP site. At least some pre-Rustler erosion and dissolution of the upper Salado probably have occurred. Based on outcrops, Adams (1944) considered the Salado/Rustler contact to be erosional.

The present relationship of the upper Salado to the basal Rustler was developed apparently both by pre-Rustler solution and erosion (that continued as the basal Rustler was being deposited) and later episodes of dissolution (that may be largely Cenozoic and are probably continuing at some level today). We are still unable to separate basinwide the relative contributions of these two episodes, and we generally ascribe the effects to later dissolution, though this overestimates the effects during this time.

Between sulfate marker beds, intervals of halite are mixed variously with polyhalite, anhydrite, siliciclastics, and some potash minerals. In this study, siliciclastic beds, mudstones, or argillaceous halite were distinguished by geophysical log responses (mainly natural gamma ray and sonic or acoustic velocity logs). These argillic rocks are commonly continuous over the width of the basin like the numbered sulfatic marker beds (Powers et al., 1988), although early mapping in the WIPP underground ([TSC-D'Appolonia], 1983; Powers and Hassinger, 1985) and more recent mapping in a shaft (Holt and Powers, 1991) demonstrated that the argillaceous units are laterally disrupted on a scale of 1 m or less (about 3 ft) by syndepositional processes. The argillaceous units have not been numbered or named, probably because they are not as distinctive individually in cores or cuttings, with the exception of the Vaca Triste Sandstone Member (Adams, 1944) that is taken as the upper boundary of the McNutt potash zone. The siliciclastic beds are also helpful in diagnosing the effects of dissolution and the extent of lateral facies changes within the Salado.

Within Nash Draw, much of the upper Salado has been removed by dissolution (Bachman, 1974; Holt and Powers, 1988). Erosional features in the basal Rustler mudstones, however, also suggest that the upper Salado section in the central to western parts of the Delaware Basin may have been lost through erosion and/or solution before the Rustler was deposited. The section may not have been reduced simply due to dissolution in the more recent geological past. Three separate processes may contribute to the generally observed contact relationships between Rustler and Salado: dissolution, pre-Rustler erosion and dissolution, or Salado facies/depositional changes. Dissolution has been considered as the significant process (e.g., Jones et al., 1973; Bachman, 1974; Anderson, 1978; Vine, 1963; Lambert, 1983), though Adams (1944) reported a nonconformity at the Salado/Rustler contact. The prevailing assumption has been that upper Salado marker beds, lithofacies, and thickness were deposited uniformly through the area of the Pecos River Valley. This assumption tends to maximize the volume estimate of halite and other rocks removed by dissolution.

As rock is dissolved in the subsurface, void space is created, and the overlying rocks tend to collapse and fracture (see review in Holt and Powers, 1988). Such fracturing and collapse has been hypothesized to contribute to the hydrologic characteristics of the Culebra Dolomite Member of the Rustler Formation (e.g., Gonzalez, 1983; Mercer, 1983; Beauheim, 1988). Holt and Powers (1988) suggest that rocks overlying a dissolution zone are affected in proportion to the thickness of dissolved rock. A realistic estimate of the thicknesses of removed Salado and Rustler rocks may correlate with present hydrologic properties (and predict future characteristics) of the Culebra better than conservative estimates. Holt and

Powers (1988) reconstructed depositional environments of the Rustler, providing a more realistic (and lower) estimate of the extent of recent Rustler dissolution. Most of the Rustler halitic units were affected by synsedimentary dissolution much more than by dissolution after the Rustler was deposited. The upper Salado needs to be reexamined as well to provide a more realistic estimate of recent dissolution.

In this study, the upper Salado relationships to the Rustler are reexamined to provide insight into possible effects of facies changes and pre-Rustler erosion and solution, as well as more recent or post-Rustler dissolution. For an initial approach, the loss of upper Salado is estimated from the change in thickness from the base of the Rustler to specific marker beds (e.g., Marker Bed [MB] 103). Jones et al. (1960) indicated how geophysical logs could be used in the study of the Delaware Basin evaporites, and they concluded that some marker beds vary considerably in thickness and composition, based on cores and geophysical logs. A database was not established by Jones et al. (1960). A more recent study (Adams, 1970) of the Salado based on geophysical logs and cores provided some information similar to this study and demonstrated the utility of using geophysical logs.

Facies changes in the Salado are estimated first by carefully examining marker beds and intermarker beds in areas near the Salado depocenter, southeast of the WIPP site. Closely spaced and numerous geophysical logs permit us to study continuity of marker beds, thickness and log character variability, and lithologic changes of intermarker beds. Logs from the depocenter and margins serve as a beginning point and standard of comparison for logs in the critical area to the west where the upper Salado begins to thin.

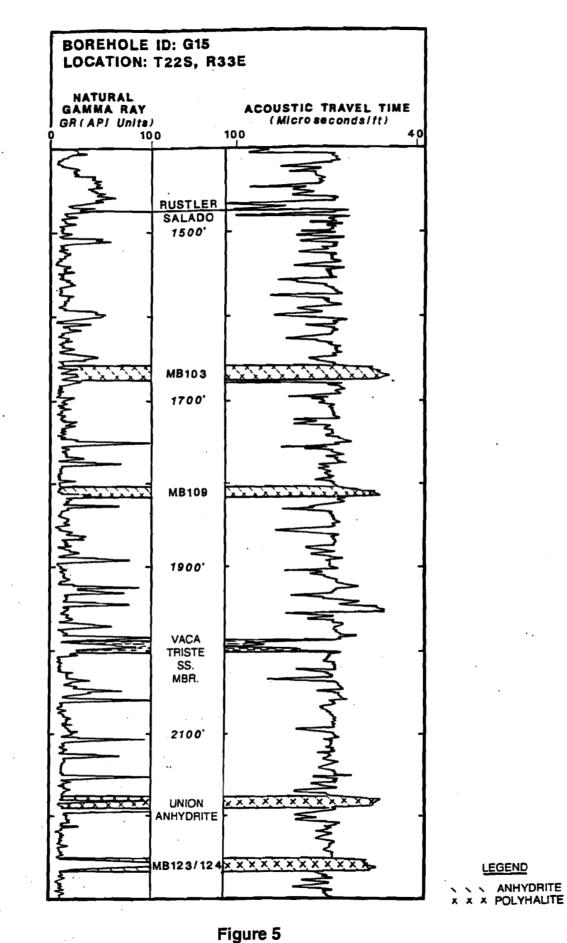
Syndepositional erosion and dissolution may be the most difficult to assess. Larger, mappable channel forms, similar to those mapped in the Salado in shafts at the WIPP (Holt and Powers, 1986b), may or may not exist throughout the area; we are unlikely to interpret them using geophysical logs in the rest of the basin. Truncated marker beds at the top of the Salado need to be evaluated for evidence of dissolution and erosion. Elsewhere, Salado sulfates crop out, having apparently survived extensive solution. We might, therefore, expect sulfate to accrete to the base of the residue unit; erosion should remove and truncate beds. Sulfates could be dissolved completely, and the result may be indistinguishable from erosion. Carefully reconstructed cross section and log signatures should provide better evidence of the extent of facies changes, pre-Rustler erosion and solution, as well as more recent dissolution of the Salado in the northern Delaware Basin.

### 2.4 General Methods to Evaluate Salado Dissolution

Isopachs and cross sections are based mainly on geophysical log data and are tied stratigraphically to the marker bed system within the Salado (Jones et al., 1960). Marker beds of the upper Salado are dominantly sulfatic (anhydrite and polyhalite, or gypsum where altered near the surface). In the deeper subsurface, anhydrite dominates, though polyhalite  $[K_2MgCa_2(SO_4)_4 \cdot 2H_2O]$  is also a common mineral. These two rock types, for example, have high acoustic velocities and densities (Table 1). Polyhalite has a high natural gamma signature from the decay of ⁴⁰K, and the hydrogen absorbs neutrons. Gamma ray and acoustic logs are relatively common in the Delaware Basin through the upper Salado and Rustler. Because of their characteristics and abundance, gamma ray logs combined with acoustic (sonic), density, or neutron logs were chosen, in that order of preference.

Rock Type	Natural Gamma (API Units)*	Acoustic Travel Time (in microseconds per ft)	Density (in grams per cubic centimeter)	Neutron
Halite	10 ^b	-70	2.0-2.1	High
Argillaceous halite	10–30	70–80	<2.1	Low-Medium
Mudstone	20–50	>80	<2.0	Low
Gypsum	10 ⁶	60–70	-2.4	Low
Anhydrite	1.0 ⁶	~55	-2.9	High
Polyhalite	10-100 ⁶	55	-2.8	Low

Table 1Typical Log Responses for Salado Rocks


^aAPI (American Petroleum Institute) units for natural gamma are normalized to 100 API units as the log response for a North American mid-continent black shale. ^bReflects baseline value on most logs.

The alleged dissolution residues of the upper Salado consist in large part of sulfates and insoluble silicates. Facies changes in the interbeds between marker beds may be inferred if the natural gamma in thick halites is insufficient to account for the thickness of the laterally equivalent silicate "residue." There are too few data to provide quantitative calibration of log responses, but some empirical notions of log response are useful (Doveton, 1986). The gamma reading from the "residue" times the thickness of the "residue" should be similar to

the product of the "undissolved" lateral equivalent and its thickness, assuming natural gamma in "undissolved" halite units is entirely due to insoluble silicates. A 10-ft (3-m) "residue" registering 40 API units should have an "original" equivalent of, for example, 20 ft (6 m) at 20 API units, or 40 ft (13 m) at 10 API units. [Because ⁴⁰K in polyhalite or sylvite can contribute natural gamma in the "undissolved" unit, these assumptions can lead to overestimating silicates in the undissolved section. A spectral gamma log would help distinguish ⁴⁰K from other mineral sources of natural gamma.] Some of the Salado beds near the WIPP facility horizon have been analyzed in the laboratory, indicating low acid-insoluble content (e.g., average of 0.6 weight percent; Stein, 1985). These samples could be compared to log responses if additional calibration is desired. This study provides the first known examination of possible facies changes of the upper Salado across this area.

For baseline data, MB 103, MB 109, MB 123/124, Union anhydrite, and Vaca Triste Sandstone Member were identified on logs. [MB 123 and MB 124, and any distinguishable interval between them, are considered a single unit in this report and will be written as MB 123/124. The base of the combined unit is also referred to as the base of MB 124.] The base and top of each unit were selected on the basis of combined gamma ray and sonic or density logs. The sonic and density are most responsive to the sharp basal contact that most marker beds display. The upper contact may be less sharp than the base; reference signatures of selected contacts (Figure 5) provide a standard. From these data, isopach maps of selected marker beds, interbeds, or combined units were constructed. The intervals from the Salado/Rustler contact to different marker beds are also of principal concern, as the upper Salado is the area believed initially attacked by dissolution. Several cross sections were constructed to show systematic log changes, or the lack thereof, to indicate possible facies changes. Data from selected areas were examined statistically to highlight expectable variations in thickness in units like these (Table 2).

The Salado study was confined to approximately 35 townships around the WIPP site (Figures 6 and 7). The suite of geophysical logs used to interpret the Rustler Formation for this area (Holt and Powers, 1988) was supplemented with some additional logs to fill in areas with sparse coverage. The interpretive methods and the quality assurance procedures are similar to those for the Rustler (Holt and Powers, 1988). All logs were interpreted by one individual (D. W. Powers). Data were transferred to data sheets and verified independently. Commercial software (Rbase 3.1, a product of Microrim, Inc.) was used by Powers to create a



# Reference Geophysical Signatures and Selected Contacts for Upper Salado Formation Near the WIPP Site

17

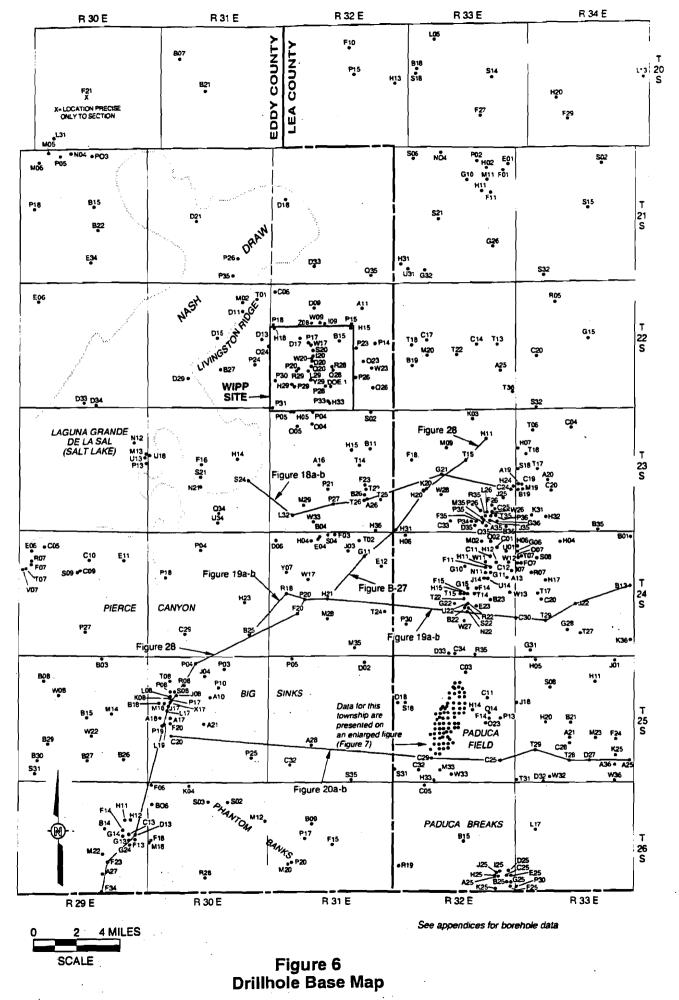
4/18/95

#### Table 2

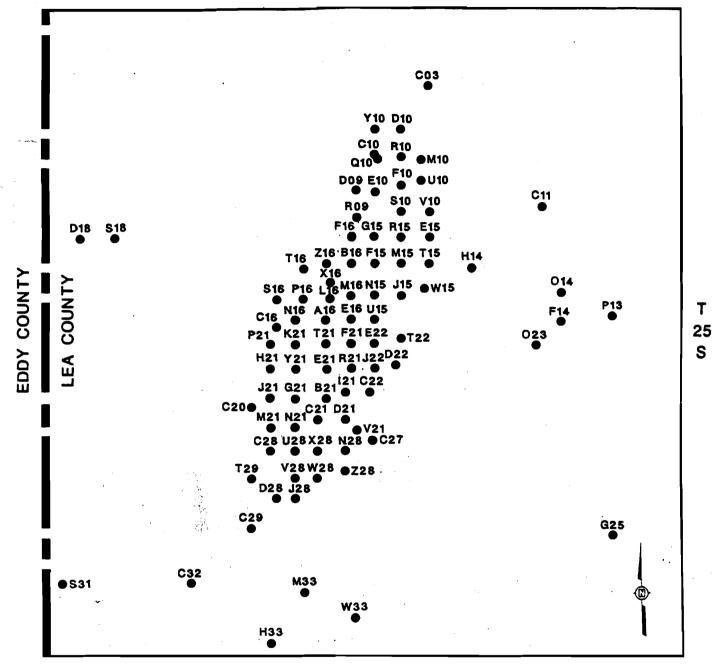
T.23S., R.32E.	T.23S., R.33E.
n = 28	n = 13
$\bar{x} = 520 \text{ ft}$	Σ = 507 ft
$\sigma_{n-1} = \pm 19 \text{ ft}$	σ _{n-1} = ±9 ft
T.24S., R.32E.	T.24S., R.33E.
n = 28	n = 19
$\overline{x} = 577 \text{ ft}$	x̄ = 562 ft
$\sigma_{n-1} = \pm 35 \text{ ft}$	σ _{n-1} = ±34 ft
For all four $n =$	townships: 88

### Statistics Regarding Thickness of Interval from the Top of Vaca Triste to the Top of Salado^{*}

^aRefer to Figure 6 for township locations and isopach contours. Refer to Figure 5 for the stratigraphic interval. There are 107 drillholes within these townships; not all have data on this interval.


relational database and to manipulate basic data to formats required for various maps. Maps and data were verified independently as well. The data are presented in Appendix A.

#### 2.5 Salado Thickness (Isopach) Information


To understand the patterns of thickness variations of the Salado in the area around the WIPP site, we compare first the broad patterns from two thick intervals (the upper and middle parts) of the Salado. We later describe in more detail the changes in thickness by comparing thinner subintervals of the Salado defined by intervals between some significant marker beds. There is no difference in methods for these comparisons.

#### 2.5.1 Broad Patterns

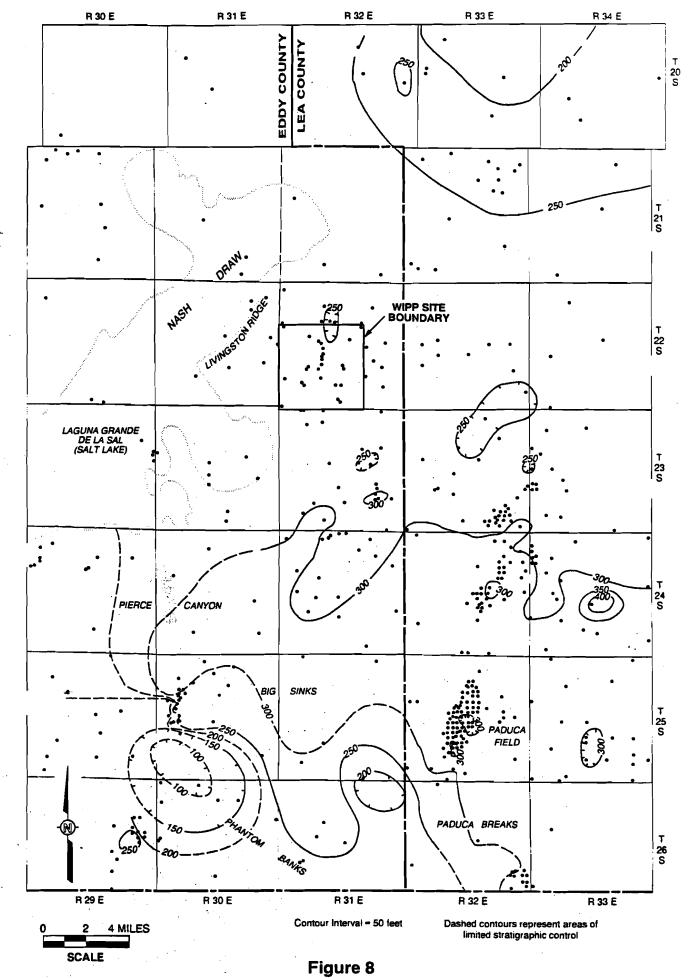
Two isopach maps illustrate the broader patterns of upper Salado thickness. An isopach map from the top of the Vaca Triste to the top of the Salado expresses the broad patterns of thinning that are of interest for the Rustler geohydrology. An isopach map from the base of MB 124 to the base of the Vaca Triste shows the middle of the Salado quite well. The



4/18/95



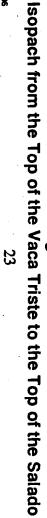
R 32 E

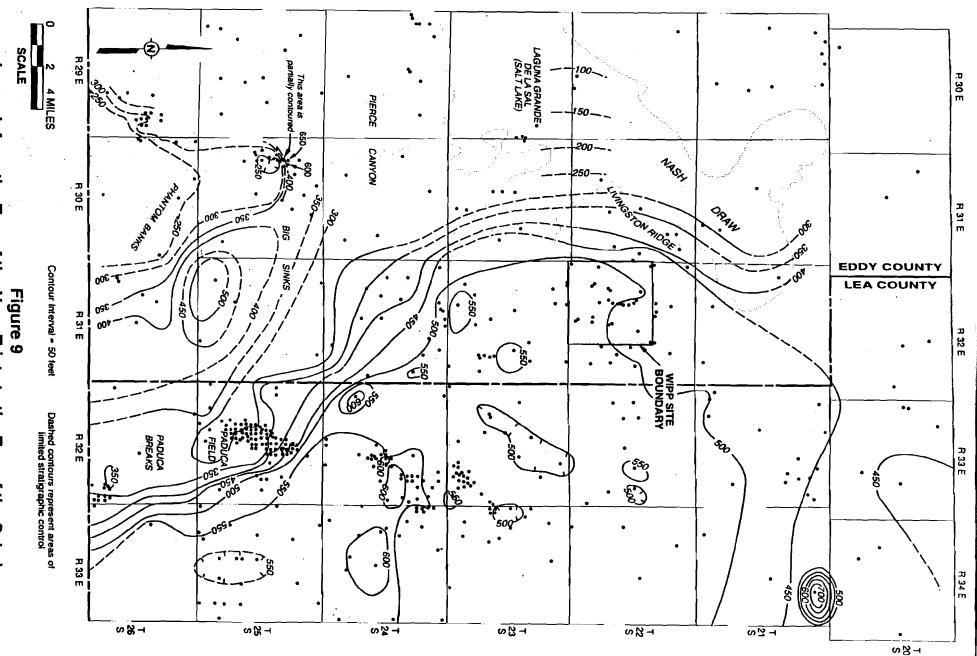

Figure 7 Drillhole Base Map of the Paduca Field

4/17/95

isopach map of this lower unit, in comparison to the upper Salado, shows a larger region less affected by dissolution and indicates depositional variations in thickness as a pattern for the Salado. Maps of specific interbeds (e.g., MB 109 to MB 103) have also been constructed to provide additional detail in support of these broader patterns.

The isopach of the interval from the base of MB 123/124 to the base of Vaca Triste (Figure 8) shows that this interval is approximately 250 to 300 ft (76 to 91 m) thick under the WIPP site area. This interval thickens to the southeast, toward an apparent depocenter, at a rate of approximately 10 ft/township (approximately 3 m/10 kilometers [km]). In the apparent depocenter, in the area of T.24-26S., R.32-33E., the MB 123/124 to Vaca Triste interval is generally over 300 ft (91 m) thick. In the northeast corner of the map area, over and behind the Capitan reef margin, the MB 123/124 to Vaca Triste interval is slightly thinner (less than 250 ft [76 m]). Small areas of this interval in the vicinity of Big Sinks and Phantom Banks are significantly thinner than either the depocenter or site areas. Higher units in this same area are more seriously disrupted, as described in following sections. Within the map area, the best defined and sharpest thinning of the MB 123/124 to Vaca Triste interval occurs in the southwest corner of T.25S., R.32E., at the southwest end of the Paduca oil field. This thinning trend is also generally observed southwest of the oil field in stratigraphically higher intervals.


The interval from the top of the Vaca Triste to the top of the Salado (Figure 9) is approximately 450 to 520 ft (137 to 158 m) thick in the vicinity of the WIPP site. The interval may be starting to thin approximately 50 ft/mile (mi) (9.5 m/km) off the northwest corner of the site, but the data are relatively few. In general, the Vaca Triste to Salado interval thickens to the southeast of the site toward a probable depocenter in the area of T.24-26S., R.33E. As in the MB 123/124 to Vaca Triste interval, the rate of thickening is of the order of 10 ft/township (3 m/10 km). In the depocenter, the interval is commonly greater than 550 ft (168 m) thick. As in the MB 123/124 to Vaca Triste interval, the Vaca Triste to Salado interval also is thinner in the northeastern part of the map area, over and behind the Capitan reef margin. In the southwest part of the map, in the Phantom Banks and Big Sinks areas, the Vaca Triste to Salado interval is usually less than 300 ft (91 m) thick, though there are a few exceptions. The Vaca Triste to Salado interval thins sharply northwest-southeast from the Paduca oil field area (T.25S., R.32E.) through the southeast arm of Nash Draw. The interval thins through this zone at an apparent rate of approximately 50 ft/mi (9.5 m/km); this




Isopach from the Base of MB 123/124 to the Base of the Vaca Triste

2/14/95







2/14/95

rate differs markedly from the rate of thickening from the site area towards the apparent depocenter (about 0.3 m/km).

#### 2.5.2 Subintervals of the MB 123/124 to Vaca Triste Interval

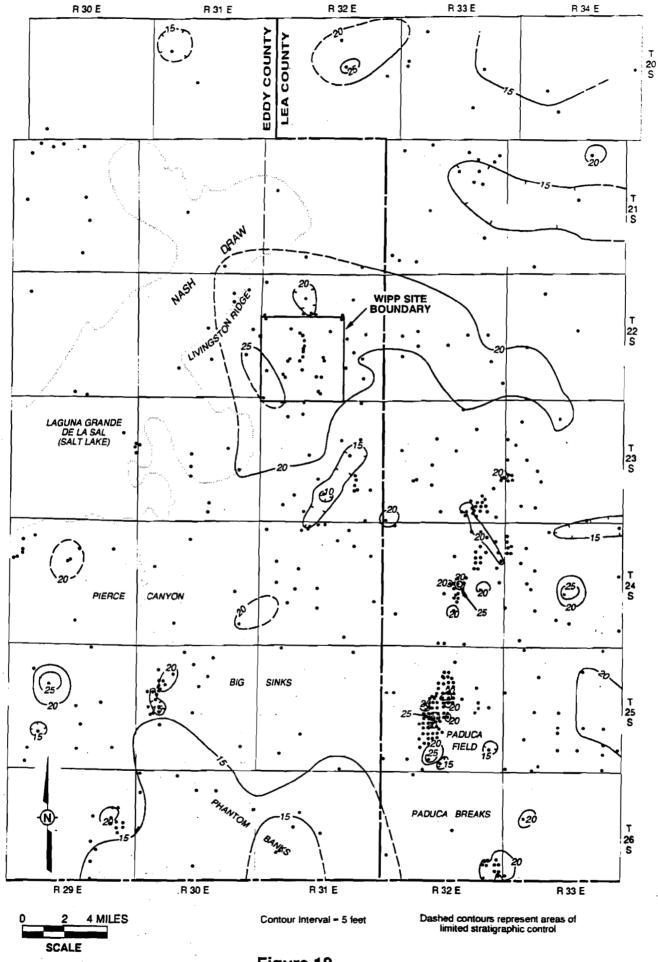
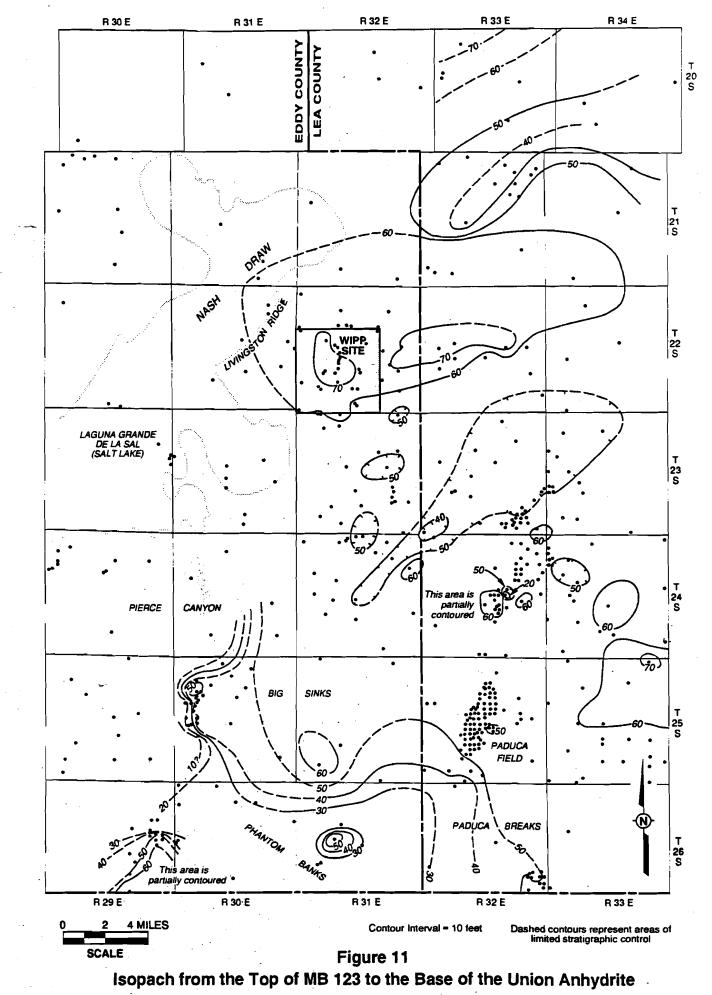
Within the MB 123/124 to Vaca Triste interval, two subintervals were examined for thickness trends. The combined MB 123/124 interval (Figure 10) is approximately 15 to 20 ft (4.6 to 6 m) thick in much of the map area; the most prominent variation is a slightly thicker (greater than 20 ft [6 m]) area in and around the WIPP site. In the southern part of the map area near Phantom Banks, MB 123/124 appears to be thinner, though the data are neither extensive nor very consistent in this area. Many of the other map patterns, where the thickness exceeds 20 ft (6 m), are areally quite limited and may not be significant departures from the "normal" thickness, given limits to precision of these data (see Holt and Powers, 1988, for a discussion of limits to log data).

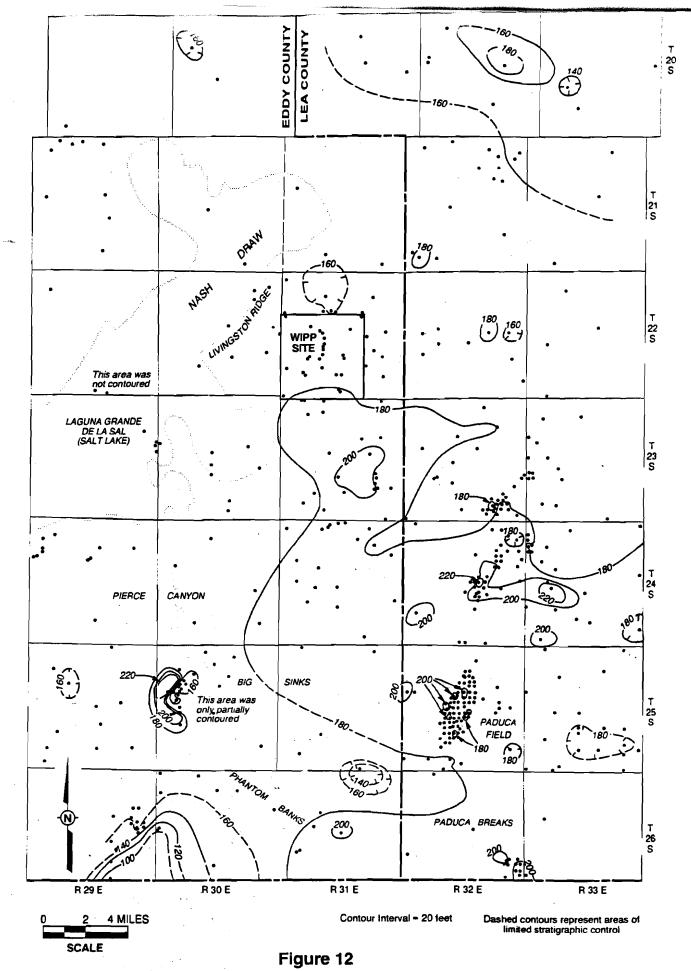
The interval from the top of MB 123/124 to base of Union anhydrite (Figure 11) is broadly similar to the MB 123/124 interval. Much of the central map area ranges from 50 to 60 ft (15 to 18 m) thick. The WIPP site area and an area east-northeast of the site are thicker (60 to 70 plus ft [18 to 21 plus m]). A small area near the southeastern side of the map area also exceeds 60 ft (18 m) thickness. A thinner area (less than 40 ft [12 m]) dominates the south central margin of the mapped area, and it appears more reliable than, though similar to, the thinning in that area of MB 123/124.

#### 2.5.3 Subintervals of the Vaca Triste to Salado Interval

Several subintervals of the Vaca Triste to Salado interval reveal additional details of the trends previously discussed.

The isopach from the top of Vaca Triste to the base of MB 109 (Figure 12) is approximately 160 to 180 ft (49 to 55 m) thick in the WIPP site area. Thickness increases slightly immediately south of the site as well as in the southeastern part of the map (from about 180 ft to more than 200 ft locally [about 55 to 61 m]). North and northeast of the site, the Vaca Triste to MB 109 interval thins slightly across the reef margin. The isopach data are not very systematic in the southwestern part of the map area. Overall, there is no well-defined southeast-northwest thinning trend as observed in the broader Vaca Triste to Salado interval (Figure 9) that includes Vaca Triste to MB 109.



Figure 10 Isopach of the Combined MB 123/124 Interval

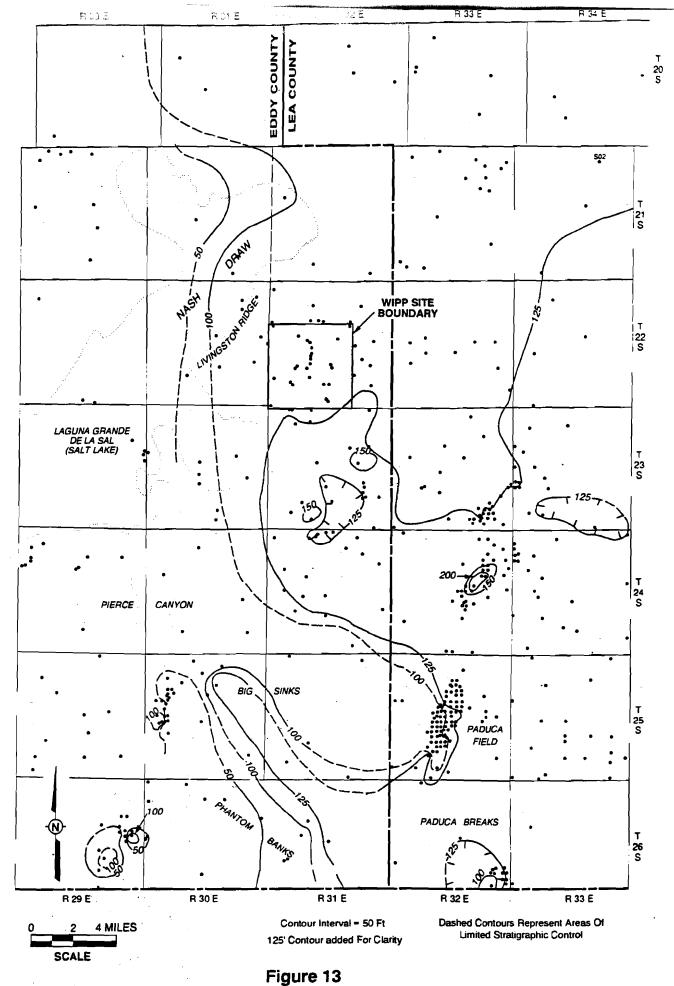
25

2/14/95

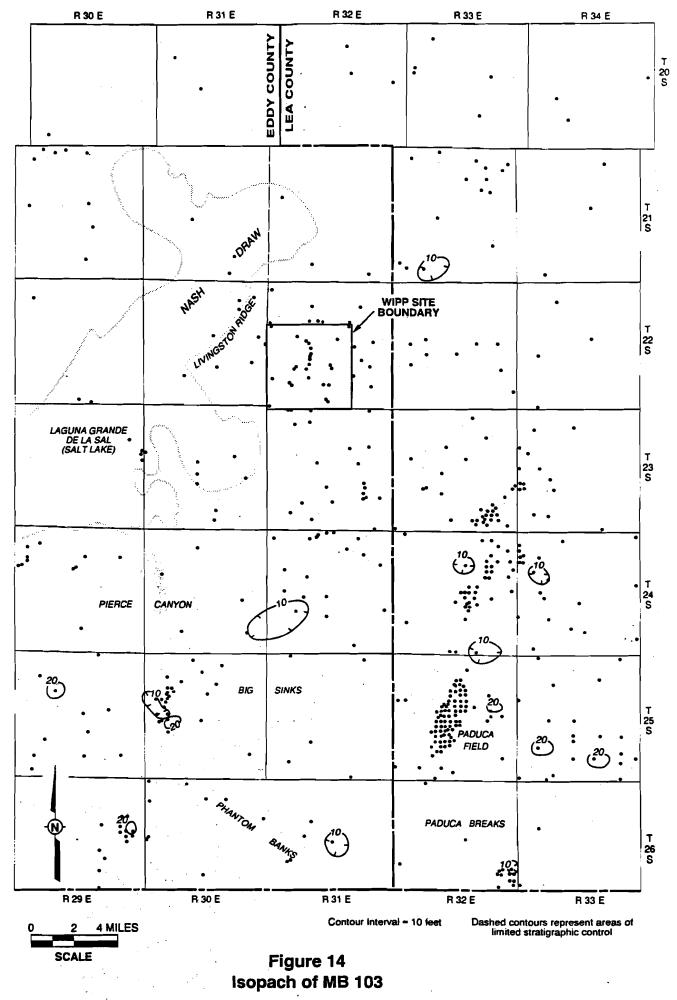


2/14/95

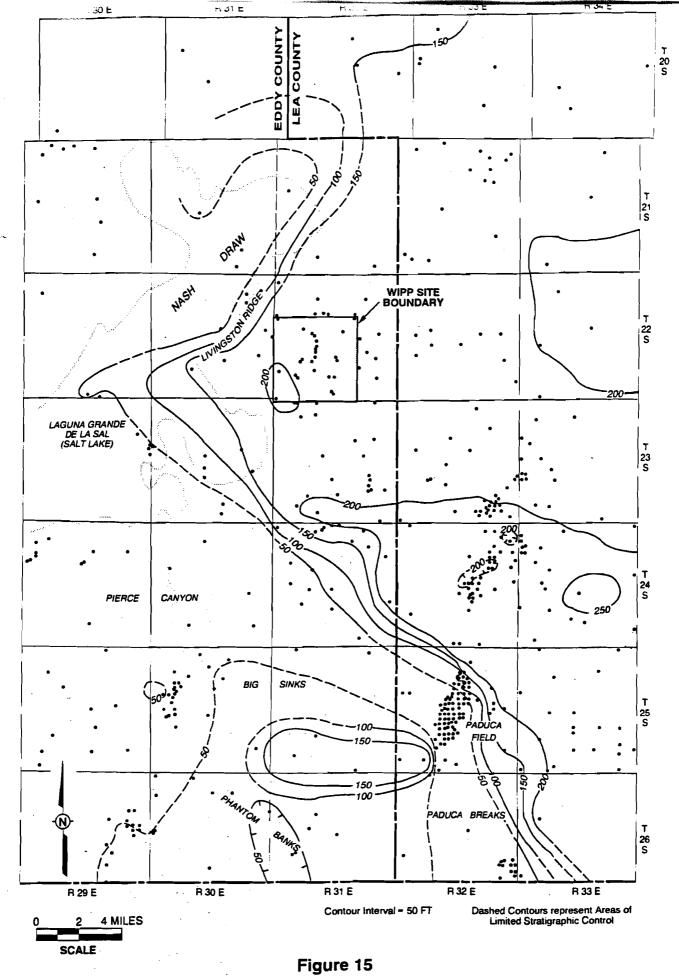



Isopach from the Top of the Vaca Triste to the Base of MB 109

The isopach of the interval from the top of MB 109 to the base of MB 103 (Figure 13) ranges from approximately 100 to 125 ft (30 to 38 m) thick in the vicinity of the WIPP site. This interval generally thickens from the site to the southeast. Most of T.24-26S., R.32-33E. is approximately 125 to 150 ft (38 to 46 m) thick, with a few exceptions. A slightly thicker area in T.24S., R.32E. exceeds 200 ft (61 m), while the immediately surrounding boreholes exceed 150 ft (46 m). The northeastern part of the map area is thinner than the site area, as in many other isopach maps, but the amount of thinning is not great. The southern and southwestern parts of the mB 109 to MB 103 interval border much thinner areas of this interval. The sharply defined thinning zone trends northwest-southeast across the map, as it does on the map (Figure 9) of the thicker Vaca Triste to Salado interval, which includes MB 109 to MB 103. The zone of thinning also trends across the northern half of the Paduca oil field (T.25S., R.32E.). The MB 109 to MB 103 interval thins approximately 25 to 50 ft/mi (4.7 to 9.5 m/km) across this zone.


MB 103 varies little throughout the map area (Figure 14). It is generally 10 to 20 ft (3 to 6 m), and the variations appear neither systematic nor particularly meaningful.

The interval from the base of MB 103 to the top of Salado is approximately 175 to 200 ft (56 to 61 m) thick in the site vicinity (Figure 15). A few data points indicate that the interval thins immediately west and northwest of the site. As in previous interbed intervals, MB 103 to Salado thickens from the site vicinity to the southeast (T.24S., R.32-33E.; T.25S., R.33E.), where the MB 103 to Salado exceeds 200 ft (61 m). The southwestern end of the map area reveals a much thinner interval, as does part of the southeastern boundary. There is also slight thinning of the MB 103 to Salado interval from the site to the north and northeast across the Capitan reef margin. The northwest-southeast trending zone of rapid thinning of the MB 103 to Salado parallels the similar zone in MB 109 to MB 103 interval, but it is displaced further northeast. As in other intervals for which isopachs were constructed, the thinning occurs at approximately 50 ft/mi (9.5 m/km).


None of the isopach intervals previously discussed includes the Vaca Triste Sandstone Member of the Salado. A separate isopach (Figure 16) for the Vaca Triste shows that the unit is generally between 10 to 20 ft (3 to 6 m) thick. In the vicinity of the WIPP site and area to the north of the site, the Vaca Triste is less than 10 ft (3 m) thick, but some additional explanation is appropriate. These data are mostly from the potash holes drilled for the WIPP project (Jones, 1978). The logs used for this information are natural gamma and an



Isopach from the Top of MB 109 to the Base of MB 103



• •



Isopach from the Base of MB 103 to the Top of the Salado

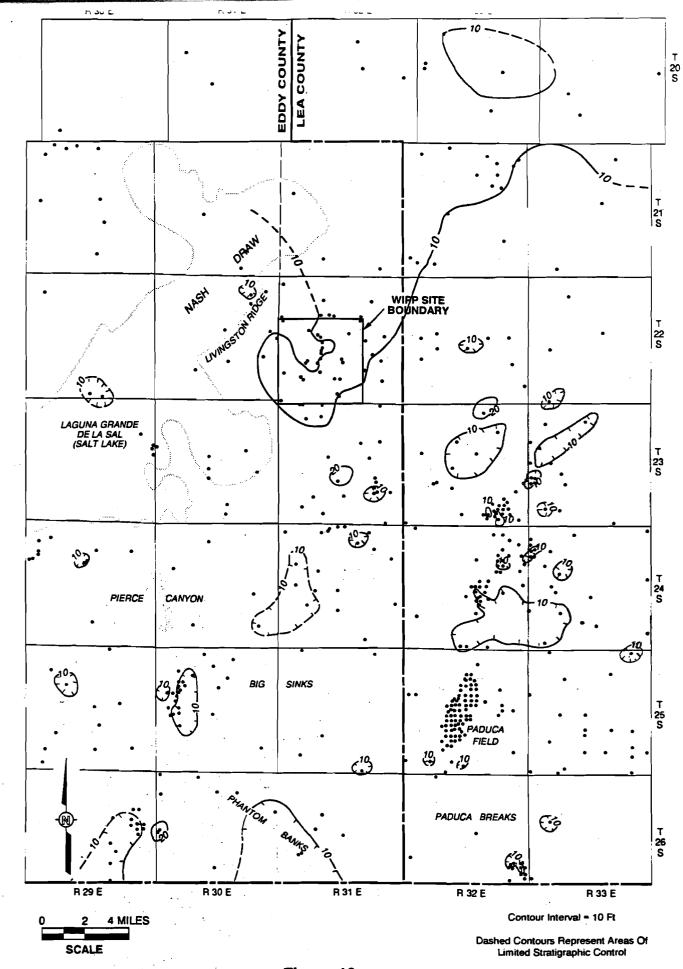



Figure 16 Isopach of the Vaca Triste Sandstone

• •

uncalibrated density log. The density log does not display the same signature as commercial acoustic logs for this interval, and it appears that the Vaca Triste is underestimated on the density log relative to the commercial acoustic or sonic logs used for the rest of the area. Not enough overlapping logs of both types are available to truly demonstrate this possible explanation. The Vaca Triste is an important marker unit. Among other things, it demonstrates the great areal continuity of some clastic-rich units within the Salado Formation.

#### 2.5.4 Discussion of Thickness Data

Isopach maps are traditionally valued because variations in the thickness of an individual unit can reveal information about the tectono-sedimentary regime during deposition of the unit and about events such as erosion before the overlying beds are deposited. The value of such maps is diminished when soluble evaporites are included in isopach units, because the thickness may be greatly reduced by dissolution long after overlying units are deposited. The maps included in this report still appear to contain information about some depositional trends that are useful in estimating the areas affected by dissolution and volumes removed.

We first observed generally that most of the mapped intervals are thickest in the east to southeast part of the map area. The same halitic intervals are also slightly thinner over and behind the Capitan reef margin to the north. The thickest area is interpreted as a depocenter because it is thickest and because it is located in approximately the same position as the Rustler depocenter (Holt and Powers, 1988). These same upper Salado units in the WIPP site area are slightly thinner but show no evidence of recent or continuing dissolution (Holt and Powers, 1984, 1986b, 1988, 1991) based on shaft descriptions and core observations.

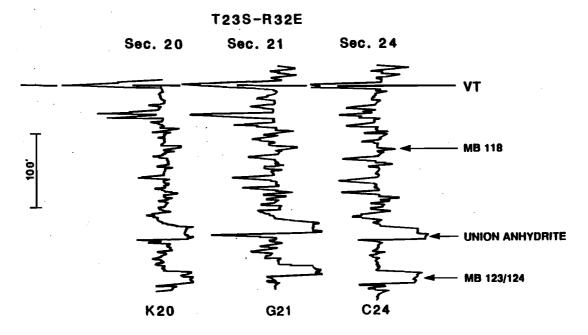
Compared to halitic units of the Rustler, the upper Salado depocenter appears to be broader and flatter. In the northern and northeastern part of the map area, over the Capitan reef, thinner upper Salado intervals seem to show some effects of this boundary.

Upper Salado intervals show a relatively narrow (generally approximately 1 to 3 mi [1.5 to 5 km]) zone where the interval thins dramatically compared to the broader depocenter. The width and rate of thinning compare reasonably well to a similar zone of the Tamarisk Member of the Rustler Formation (Holt and Powers, 1988). The major difference is that cores of the Rustler show evidence of a large facies tract of synsedimentary dissolution without collapse of overlying units. Cores from Nash Draw, where this zone of thinning upper Salado occurs, show fracturing and collapse of overlying sediments, demonstrating post-Rustler dissolution. This margin of the upper Salado appears to be dominated by

dissolution; we assume the rest of the margin southeast of the WIPP site is similar, though textural evidence is not available to confirm this assumption.

The upper Salado dissolution margin from the WIPP site to the southeast (Figure 15) trends subparallel to the strike line of the Culebra (Holt and Powers, 1988, figure 4.17; see Figure 22 in this report). If this margin of upper Salado salt is attacked further by dissolution, the Culebra transmissivities should be disturbed (increased) along strike to slightly downdip to the south-southeast of the site. This could provide a considerably different path for fluid transport than is usually assumed, as in the Final Environmental Impact Statement (U.S. Department of Energy, 1980).

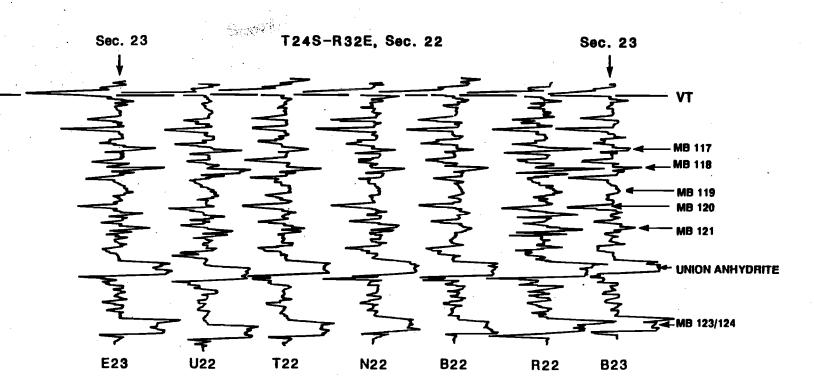
The third major observation and discussion point is that the Salado logs are often not interpretable in the west and southwest section of the map area. Where an individual geophysical log is interpretable, it is generally difficult to interpret the resultant isopachs. This western and southwestern section is disturbed by dissolution, including karst. Erosion before, during, and after deposition of the Miocene to Pleistocene Gatuña Formation has also affected the Rustler in this area.


#### 2.6 Cross Section Data

Cross sections have been constructed from geophysical logs to evaluate continuity of major marker beds and lesser interbeds and to evaluate any possible facies changes within the Salado halite interbeds. Major marker beds clearly are continuous over large areas, as is easily shown on acoustic logs (e.g., Figure 17a-c). This is a necessary basis for using marker beds to establish changes in thickness of various intervals, as described in the previous section. Thin clastic beds, such as those between MB 117 and the Vaca Triste (Figure 17b-c), are continuous on the same general scale as the sulfate marker beds (Powers et al., 1988). Major facies changes, if present in the halitic units between marker beds, could greatly change the estimated effects of evaporite dissolution in the upper Salado. Cross sections incorporate both natural gamma and sonic/acoustic measurements; these data permit major lithologic changes to be discriminated. The upper Salado is emphasized, as the most important changes in thickness for our evaluation occur above MB 109. Middle Salado beds provide a reference by which to judge upper Salado changes.

#### 2.6.1 Cross Section Details

The intervals from MB 123/124 to Union anhydrite and from the Union to the Vaca Triste, including marker beds, in east-west cross sections (Figures 18, 19, and 20; locations on


AL/4-95/CM/RUSTLER/REG_PROC.FIN



See Figure 6 for Drillhole Locations

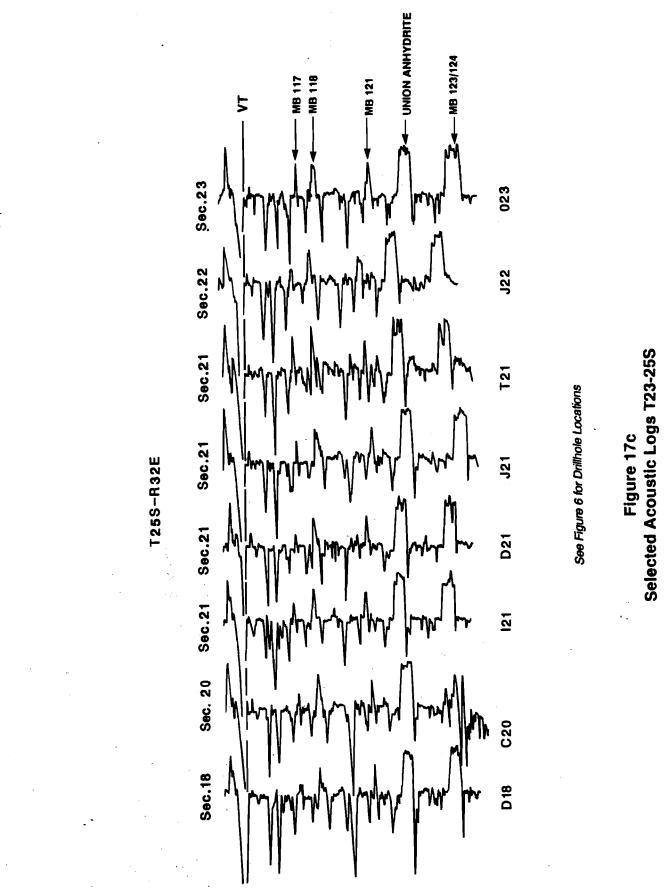

÷

Figure 17a Seiected Acoustic Logs T23-25S



See Figure 6 for Drillhole Locations

Figure 17b Selected Acoustic Logs T23-25S

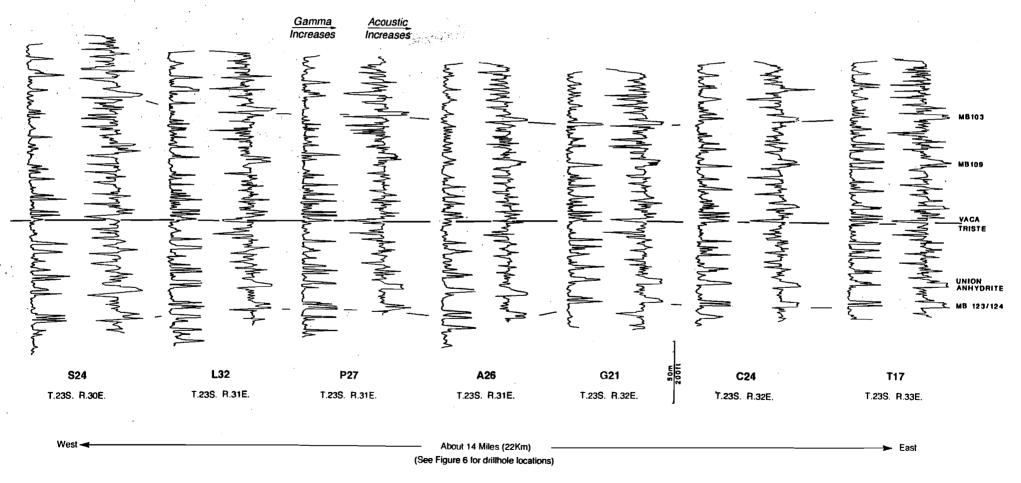
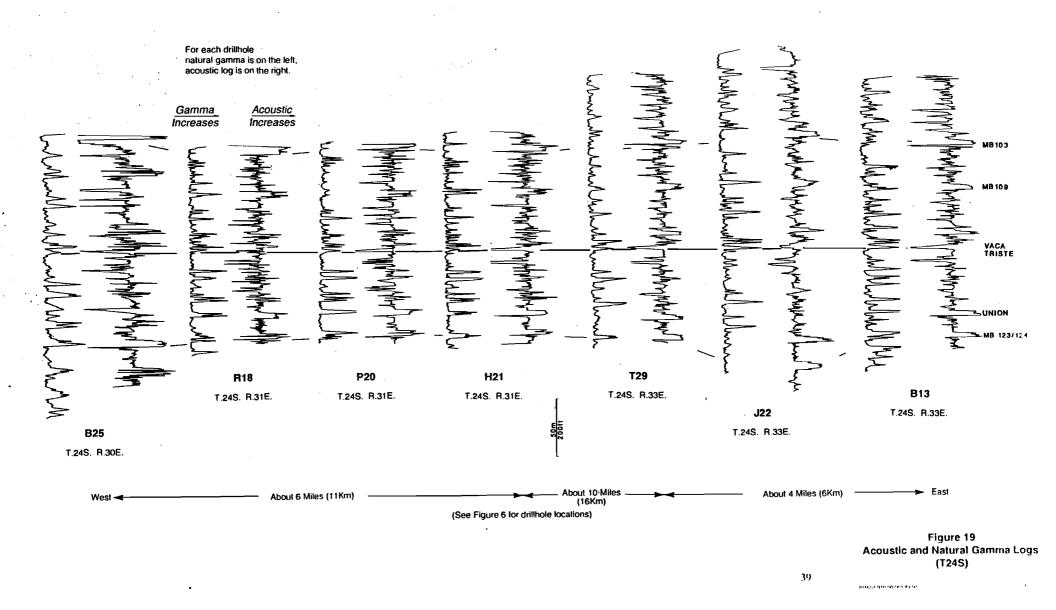


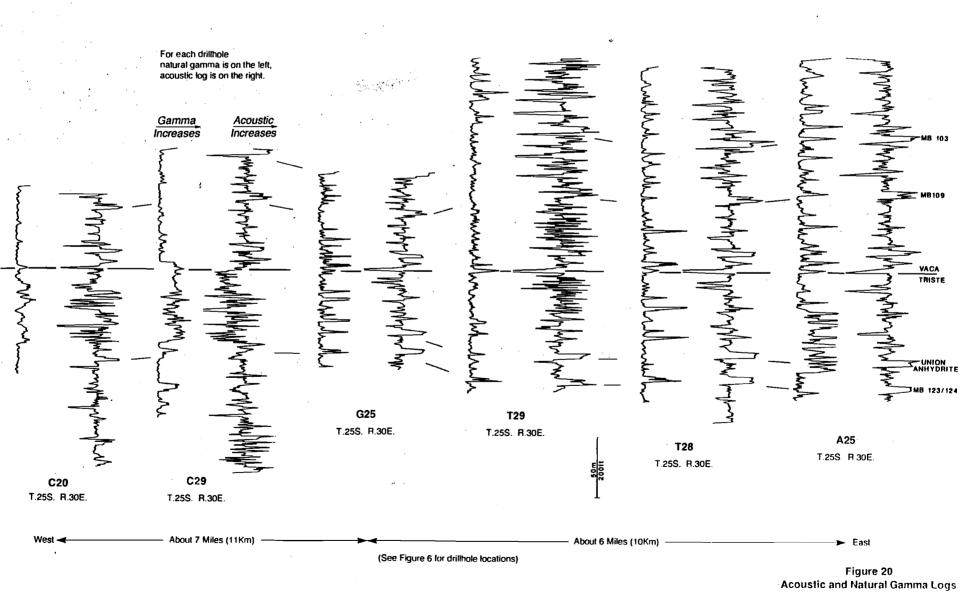
37

301651.010.00.00.000fd A153

4/17/95

#### For each drillhole natural gamma is on the left, acoustic log is on the right.



Figure 18 Acoustic and Natural Gamma Logs (T23S)

and a second state of the second s

38

ao e.





(T25S)

40

surgers.

Figures 6 and 7) vary little in thickness or lithology, except at the western end of each cross section. Thin clastic units below the Vaca Triste are traceable just as the main marker beds are. The main difference is that the western end of the section through Paduca field (Figure 20; T.25S., R.32E.) is not interpretable below the Vaca Triste as a continuous section of anhydrite marker beds and interbeds. Gamma is much increased through the entire interval up to about the position of the Vaca Triste, probably indicating increasing siliciclastic content. There is no particular evidence to suggest the increased gamma is due to potassium mineralization. Lower marker beds appear to be unaffected. A broader interval, including this high gamma section, appears to have a normal thickness, indicating the high gamma section appears to substitute for the normal sulfate and halite units below the Vaca Triste. The initial data are consistent with a depositional feature rather than recent dissolution because the overall section is not reduced in thickness.

The intervals from the Vaca Triste to MB 109 and from MB 109 to MB 103 (Figures 18, 19, and 20) do not vary greatly except in thickness from east to west. Thin clastic beds are traceable in the intervals, but it does not appear that clastic content is changing greatly from east to west. Nor does there appear to be any particular concentration of insoluble siliciclastic residues in the interval as it becomes thinner toward the west. The geophysical log data seem to favor equally either deposition or dissolution as the causes of thinning of the interval across these areas.

The interval from MB 103 to the Salado (Figures 18, 19, and 20) does thin markedly to the west in the southern cross sections. The interval is thinning from the top down. Some material should be accreting to the base of the Rustler, as postulated by Jones et al. (1973), if the section is being reduced by dissolution. An additional gamma bulge, seemingly at the base of the Rustler, occurs on some logs not in cross sections, but there is no identified systematic signature associated with the accreted material. In addition, a few interpreted logs not in cross sections show polyhalite in MB 103 at about the position where there is no discernible halite above MB 103. It is more common to find that MB 103 has lost all sign of polyhalite, while there is a complete, or at least thick, section of halite between MB 103 and the Salado/Rustler contact. MB 103, probably as gypsum, persists over a large area where halite is absent above the marker bed.

Overall, the cross sections indicate no significant, or at least not interpretable, facies changes in the halitic interbeds that might strongly favor depositional processes as an explanation of larger lateral thickness changes. The best defined lateral lithologic change is the lack of polyhalite in MB 103 away from the depocenter area.

#### 2.6.2 Discussion of Cross Section Information

A major objective for drawing cross sections was to examine the evidence for facies changes and to compare or contrast this evidence with thickness changes. Facies changes are recognized when a distinguishable and interpretable lithologic change occurs laterally within a rock unit. Depositional systems everywhere display beds that attenuate away from the depocenter, more or less dramatically (e.g., alluvial fans versus some carbonate shelf regimes). Erosion can significantly affect thickness of beds that are subaerially deposited or exposed. Thickness changes in evaporites cannot be attributed uniquely to dissolution any more than to deposition or erosion. Lithofacies are, however, a universal consequence of depositional systems, and under appropriate conditions, evaporite lithofacies may be properly attributed to depositional systems rather than postdepositional dissolution. For example, Holt and Powers (1988) believe that textural and geophysical log evidence establish that large facies tracts of the Rustler Formation were unaffected by post-Rustler dissolution, contradicting earlier interpretations of thinning Rustler halitic/mudstone beds due to dissolution of halite. As core of the Salado is not available beyond the vicinity of the WIPP site, log signatures in cross sections are used to investigate the possibility of facies changes in the upper Salado.

The most important evidence of facies changes would consist of systematic changes in the halitic units of the Salado, indicating a depositional margin and/or depositional thinning. A lateral increase in clay content without change in bed thickness would be reasonable evidence of depositional variations. Depositional facies can also be signalled in halitic beds if the <u>cumulative</u> thickness of argillaceous material increases in areas that are thin compared to areas where the same bed is thicker. (Natural gamma logs can be used to assess cumulative thickness of argillaceous material.) Although such evidence is consistent with a facies change, it would not rule out dissolution as a factor. A situation like this would be inconsistent with the assumption that little or no lateral change occurs, which is used to justify the single working hypothesis of dissolution.

In the upper Salado, some facies changes do occur. It is clear, for example, that potassium is not uniformly distributed laterally within Salado beds. Adams (1970) showed the general distribution of potassium minerals in different ore zones, although he did not call these facies

changes. Within our data, potassium is unevenly distributed in sulfate marker beds (Figures 18, 19, and 20).

MB 103 is more polyhalitic toward the east in log cross sections from T.23S. (Figure 18). (Polyhalite is inferred from combined high acoustic velocities and high natural gamma.) Marker beds in general appear to be somewhat more polyhalitic toward the thicker parts of interbeds (toward the inferred depocenter). This characteristic might be related to deposition/ early diagenesis, and it should be examined further, as polyhalite may also be construed as an indicator that dissolution has not occurred.

Polyhalite is locally to regionally absent from marker beds, while anhydrite or gypsum remain. Polyhalite should dissolve incongruently while halite is dissolving, leaving anhydrite or, more likely, gypsum. Incongruent solution of polyhalite probably does account for lateral changes in some marker beds from polyhalite to gypsum or anhydrite. Blocks of orange to reddish gypsum crop out in the western Delaware Basin; these blocks are attributed informally to incongruent solution of polyhalite.

MB 103 (Figures 18, 19, and 20) demonstrates that incongruent solution is not a unique origin for these lateral changes, as the polyhalitic to nonpolyhalitic anhydrite occurs where the marker bed is overlain by a thick halitic uppermost Salado. Because halite is still present, it is very doubtful this change is the result of post-Salado dissolution. Elsewhere, the margin of salt between MB 103 and the Rustler is near the transition in MB 103 from anhydrite to polyhalitic anhydrite. These latter occurrences show only that the "loss" of polyhalite may indicate either postdepositional incongruent dissolution or some early diagenetic process; it is not unique to either process.

At this time, there is little evidence to be derived from the geophysical log cross sections that shows lithofacies in the upper Salado varying in the areas where the halitic beds dramatically thin. The physical situation overall is quite similar to that in the Rustler, but without physical evidence such as core textures, Salado halite dissolution remains the simplest concept consistent with available data. To the west of the WIPP site, especially in Nash Draw, physical evidence from cores proves brittle collapse of upper Salado and lower Rustler coincides with abruptly thinning zones; there it should be concluded that the upper Salado has been partially dissolved to provide space for the collapse of overlying beds and solution residues.

By extension from the Nash Draw evidence, it is reasonable at this time to assume the zone of abrupt thinning of the upper Salado has been affected by dissolution. Perhaps more important, this zone should be the present and future point of attack on the upper Salado salt, resulting in proportional collapse of the overlying Salado/Rustler rocks. The Culebra should be expected to show an attendant change in hydrologic properties along this margin.

#### 2.7 Summary of Evidence About Salado Dissolution

Geophysical logs of the upper Salado were correlated and interpreted to provide the data for isopach maps of several intervals between marker beds or other prominent contacts. Cross sections were constructed from geophysical logs so that possible facies changes could be identified. The study area covers approximately 35 townships that include the WIPP site.

The isopach maps reveal a broad depocenter for the Salado located in the eastern to southeastern part of the study area (Figure 21). Away from the depocenter, upper Salado units thin gradually; the shafts at the WIPP site are located in these thinner zones. A more sharply defined region of thinning of the upper Salado trends from the Nash Draw area, west of the WIPP site, to the south-southeast (Figure 21). This zone is most likely attributable to dissolution, as cores of the upper Salado from Nash Draw in this zone reveal collapse and brecciation of overlying units. Without textural evidence, we cannot discount totally the possibility that this margin also represents a depositional margin similar to the Tamarisk Member of the Rustler Formation. We assume that it is due to dissolution because of the Nash Draw evidence. The eastern margin of Nash Draw along Livingston Ridge closely parallels the contours of upper Salado thickness (Figures 13 and 21), and we believe that upper Salado dissolution controls much of the ridge shape in that area.

The cross sections display little evidence of lithofacies changes within halitic beds of the upper Salado. Closely spaced, as well as dispersed, data points show continuity of major marker beds, as well as of thin clastic beds.

The apparent dissolution margin of the upper Salado units is the most likely continuing and future point of attack for dissolution. The overlying Culebra should be affected by significant dissolution, causing collapse and fracturing that are expected to increase transmissivities along the zone. The path for transport of radionuclides may be affected by this process.

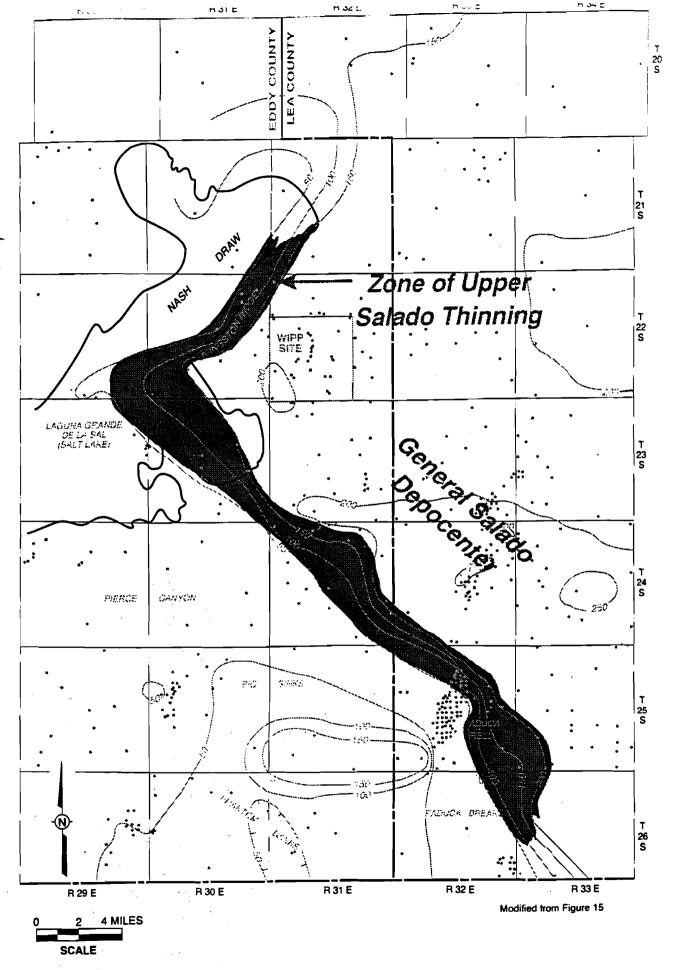
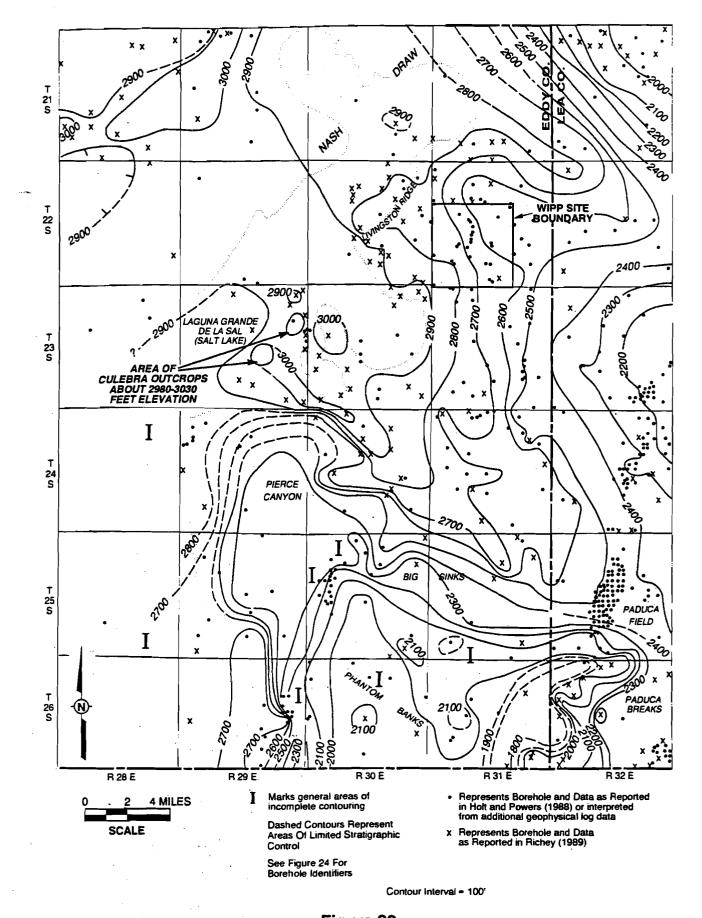



Figure 21 Zone of Upper Salado Thinning

## 3.0 Structural Disturbance of the Culebra

#### 3.1 Background Information

The hydrologic character of Rustler units, especially the Culebra Dolomite Member, may be strongly affected by deformation due to tectonic or dissolution processes. In this chapter, we examine the existing structure of the Culebra, describing the basic structural features regardless of origin. In addition, other units are compared for thickness and structure to try to sort out, as much as possible, the timing of events and features related to tectonics from those caused by evaporite dissolution. The data on areal distribution of Rustler halite are presented in Chapter 4.0, however, where the contrasting concepts of dissolution and syndepositional processes are examined.


#### 3.2 Data Sets and Methods

The structure contour map of the base of the Culebra Dolomite Member (Figure 22) presented here is based on the data from Holt and Powers (1988), some additional data acquired for this work, and data from Richey (1989) that clarifies important areas, especially in R.29E. and R.30E. The data are differentiated because the procedures followed for the Richey (1989) data are not known to us. (See Appendix A for a discussion of the data sources and Appendix C for a comparison of data sets.) The data set provided by Richey (1989) has been prepared as tables in Appendix B.

The broad regional structure of units below and above the Rustler are a beginning point for determining tectonic effects. To estimate the changes in Culebra structure due to either dissolution or tectonic processes, it is necessary to reconstruct the earlier configuration of the Culebra and underlying units. Key assumptions and data guide this reconstruction. The effects of dissolution are assessed based on two analyses: (1) the determinable facts of changes in thickness of halite-bearing units and (2) the independent (of thickness) interpretation of whether salt was deposited and, if so, when the evidence suggests it was removed (Chapter 4.0). In a third paper, we will examine directly the strength of the relationship between thickness changes in Rustler salt (commonly attributed to dissolution) and changes in hydrologic parameters in the Rustler Formation.

#### 3.3 General Culebra Structure Elements

Though the structural features of the Delaware Basin have developed through time and have affected many geological units, we focus here on the Culebra Dolomite Member. It is the



### Figure 22 Structure Contour Map of Culebra Dolomite Base

main hydrological unit of interest overlying the Salado Formation, and it displays the broad structural elements (Figures 22, 23, and 24) relevant here:

- 1. Structure that approximates regional structure of sub-Castile units (i.e., northsouth strike, east dip of approximately 100 ft/mi or 20 m/km) in the area at and south of the WIPP site
- 2. An anticline at ERDA 6 (southeast part of T.21S., R.31E.) plunging to the southeast
- 3. An anticline (the "Remuda Basin anticline") from the Remuda Basin area (southeast part of T.23S., R.29E.) plunging southeast toward the Paduca field
- 4. The steep and regular structural gradient on the southwest flank of the Remuda Basin anticline
- 5. Flat to chaotic to closed structures at the southern margin of the map (and into Texas).

In our earlier work on the Rustler (Holt and Powers, 1988, figure 4.17), the data were more restricted in some areas. We were only able to show the ERDA 6 anticline and the normal site structure (similar to regional dip). The other features (items 3, 4, and 5 above) coincided with too few data points to reliably interpret their existence. With sparse data on a regional map of the top of the Rustler Formation, Hiss (1976) shows the broad outlines of all of the features named above. Borns and Shaffer (1985), also using a somewhat restricted regional data set for southeastern New Mexico, show the first four features on structure contour maps of the top of Salado and the top of the Rustler. As their maps are truncated at the southern edge of T.25S., some of the area of the flat to chaotic closed structures was not considered by Borns and Shaffer (1985).

Using the data set from Richey (1989), Davies (1989, figure 15) also shows the same features, though his map includes some areas in which data points are not properly contoured. The structure contour map of the Culebra by Brinster (1991, figure II-17) is also based on data from Richey (1989). It more broadly reflects the same structural features, but the map is so flawed by errors in data placement and contouring, especially in the western part, that it should not be used for any interpretive or modeling purpose. A set of replacement maps has been provided as an addendum by Brinster to correct earlier flaws.

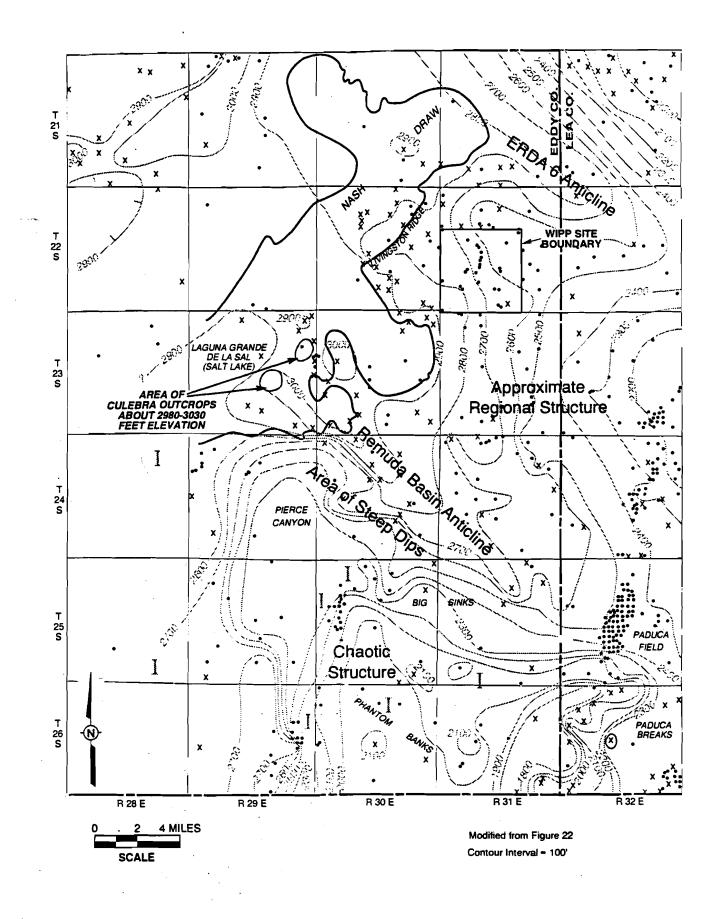
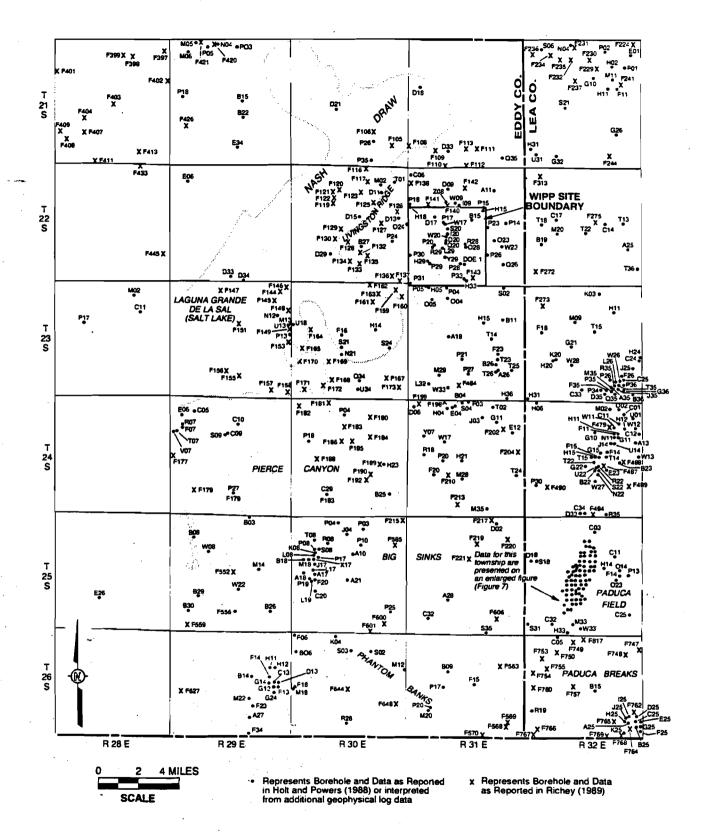
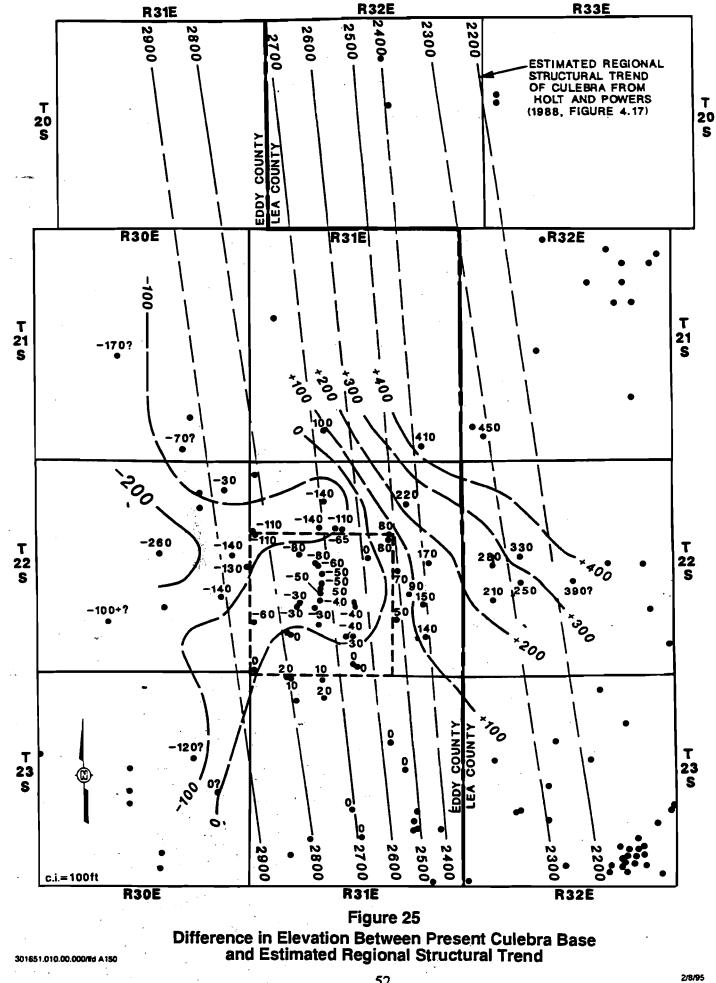




Figure 23 Main Structural Elements of Culebra Dolomite



Modified from Figure 6

## Figure 24 Drillhole Base Map for Culebra Data


## 3.4 Discussion of Culebra Structural Features

Throughout much of the northern Delaware Basin, stratigraphic units underlying the evaporite section consistently strike nearly north-south and dip to the east at a rate of approximately 100 ft/mi (approximately 20 m/km). The Bell Canyon to Castile contact is the best known example. In the eastern part of the basin, the evaporite units generally mirror this structure. All pre-Cenozoic units show the effects, leading to the interpretation that the broad basinal dip postdates the Paleozoic rocks. We expect, therefore, that disruptions of this pattern in the Rustler Formation around the WIPP site should be clues to postdepositional effects such as dissolution and deformation.

On the basis of these assumptions, estimated regional structure contour lines on the base of the Culebra Dolomite Member have been constructed to reflect an earlier configuration with a dominantly north-south strike and eastward dip (Figure 25). Areas of presently equal elevation north and south of the WIPP site have been used as "anchor points" for these structure contours. South of the WIPP site, these anchor points are located where the Salado does not display any significant thinning (Figures 9 and 15). North of the WIPP site, the anchor points are less secure, because the evaporites are deformed in some areas and the upper Salado is thinner. The data further north are generally consistent with the estimated regional structural trend (Figure 25), and the strike lines are generally consistent with subevaporite strike. We recognize the limitations in these assumptions.

The difference between the present elevation of the Culebra base and the estimated regional structural trend has been calculated for each borehole in the WIPP site area where data are available. The structural changes are estimated to the nearest 10 ft (3 m), as there is no justification for any additional precision, given the initial assumptions about the regional structure. The difference has been contoured to emphasize areas that may have undergone more recent changes or deformation differing from uniform eastward dip.

The Rustler displays increasing thickness from west to east across the site area, and the thickness changes are closely related to the amount of halite in three members of the formation (Snyder, 1985; Holt and Powers, 1988). Holt and Powers (1988) have previously attributed the lateral thickness and mineralogical changes to nondeposition and synsedimentary dissolution of halite during the Permian. Depositional patterns would not greatly change the later dip superimposed on the Rustler and surrounding units, while it is



2/8/95

expected that later events, including dissolution, would be reflected. The patterns of this map (Figure 25) are interesting and require careful thought.

Across the WIPP site area, the estimated regional structure contour lines on the Culebra (Figure 25) show a general north-south trend, though the azimuth is slightly west of north. The departures from the estimated regional structure range from minus 200 ft along the edge of Nash Draw to plus 450 ft at ERDA 6.

The center of the WIPP site shows slightly depressed structure, but most of this is not expected to be significant, given the assumptions to estimate the regional structure. It may be that several tens of feet positive or negative are not significant. The underlying Salado is not thinner under this area (e.g., Figure 15). The lower part (M-1/H-1) of the unnamed lower member has halite (see Chapter 4.0, Figure 31). The upper part (M-2/H-2) of the unnamed lower member does not have halite across this area of slightly depressed structure; neither does the area south of the WIPP boundary, where the southern "anchor points" for regional structure are located. If the central depressed structure was interpreted as due to dissolution of the halite below the Culebra, it would have to be later than the area to the south or both areas would have been affected equally. Another problem is that the difference in thickness of the M-2/H-2 interval between the shafts (e.g., Holt and Powers, 1991) and borehole P-18 to the east is only approximately 20 to 25 ft (see Jones, 1978, for P-18 data) and for many boreholes could account for less than half the estimated structure in this central area is generally minus 30 to minus 60 ft and is marginal for drawing significant conclusions.

Northeast of the site, the Culebra appears to have been lifted as much as 450 ft (137 m) above estimated regional structure. The change in structure trends northwest-southeast, and it maps the flank of the anticlinal structure due to the intense deformation of the Castile and overlying formations observed in ERDA 6 (Anderson and Powers, 1978; Jones, 1981a; Sandia National Laboratories and U.S. Geological Survey, 1983). The effects of the deformation at ERDA 6 are evident to the northeast corner of the WIPP area and possibly along the eastern boundary. (In a rectangular 10 mi² area just east of the WIPP boundary, there are estimated to be 60 additional oil or gas wells that are not included in our data, and these could greatly enhance the available information on this area if suitable geophysical logs were obtained by the companies.)

A large negative feature, exceeding minus 100 ft (minus 30 m) departure from the estimated regional structure, occurs west of the WIPP site. A salient, with minus 110 to minus 140 ft (minus 34 to minus 43 m) difference, extends across the northwestern corner of the site to include WIPP 11 and DOE 2. There is little doubt that dissolution and collapse of the upper Salado have affected the westernmost data points in this negative area, as the cores from Nash Draw holes show varying degrees of brecciation in the lower to middle Rustler. The uppermost Salado (MB 103 to the top of Salado, Figure 15) shows 150 ft (46 m) or more of thinning along Livingston Ridge. The Salado is not thinner in the area of the salient feature, and the lower unnamed member has far too little halite to account for it, even if all halite within M-2/H-2 was dissolved. Another explanation is needed.

In the area of the salient, Castile structure has been significantly disturbed by evaporite deformation (Powers et al., 1978; Borns et al., 1983; Borns, 1987). It seems likely that the Culebra has been lowered locally as part of these structural disturbances. A structure contour map on selected Salado marker beds could probably clarify this possibility. Thickness maps of the overlying units, the Dewey Lake and Santa Rosa Formations (Figures 26 and 27), may also help explain this salient. The Dewey Lake isopach displays a "reverse salient" where the 500-ft isopach trends to the west over part of the same area as the salient shown on Figure 25. The Santa Rosa isopach shows a broader westward bulge in the same general area. These two formations help resolve the change in structure on the Culebra.

The Dewey Lake is not an evaporite deposit, and its thickness is not going to be diminished by dissolution. In addition, the Dewey Lake, in general, shows relatively uniform change in thickness from east to west, with isopach contours roughly north-south. Both units thin to the west like a wedge. Based on available data, the approximate western margin of the Santa Rosa is also approximately the eastern margin where the Dewey Lake begins to thin. The units have been bevelled in response to erosion after the units were tilted downward to the east. The eastward dip on these formations is approximately 100 ft/mi (19 mi/km), and the westward rate of thinning is similar.

The westward salient on the 500-ft isopach for the Dewey Lake indicates that the structural depression on the Culebra occurred prior to erosion. The units appear to have been warped differently in that area and not uniformly tilted to the east. The subsequent beveling results in slightly thicker deposits being preserved in the area of the Culebra depression. This interpretation would be enhanced with additional structure contour maps on these units.

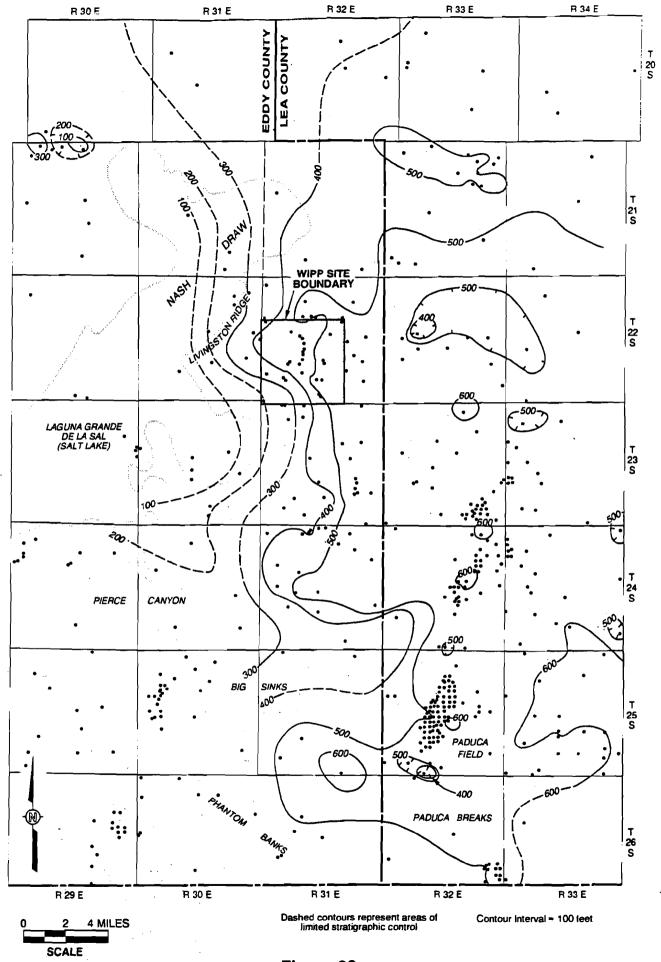
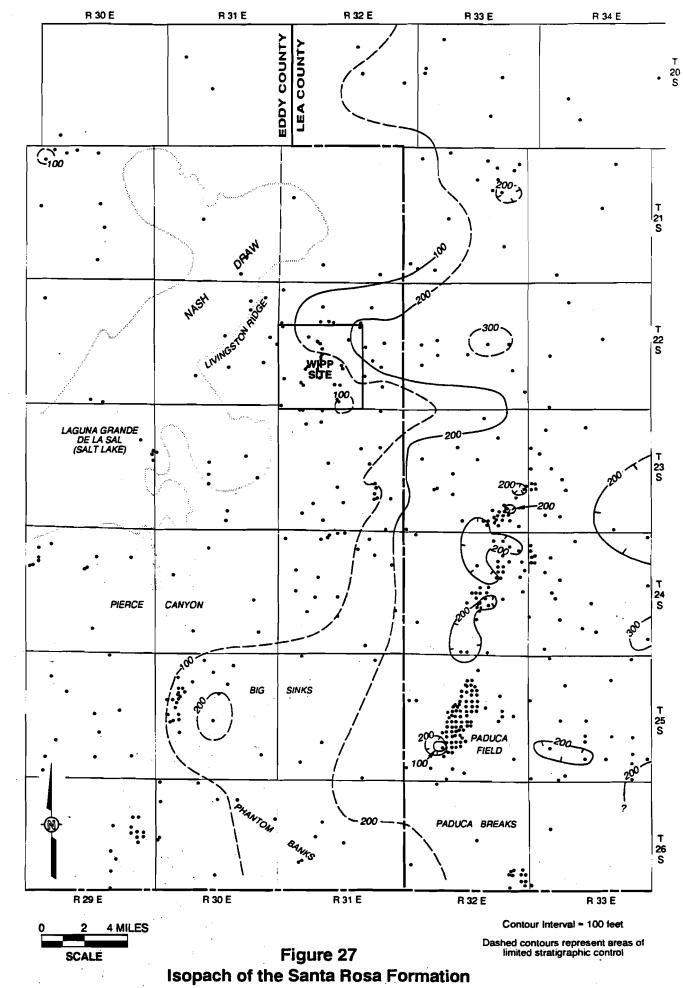




Figure 26 Isopach of the Dewey Lake Formation 55

2/8/95





There may be alternate explanations required in the area of Big Sinks and Phantom Banks, though the disturbance of the entire section in that area makes detailed inferences suspect.

The Remuda Basin anticline trends southeast from the Remuda Basin area toward Paduca field. In this report, no structure contours were constructed on units within the Salado Formation. Borns and Shaffer (1985) present maps with somewhat sparse data in this area, which could be interpreted to show this anticline present in various units within the Salado. It is not visible in the structure of the top of the Bell Canyon (Delaware Mountain Group), indicating it is confined to the evaporite formations. The data on Castile Formation units are too sparse to decide if the structure is or is not present in that formation.

A cross section has been constructed perpendicular to the Remuda Basin anticline to show the structural relationship to lower units (Figure 28). The northwest flank of the anticline shows the regional dip to the east from the base of the Castile to the top of the Rustler. The northwest to southeast trend to the anticline is caused by the zone where the upper Salado is thinned along a similar trend. The southwest flank of the anticline is formed mainly by changes in thickness of the Salado. The base of Castile dips uniformly to the east through this area, and the thickness changes are probably mostly due to dissolution.

Flat to chaotic structure in the southern map area, south of the Remuda Basin anticline, is consistent with an area undergoing dissolution, and the cross section demonstrates that the Salado is the main unit being dissolved.

#### 3.5 Summary of Evidence about Culebra Structure

The Culebra shows gross structural changes northeast of the WIPP because of evaporite deformation. Across the site, subtle structural changes from regional background exist that can best be explained as a response to evaporite deformation rather than dissolution of Rustler and Salado evaporites. Further south, the Remuda Basin anticline formed from a combination of eastern regional dip, dissolution along the upper Salado, and greater dissolution of Salado to the southwest to reverse the regional dip.

AL/4-95/CM/RUSTLER/REG_PROC.FIN

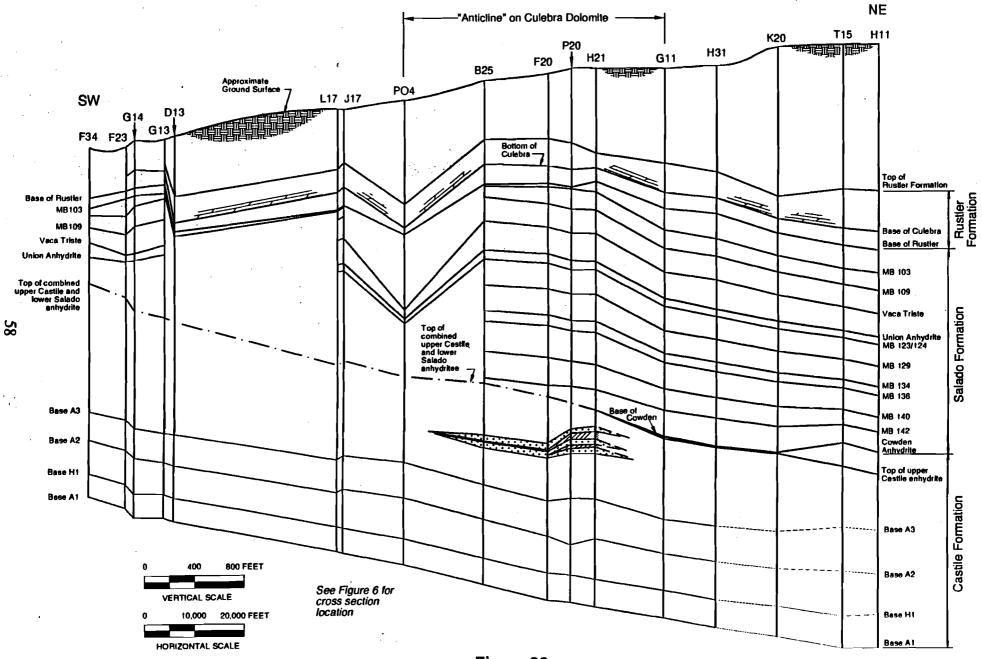
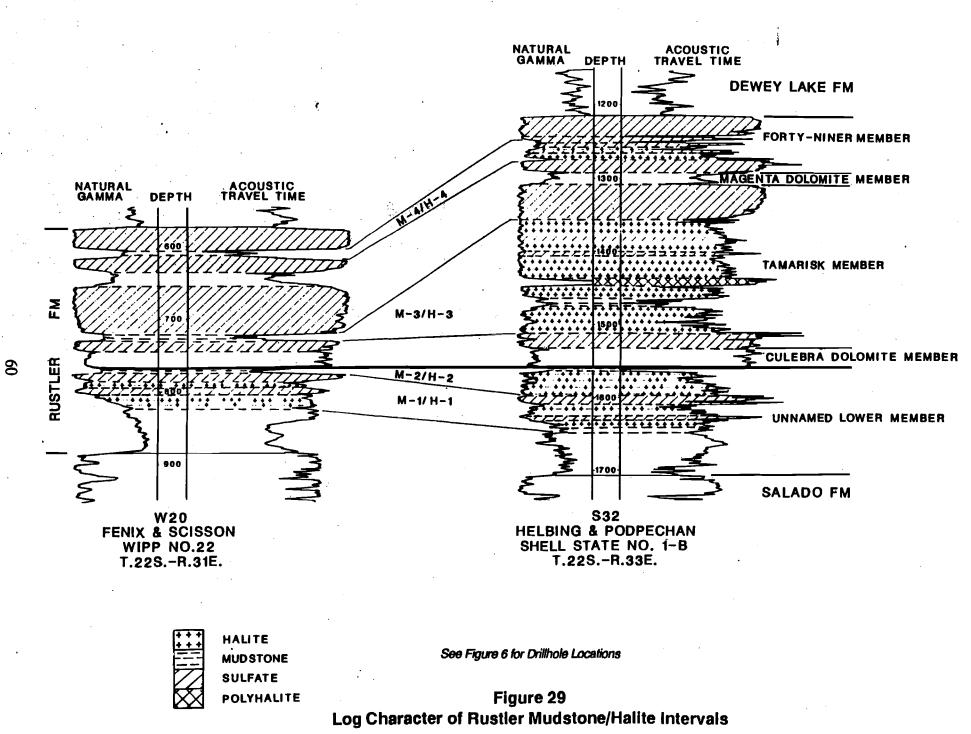



Figure 28 NE-SW Cross Section through "Remuda Basin Anticline"

## 4.0 Rustler Halite Dissolution

### 4.1 Background Information and History


The three nondolomite members of the Rustler Formation have beds of halite (Figure 29) in an area east and south of the WIPP site. Some halite exists in both the unnamed lower member and in the Tamarisk Member within the WIPP site; the Forty-niner Member is devoid of halite within the WIPP site. Halitic parts of all three members are thicker than equivalent nonhalitic beds. Was halite dissolved after the Rustler was deposited to produce thinner, nonhalitic beds? Or are these beds lacking halite because of different depositional conditions?

Here we reconsider briefly the principal arguments that have already been presented, and we present maps of existing halite margins. From this information, we can hypothesize generally what effects dissolution may have, or may have had, on Rustler hydrology. The final report in this series (see Preface) will explicitly examine the correlation between Rustler hydrological parameters and the thickness of halitic members, as well as other factors.

Project history and studies regarding shallow dissolution in southeastern New Mexico have been extensively analyzed by Powers (in review). That evaluation is helpful in understanding how the WIPP has recognized and approached issues related to shallow dissolution, but it does not propose that the project should adopt one conceptual model of Rustler halite distribution over another.

### 4.1.1 Alternate Hypotheses of Halite Distribution

The prevailing hypothesis has been that halite was deposited relatively uniformly in each member of the Rustler across the WIPP area, and that the halite was later removed from some areas by dissolution. Jones et al. (1960, figure 1) considered each halitic unit to have a laterally equivalent residue after dissolution of halite. Vine (1963) and Jones et al. (1973) also proposed that halite was dissolved from the Rustler, and Jones et al. (1973) believed most of the halite was dissolved in later Cenozoic times. Powers et al. (1978) reviewed the information and previous work available for the WIPP project, following the line of thinking established in previous work. Lambert (1983) also reviewed the available information on, and hypotheses about, dissolution of the evaporite formations of the Ochoan Series, revising some of the proposed mechanisms for dissolution.



3016 0.000/?

Through this period, the principal evidence for dissolution of halite was lack of halite in thinner units. To be sure, Jones et al. (1960) and Vine (1963) report residues and solution breccias in these members, but in little detail. Outcrops and near-surface parts of the Rustler in Nash Draw and further south exhibit karst and collapse features from solution of Rustler and Salado rocks. Near-surface sulfatic rocks are hydrated, and both the Culebra and Magenta Dolomite Members yield some water of varying salinity. Taken together, the pieces of evidence have convinced a number of geologists and hydrologists that water has percolated into or through the Rustler and that halite has been removed extensively from the Rustler since it was deposited.

As the Rustler was exposed, mapped, and described in detail in the waste handling shaft (Holt and Powers, 1984), bedding and sedimentary structures were revealed in units previously attributed to dissolution residues at the site (e.g., Jones, 1981b). During a more extended study of shafts, cores, and geophysical logs through the Rustler, Holt and Powers (1988) found considerable stratigraphic, textural, and diagenetic evidence indicating that halite pan to saline mudflats existed during deposition. Halite and gypsum grew displacively in facies tracts adjacent to the halite pan, and halite, especially, was removed syndepositionally from areas more distal to the halite pan at the depocenter. Incipient soil textures and probable fluvial deposits characterize the more distal facies tracts. At the site, facies tracts that had no halite deposited, or that had halite removed syndepositionally, show little or no fracturing or brecciation of overlying units. In Nash Draw, the upper Salado has been attacked by dissolution, causing collapse and brecciation of the overlying units. Holt and Powers (1988) show that this brecciation overprints synsedimentary dissolution in the Rustler; halite no longer existed in that part of the Rustler by the time the sediments were lithified. They concluded that little halite has been removed from the WIPP site area since the Rustler was deposited.

By this hypothesis of deposition and syndepositional dissolution, the Rustler Formation developed facies tracts with halite margins at about the present limits to halite. The depositional margins are the likely places, then, where halite might be modified by dissolution. Significant dissolution could further strain or result in collapse and fracturing of the overlying beds, affecting the hydrology of units such as the Culebra and Magenta. To further determine the areas of the Culebra and Magenta most likely to be affected if there were dissolution along these halite margins, the margins as they now exist were plotted in more detail.

## 4.1.2 Reported Halite Distributions

Mercer (1983) reported, on a map, the extent of halite beds within the Rustler Formation around the WIPP site area based on information from R. P. Snyder. Mercer (1983) interpreted the thickness changes of the Rustler Formation as due to both depositional and dissolution processes, following the interpretation of Jones et al. (1973). Depositional changes were considered by Jones as the source of lesser thickness changes from north to south in the eastern part of the area. Later, Snyder (1985) prepared a map (presented here as Figure 30) of a smaller area around the WIPP site that appears very similar to part of the map in Mercer (1983). The map shows halite margins within the Rustler Formation based mainly on the evidence of the interpretation of geophysical logs for unit thicknesses and presence of halite. These two maps, based on work by Snyder, are sources for some of the variety of figures in documents presenting and interpreting margins of Rustler halite.

The other source of maps of halite margins is traced to the map of Beauheim (1987) in which he combined information from Snyder (1985; also cited by Beauheim as personal communication from Snyder) and Powers (cited by Beauheim as personal communication). The map by Powers differs in some areas from Snyder and covers much of southeastern New Mexico. The geophysical logs used for that effort have been reexamined and newly interpreted to provide the map of halite margins in this report. The basis for interpreting the geophysical logs is the same as for the earlier map, and the results are very similar. In this report, the interpretive rationale and data are presented, and the map is based only on these data.

There is no question that the interpreted significance of halite margins in the Rustler Formation differs greatly between Snyder and Powers, as traced through related publications. Snyder (1985) clearly attributes the major changes in thickness of the Rustler and areas of no halite as due to post-Rustler dissolution. Holt and Powers (1984, 1986b, 1988) first question the extent of post-Rustler dissolution and then attribute the major changes in thickness to synsedimentary precipitation and dissolution along the halite pan margin. The general positions of the margins are similar for both investigators, and the differences in details are not the source of differences in interpretation.

## 4.2 Methods

Geophysical logs, mainly natural gamma and acoustic logs, were inspected to interpret the thicknesses of halite, sulfate, and mudstone of four intervals within the Rustler. Log characteristics of these lithologies were reviewed in Holt and Powers (1988). The acoustic

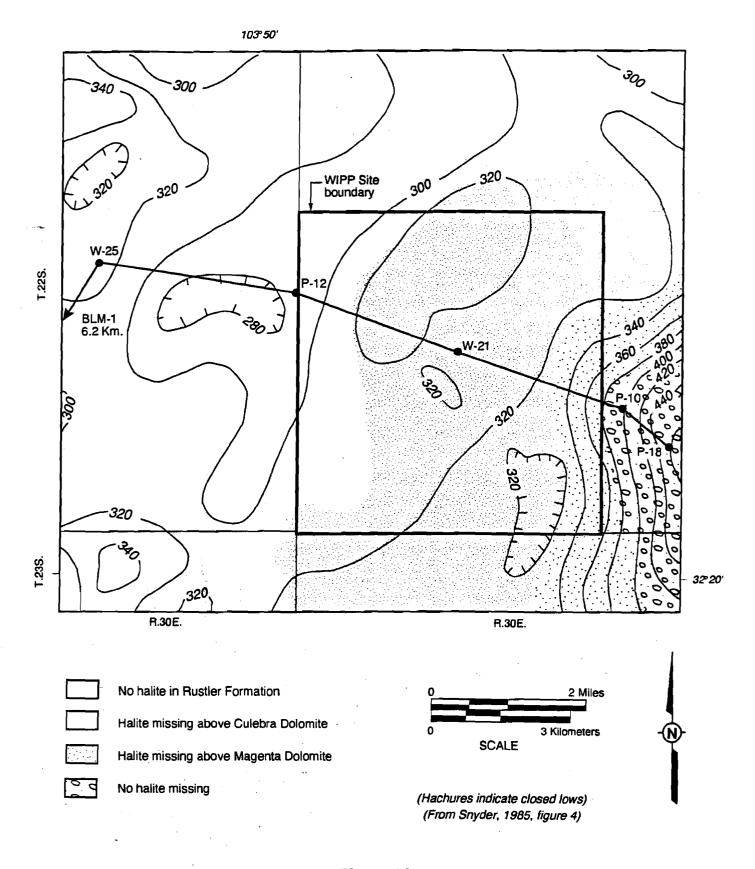



Figure 30 Isopach Map of the Rustler Formation in the Vicinity of the WIPP Site Showing Dissolution Zones and natural gamma logs from one borehole at WIPP (WIPP 22) and a commercial well a few miles east demonstrate some of the halite to mudstone relationships (Figure 29). The thicknesses were estimated because the log characteristics do not provide a unique identification and proportion of minerals in mixed lithologies. Mixed halite and mudstone has been examined in core and compared to logs to provide a basic estimate of proportions, and the remaining logs were interpreted by Powers on the basis of this somewhat subjective standard. The estimates were plotted on a base map, and the present margins for halite in various members were based on these interpretations. The lower unnamed member was divided into two mudstone/halite units based on position above or below the first anhydrite below the Culebra (Figure 29). The lower unit has also been designated as H-1/M-1 in some of our reports, because halite is common across the site area in the unit. Mercer (1983) and Snyder (1985) do not divide the lower unnamed member; their margin is more nearly equivalent to our lower unit (M-1/H-1). The amount of halite was estimated for the M-1/H-1, M-2/H-2, Tamarisk mudstone (M-3/H-3), and Forty-niner mudstone (M-4/H-4) intervals (Figure 29).

Our method produces margins that are probably more extended in some areas than are margins based on a method that requires a bed of relatively pure halite to be present to be counted or a method that requires return of cuttings or core with observable halite. Our method probably interprets some areas as having halite in which none is present. Conversely, it also includes areas with halite that are overlooked by a very conservative method.

We note, as in other chapters, that many holes have been drilled around the WIPP site for oil and gas exploration in recent years, and geophysical logs from these drillholes have not been acquired and interpreted to extend our information. There may be relevant details to be gleaned, especially east of the WIPP site.

#### 4.3 Halite Margins in the Rustler Formation

The halite margin for M-1/H-1 broadly parallels the other Rustler halite margins, but it is several miles west of the other margins (Figure 31). The halite margin in M-1/H-1 also generally parallels the zone of abrupt thinning of the upper Salado (MB 103 to Salado interval) (Figure 15). The M-1/H-1 halite margin is closer to the thinning margin of the Salado than to the halite margins of higher units in the Rustler.

The halite margins for units M-2/H-2, Tamarisk mudstone, and Forty-niner mudstone are generally closely spaced over the map study area (Figure 31). The M-2/H-2 margin is

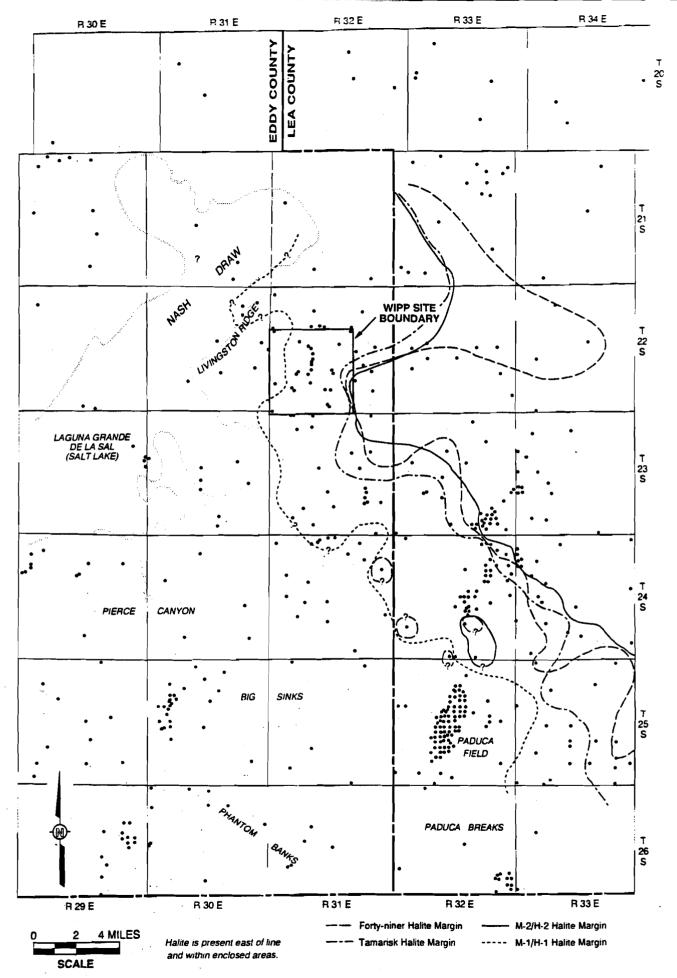



Figure 31 Halite Margins in Rustler

65

2/13/95

generally the westernmost, and the Forty-niner halite margin is easternmost. At some locations, margins from higher units will "cross over" the margins of lower units. Though the margins are both closely spaced and generally parallel, there is a major difference between the Tamarisk and the other two units. The Tamarisk mudstone (and equivalent halitic units) has a much greater range of thickness, and, within the map area, may include 180 ft (55 m) of halite. The margin appears correspondingly much more abrupt in transition.

There is a final caution to overinterpreting the data on halite in the Rustler based on more detailed evidence. WIPP 19 was drilled just north of the center of the WIPP site (I20 on Figure 6). Neither geophysical logs interpreted here nor data summarized in Snyder (1985) indicate that halite is present in the Forty-niner. Nonetheless, a thin section prepared from core of the Forty-niner mudstone in WIPP 19 shows that halite is still present at that location (see Holt and Powers, 1988, plate 23). Gross methods used here and elsewhere are clearly not the best indications of halite in small quantities.

### 4.4 Discussion

The significant question about these margins is whether they are due to dissolution or limits to deposition. Snyder (1985) follows much of the earlier discussion of halite in the Rustler, concluding that thinning and absence of halite in the different members is largely a consequence of post-Rustler dissolution of halite. Snyder (1985) also concludes that the Rustler section was subsequently locally inflated by expansion of anhydrite to gypsum during hydration accompanying dissolution. The interpretation is based largely on thickness changes and the physical evidence of dissolution in the area of Nash Draw.

From shaft, core, and geophysical log data of the Rustler, Holt and Powers (1988) concluded that the halitic units of the Rustler were deposited in halite pan and adjacent environments. The Forty-niner Member mudstone (M-4/H-4) at the WIPP shows cross-cutting relationships as evidence of current transport. The same unit in drillhole DOE-2 includes beds described as "claystone and siltstone . . . alternating very thin beds, wavy bedding and scour and fill structures" (Mercer et al., 1987, p. 270). These are the most distant facies (in terms of depositional environments) from the halite pan that are represented in cores from the Rustler mudstones. The Tamarisk Member mudstone (M-3/H-3) exhibits smeared intraclast textures from synsedimentary dissolution of halite in halitic mudflat deposits where exposure is greater and solution more intense than in depositional environments closer to the halite pan. This facies tract is extensive. In the site area, the Tamarisk mudstone is generally unfractured, and the overlying beds are largely undisturbed, consistent with synsedimentary dissolution. In the

Nash Draw area, the mudstones in the Rustler are considerably disturbed and fractured, as are lower units including the Culebra. There, upper Salado has been dissolved, causing fracture and collapse of much of the Rustler and overprinting the earlier, syndepositional textures.

Holt and Powers (1988) interpreted limited and equivocal evidence from some cores of the Rustler as possible indicators of continuing or more recent dissolution of Rustler halite. Beauheim and Holt (1990) showed small map areas consistent with Holt and Powers (1988). Based on mapping of the Tamarisk and Culebra in the air intake shaft (Holt and Powers, 1991), we believe these core features are synsedimentary and do not interpret the halite margins at the WIPP site to have been affected by significant post-Permian dissolution of Rustler halite. Areas of Rustler halite have been or are being attacked where Salado halite has been or is being attacked.

Structural patterns for units of the Rustler (Figure 22) (see also Holt and Powers, 1988, figures 4.16, 4.17, 4.19) are similar in some areas to patterns of Rustler member halite margins, as well as to isopachs of the entire Rustler (Holt and Powers, 1988, figure 4.15) and unnamed lower member and Tamarisk Member mudstone/halite (Holt and Powers, 1988, figures 4.7 and 4.11, respectively). In particular, margins of the upper three Rustler halite members (Figure 31) northeast of the WIPP site swing around an area that coincides with the structural deformation at ERDA 6. Is this coincidence, dissolution controlled by structure, or structure controlled by halite distribution? Several lines of evidence are relevant.

All units of the Rustler are structurally deformed in this area (northeast corner, T.22S., R.31E.). The base and top of the Rustler (Holt and Powers, 1988, figures 4.16 and 4.19, respectively) are similarly deformed, both in areal extent and vertical uplift. The Culebra (Figure 22) is relevant here and representative of the structure within the Rustler. The structural high trends from northwest to southeast approximately along the topographic high known as the Divide and Antelope Ridge. The structure plunges to the southeast and is generally indistinguishable or greatly subdued in the vicinity of the southern half of T.22S., R.34E.

The thickness of the Forty-niner Member is not apparently affected over the main part of the structure. It thickens modestly on the northeast flank of the anticline. The Forty-niner Member thickens towards the depocenter, which is located in the area of San Simon Swale and Sink.

The Tamarisk mudstone/halite unit is approximately 100 ft (30 m) thinner over the area of the ERDA 6 structure as compared to the thicker depocenter to the southeast. In addition, the isopach contour lines of this unit also follow the form of the plunging anticline.

The isopach map (Holt and Powers, 1988, figure 4.7) of the unnamed lower member shows thinning, of the order of 50 ft (15 m), in an area that cuts across the structure at ERDA 6 and also shows some similarity in form along the plunging southeast end of the structure.

The total Rustler isopach shows a change of 100 plus ft (30 plus m) from the top of the structure to the nose to the southeast (Holt and Powers, 1988, figure 4.15).

Dissolution after deformation is probably limited, at most, to the nose of the anticline, as core from AEC 8 (Section 11, T.22S., R.31E.) indicates predeformation synsedimentary loss of halite from upper Rustler units, while the lower Rustler still includes halite. The original halite margin may have trended near AEC 8 and ERDA 6. The pattern of parallel structure contours could be developed either by deformation of a unit with lateral facies changes or through partial solution of halite across the structure. The evidence at the location of AEC 8 suggests that part of the structure very likely developed where halite was missing syndepositionally from the Rustler. The area of the nose of the structure, east of the WIPP site, may have undergone postdepositional dissolution. We have no core data from the area to differentiate between dissolution and syndepositional processes.

The Dewey Lake Formation (Figure 26) shows no thickness pattern apparently related to the structure at ERDA 6. Any change in Rustler thickness was fully compensated either during the deposition of the Rustler or the change in thickness occurred after the Dewey Lake was deposited. (Basic data for the Dewey Lake and Santa Rosa are presented in Appendix A-4.)

The Santa Rosa (Dockum Group) (Figure 27) shows thinning that partially mimics the structure of the underlying rocks at ERDA 6. Data are insufficient to decide whether this indicates erosion partially as a result of uplift or whether the thinning is part of the general erosional truncation of the unit from east to west. As with the Dewey Lake, there is no indication of thicker Santa Rosa that would imply sedimentary compensation for dissolution of the underlying Rustler prior to or during deposition of the Santa Rosa.

It seems most likely that the general pattern of the halite margins developed more or less coincidentally like the structural deformation pattern at ERDA 6. Core evidence of halite

cement in the upper Rustler north of the WIPP site is most helpful; such features are not always detectable by geophysical logs, but they offer further evidence that late-stage dissolution is limited in that area. More recent dissolution may have occurred to conform the halite margin to the structure pattern around the nose of the anticline; we have no direct evidence either way. It seems unlikely, given the evidence of extensive deformation much deeper in the evaporites (Anderson and Powers, 1978; Jones, 1981a), that the structural deformation was controlled in any way by the distribution of halite in the Rustler.

There may be hydrologic consequences to the Rustler from evaporite deformation, but they are not determinable with our data. We do not at this time interpret the halite patterns in the Rustler near ERDA 6 as being due to post-Rustler dissolution, nor do we expect hydrologic consequences at that location due to dissolution. The area of the structural nose, nearer the center of T.22S., R.32E., is a more likely location for changes in hydrologic parameters, but there are no hydrologic data from that area.

From T.23S., R.31E., to the southeast, the halite margins in all Rustler units generally trend from northwest to southeast. This trend parallels the Remuda Basin anticline (Figure 23) as well as the trend of isopachs of the upper Salado units in this area. By analogy to the similar tract at the WIPP site, we would argue that this area southeast of the WIPP site lacks halite mainly due to syndepositional processes while the Rustler was being deposited. For the most part, this area does not exhibit signs of thickness inflation related to dissolution of the underlying Salado, as in Nash Draw and southwest in the Big Sinks to Phantom Banks area.

The trends of Rustler halite margins (Figure 31) are diverted in an area from the northeast quarter of T.24S., R.31E., to near the center of T.23S., R.32E. (near Bootleg Ridge). The southwestern end of this trend is located near Engle's Well.

There is no known structure underlying this trend of Rustler halite margin that appears related. In this same location, the isopachs on the interval from the top of MB 103 to top of Salado (Figure 15) show similar but muted diversions from their trends in the area.

There are no cores from this location where Rustler halite margins are diverted from their broader trend, and the change in upper Salado thickness is small. We do not rule out post-Permian dissolution of halite in this area, but we discount it considerably based on our experience.

## 4.5 Summary of Evidence About Rustler Halite Distribution

There is good agreement between the differing methods used here to determine halite distribution in various members of the Rustler and the methods used earlier by Snyder (1985) for the same purpose. The methods used here are more likely to result in interpreting some halite where there may not be any; we believe Snyder's methods might miss halite where there is some. Both interpretations have limits, as indicated by the fact that the Forty-niner mudstone in WIPP 19 cores has halite not detected by either approach. Different investigators (e.g., Ferrall and Gibbons, 1979; Barrows et al., 1983) have attempted to use WIPP 19 as evidence of Rustler dissolution of various kinds..

We differ from Snyder's distribution in a few areas, especially in the unnamed lower member around the northwest corner of the site area. We distinguished two separate mudstone/halite units and separated the distributions of halite. Our lower unit (M-1/H-1) indicates halite much further west, near the western boundary of the WIPP site and part of Livingston Ridge. Our second unit (M-2/H-2) is distributed very much like higher units. Snyder (1985) mapped halite in the lower unnamed unit as a whole, and his distribution is similar to our distribution for M-1/H-1 in the western part of the site. In the northeast corner of T.22S., R.30E., we suggest that halite in M-1/H-1 may be present at the Livingston Ridge boundary. This extends over the zone of thinning of the upper Salado (Figure 15). We cannot further resolve this based on the available data, though this is an area where geophysical log interpretation may exaggerate the presence of halite.

How the Rustler halite distribution is or is not relatable to measured and inferred point values of hydrological parameters of the Culebra Dolomite Member will be examined in the final report of this series. Other factors, including those discussed in this document, will also be examined in that final report to try to provide a comprehensive picture of Rustler hydrogeology.

## 5.1 Background Information

The last regional process being considered as an influence on the hydrology of the Culebra is loading and unloading during the geological history since deposition of the unit. Loading and unloading may have had considerable and variable effect on the fracture permeability of the unit through time. The highly variable present depth to the Culebra is an indicator of the modern effects of unloading. In addition, the history of loading and unloading of the Culebra at the vicinity of the WIPP site has been estimated to provide a guide to when permeability features may have developed. Differential loading and unloading of the unit are expected to create different fracturing systems, affecting the local to regional hydrogeologic characteristics of the Culebra. The sedimentary loading, depth of total burial, and erosion events combine in a complex history that we try here to reconstruct from regional geological trends and local data.

A similar, though simpler, loading history was constructed by Borns (1985, figure 10) to assist his interpretation of the features of MB 139 within the Salado Formation. His loading history is based mainly on stratigraphic history within Powers et al. (1978). We have re-examined the basic stratigraphic data and indicate alternatives we are unable to dismiss.

## 5.2 Present Depth to Base of Culebra

An additional form of an isopach map displays the depth, from the surface, to the base of the Culebra (Figure 32a-b). The map was created by plotting and contouring the log depth to the base of the Culebra from the log reference point, which is usually the Kelly bushing of the drilling rig. The map is not quite a true representation of depth, as the reference point may vary from ground surface to a point as much as approximately 20 ft (6 m) above ground surface. The trends will vary little if the data are corrected, but the reader should be aware of this difference.

In the site area, and to the south and southeast for approximately two townships, the depth contours are relatively uniformly spaced and trend from north to south to southeast to northwest. These reflect the general eastward dip on the Culebra in much of this area (see Holt and Powers, 1988, figure 4.17) combined with the general westward slope of the surface. The outline of the 600-ft contour of depth corresponds generally to the shape of the 3,500-ft elevation contour on the topographic surface (Figure 33). Relatively close spacing between

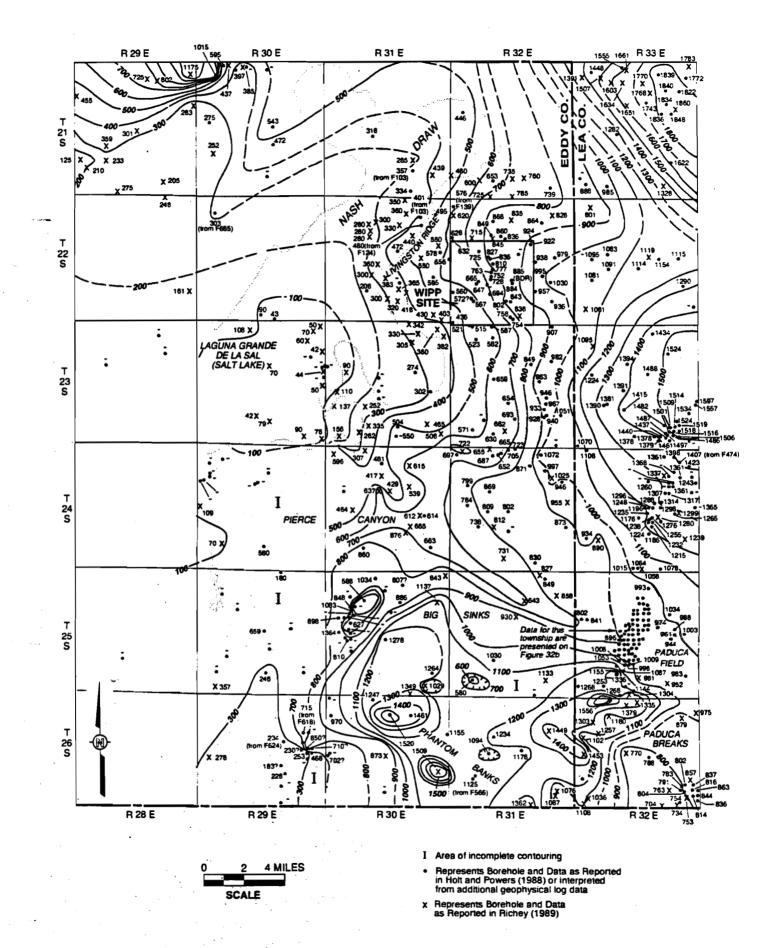
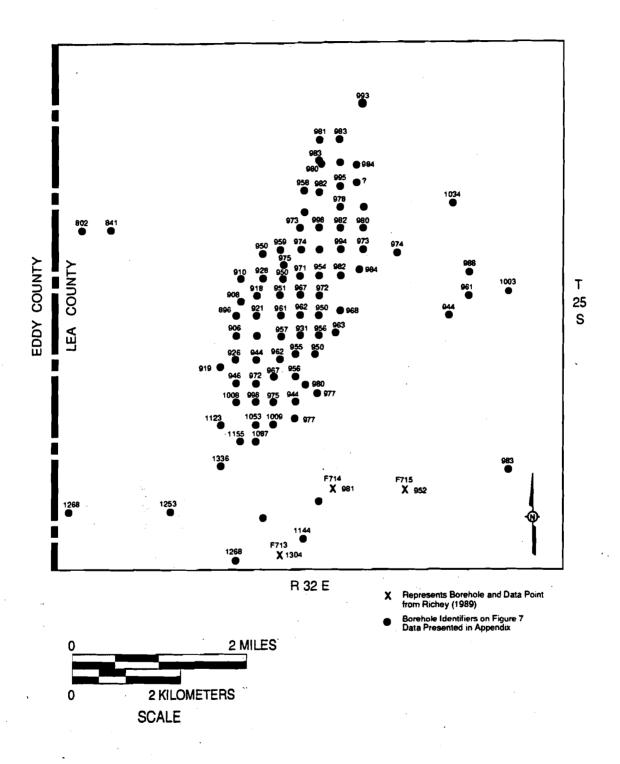




Figure 32a Depth to Base of Culebra

4/17/95



# Figure 32b Depth to Base of Culebra at Paduca Field



## Figure 33 General Topography of the Study Area

4/17/95

700- and 800-ft depth contours and wide spacing between 800- and 900-ft depth contours at the WIPP site result from the increasing thickness of the Tamarisk Member of the Rustler Formation from west to east.

In T.24S., R.30-31E., the depth to the base of Culebra (Figure 32a) has been altered by structural and topographic changes. A topographic ridge trending from the northwest to the southeast from Centinela Mound through Twin Wells ranch area (central part of T.24S., R.31E.) causes a westward bulge in the 700- and 800-ft depth contours and a separation from the 900-ft depth contour. Slightly further west, the depth contours at 700- and 800-ft wrap around back to the northwest. These depth contours correspond to the Remuda Basin anticline (Figures 22 and 23). Lesser depths at the southeastern corner of the map area (Figure 32a) are the result of combined lower topography and northward dip on the Culebra into the Rustler depocenter. Very deep Culebra in the Phantom Banks area (T.26S., R.30E.) is apparently related to the Balmorhea-Loving trough (Maley and Huffington, 1953), salt dissolution, and extensive deposits of the Gatuña Formation (Powers and Holt, 1995).

## 5.3 History of Loading and Unloading of the Culebra

The loading and unloading history of the Culebra since deposition has been estimated as overburden based on inferences from various local and regional geological trends and data (Figure 33). The history is presented with several alternatives, depending on the inferences that are drawn, ranging from minimal to upper bound estimates. The estimates are made with a reference point and depth to the Culebra at the air intake shaft (AIS) (Holt and Powers, 1991).

The present depth to the Culebra from the top of the Dewey Lake at the AIS is 205 m (672 ft). The overlying Triassic rocks are 8-m (26-ft) thick at the AIS; together with the Dewey Lake, these sediments indicate a minimum of approximately 213 m (698 ft) of load on the Culebra. It is highly unlikely that the Culebra at the site has a history of rather constant loading of this 213-m (698-ft) thickness, with very little change since the Permian (Figure 33).

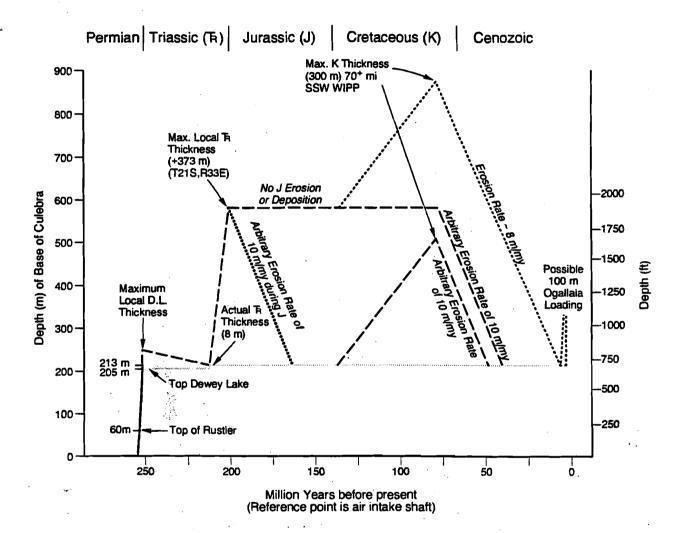
Given the maximum local thickness of the Dewey Lake, the maximum early load (end of Permian) was no more than approximately 240 m (787 ft). Approximately 35 m (115 ft) of Dewey Lake might then have been eroded during the early Triassic before additional sediments were deposited. The actual Triassic thickness at the AIS is approximately 8 m (26 ft). Northeast of the WIPP site (T.21S., R.33E.), Triassic rocks (Dockum Group) have a

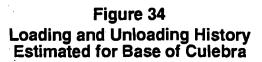
maximum local thickness of approximately 373 m (1,233 ft). This thickness is a reasonable estimate of the maximum thickness also attained at the WIPP site prior to the Jurassic Period. At the end of the Triassic, the total thickness at the WIPP site may have then attained approximately 586 m (1,863 ft) in two similar loading stages of a few million years each, over a period of approximately 50 million years.

The Jurassic outcrops nearest to the WIPP site are in the Malone Mountains of west Texas. There is no evidence that Jurassic rocks were deposited at or in the vicinity of the WIPP site. As a consequence, the Jurassic is considered a time of erosion or nondeposition at the site, though erosion is most likely. The Jurassic is not considered a time of major eustatic sea level changes (e.g. Vail et al., 1977), and a broad erosional plain apparently developed in this area without major relief. An arbitrary erosion rate averaging approximately 10 m/million years is sufficient to erode the inferred thickness of 365 m of additional Triassic rocks from the WIPP site. The Jurassic is the first possible period of significant unloading of the area at and west of the WIPP site.

This much erosion during the Jurassic obviously cannot be broadly inferred for the area or there would not be thick Triassic rocks still preserved. Triassic rocks of this thickness are preserved nearby, indicating either pre-Jurassic tilting or that erosion did not occur until later (but still after tilting to preserve the Triassic rocks near the WIPP site). It is also possible that the immediate site area had little Triassic deposition or erosion, but very limited Triassic deposition (i.e., 8 m [26 ft]) at the WIPP site seems unlikely.

Lang (1947) reported fossils from Lower Cretaceous rocks in the Black River Valley southwest of the WIPP site. Bachman (e.g., 1980) also reported similar patches of probable Cretaceous rocks near Carlsbad and south of Whites City. From these reports, it is likely that some Cretaceous rocks were deposited at or in the vicinity of the WIPP site. Approximately 70 mi (approximately 110 km) south southwest of the WIPP site, significant Cretaceous outcrops of both early and late Cretaceous age have a total maximum thickness of approximately 300 m (about 1,000 ft). Southeast of the WIPP, the nearest Cretaceous outcrops are thinner and represent only the lower Cretaceous. North of the WIPP site, Cretaceous outcrops in the Sierra Blanca (New Mexico) area are thick. Based on these reported outcrops, a maximum thickness of 300 m (1,000 ft) of Cretaceous rocks could be estimated for the WIPP site. Compared to the estimate of Triassic rock thickness, it is less likely that Cretaceous rocks were this thick at the site.


The uppermost lines of Figure 34 summarize the assumptions of maximum thickness of these units.


A more likely alternative is that virtually no Cretaceous rocks were deposited, followed by erosion of remaining Triassic rocks during the late Cretaceous to the late Cenozoic. Such erosion may also have taken place over an even longer period, beginning with the Jurassic Period. Ewing (1993) favors Early Cretaceous uplift and erosion for the Trans-Pecos Texas area, but he does not analyze later uplift and erosional patterns.

In the general vicinity of the WIPP site, there are outcrops of Cenozoic rock from the late Miocene (Gatuña and Ogallala Formations). Early Cenozoic (probable Paleocene) rocks in the Capitan Mountains region (west of Roswell, New Mexico) are the closest outcrops of the earliest Cenozoic. Cenozoic volcanics and interbedded sediments crop out south of the site in areas such as the Davis Mountains, and bolson fill of later Cenozoic age is common. There is little reason to infer any significant early Cenozoic sediment accumulation at the WIPP site, and we do not. Erosion is the main process inferred to have occurred during this period. Toward the end of the Cenozoic, more relief may have developed. The Cenozoic-age Gatuña is treated in more detail in Powers and Holt (1993, 1995). Maximum known Gatuña in the area around the WIPP is approximately 100 m (328 ft); at the WIPP site the Gatuña is very thin to absent.

An average erosion rate of approximately 11 m/million years is sufficient during the Cenozoic to erode the maximum inferred Triassic and Cretaceous thickness prior to Gatuña and Ogallala deposition. We do not believe that significant thicknesses of Cretaceous rocks were deposited, however, and average erosion rates could have been small.

Ogallala deposits are known from The Divide east of the WIPP site, as well as from the High Plains further east and north. On the High Plains northeast of the WIPP, the upper Ogallala surface slopes to the southeast at a rate of approximately 4 m/km (approximately 20 ft/mi). A straight projection of the 4,100-ft contour line from this High Plains surface intersects the site area, which is at an elevation slightly above 3,400 ft (1,036 ft). This difference of 700 ft (213 m) in elevation represents one estimate, probably near an upper bound, of possible unloading subsequent to deposition of the Ogallala Formation. Similar straight line projections of the 3,900- and 3,800-ft contour lines from the High Plains to The Divide would suggest the divide area has been lowered by 100 to 200 ft (30 to 61 m). Alternative





4/17/95

explanations could include halite dissolution, since the Ogallala was deposited or that the High Plains surface did not extend so uniformly to The Divide.

The Ogallala at The Divide may be at the same relative elevation as when it was deposited. Salado units do not indicate salt dissolution totalling 100 to 200 ft (30 to 61 m) at this location. The Rustler units are equivocal, with the total Rustler isopach (Holt and Powers, 1988) indicating the area of The Divide as being approximately 100 ft (30 m) thinner than the maximum at the depocenter. Other isopachs indicate part of this could be attributed to each of the unnamed lower member, the Tamarisk Member, and the Forty-niner Member of the Rustler Formation. The Dewey Lake indicates a possible slight thickening of about the same magnitude. The Triassic rocks appear not to show any general thickness changes at this locality, although one borehole was interpreted to have a thinner Triassic section. Taken as a whole, these features suggest the section under The Divide does not indicate any post-Ogallala dissolution and lowering of the surface rocks. The Divide can reasonably be inferred to not have changed elevation relative to other Ogallala deposits since the end of the Ogallala. On this basis, the High Plains surface could be inferred to swing more to the west through The Divide and the site area at an elevation of approximately 3,800 ft (1,158 m). The difference between this inferred Ogallala slope and the present elevation at the WIPP site is approximately 400 ft (122 m) or less. The loading and unloading of the Ogallala could have been approximately 100 m (30 m) and would have occurred as a short-lived pulse over a few million years at most.

While the above inferences about greater unit thicknesses and probable occurrence are permissible, a realistic assessment suggests a more modest loading and unloading history.

It is likely the Dewey Lake accumulated to near local maximum thickness of approximately 240 m (787 ft) before being slightly eroded prior to the Triassic rocks being deposited. It also is most probable that the Triassic rocks accumulated at the site to near local maximum thickness. In two similar cycles of rapid loading, the Culebra was buried to a depth of approximately 650 m (2,132 ft) by the end of the Triassic.

It also seems unlikely that a significant thickness of Cretaceous rock accumulated at the WIPP site. Erosion probably began during the Jurassic, slowed or stopped during the early Cretaceous as the area was nearer or at base level, and then accelerated during the Cenozoic, especially in response to uplift as Basin and Range tectonics encroached on the area and the basin was tilted more. Erosional bevelling of Dewey Lake and Santa Rosa (Chapter 3.0)

suggest considerable erosion since tilting in the mid-Cenozoic. Erosion rates for this shorter period could have been relatively high, resulting in the greatest stress relief on the Culebra and surrounding units. Some filling occurred during the late Cenozoic as the uplifted areas to the west formed an apron of Ogallala sediment across much of the area, but it is not clear how much Gatuña or Ogallala was deposited in the site area. From our general reconstruction of Gatuña history in the area (Powers and Holt, 1995), we infer that Gatuña or Ogallala deposits likely were not much thicker at the WIPP site than they are now. The loading and unloading "spike" (Figure 34) representing Ogallala thickness probably did not occur. Cutting and headward erosion by the Pecos River has created local relief and unloading by erosion.

At the WIPP site, this history is little complicated by dissolution, though locally (e.g., Nash Draw) the effects of erosion and dissolution are more significant. The underlying evaporites have responded to foundering of anhydrite in less dense halite beds. These have caused local uplift (as at ERDA 6) but little change in the overburden at the WIPP. Areas east of the WIPP site are likely to have a similar history to the site. West of the site, the final unloading is more complicated by dissolution and additional erosion leading to exposure of the Culebra along stretches of the Pecos River Valley.

## 5.4 Other Inferences About Loading and Unloading History

The burial depth around the WIPP site can also be estimated on the basis of hydrocarbon generation and temperature gradients. Hills (1984) takes the temperature of 149°F (65°C) as the temperature to form oil and 257°F (125°C) as the "oil floor" or temperature of gas formation. The Bell Canyon Formation is an exploration target, yielding oil in some fields. A minimum temperature of 149°F may be used to estimate burial. At AEC 8, the upper Bell Canyon at a depth of 4,343 ft (1,324 m) has a temperature of approximately 90°F (32°C) (Mansure and Reiter, 1977). Hills estimates the thermal gradient below 6,500 ft as 1.54°F/100 ft. The 59°F difference between present temperature and the temperature to generate oil could be accounted for by increasing the overburden by approximately 3,800 ft (59°F/[1.54°F/100 ft]), or nearly 1,200 m. This estimate is approximately 1,000 to 1,150 ft (300 to 350 m) more than the maximum thickness estimated here from regional geological relationships. The estimate of 1,200 m would be 800 m more overburden than we consider more likely based on local thickness of Triassic rocks. Recent drilling prospects around the WIPP site have projected oil at greater depths than the Bell Canyon, suggesting this estimate may exaggerate burial depth because the "oil floor" may be deeper.

Barker and Pawlewicz (1993) measured vitrinite reflectance from drill cuttings in the Delaware Basin. They interpret higher thermal maturation gradients and higher (stratigraphically) positions of key vitrinite reflectance values in the western Delaware Basin as evidence of higher paleogeothermal gradients caused by igneous intrusions and Basin and Range development. We are not aware of comparable data from the WIPP area, which is approximately 8 mi (12.8 km) southeast of a mid-Cenozoic dike at its closest approach.

### 5.5 Summary of Loading and Unloading History

The Culebra loading and unloading history could be fairly complex, but the more likely history is relatively simple. Two main pulses of loading are apparent, the first ending Permian deposition and the second during the Triassic. Some unloading through erosion probably occurred during the Jurassic through the early Cenozoic. The major unloading through erosion likely is associated with regional tilting, which is generally placed at approximately mid-Cenozoic. Arbitrary erosion rates in the range of approximately 10 m/million years (about 33 ft/million years) may have been exceeded if most of the overburden survived until mid-Cenozoic or later and was then eroded. Within the WIPP site there are some variations in unloading reflecting in differing depths. Nash Draw, with combined erosion and dissolution, is much more complicated, and the loading/unloading history may be insignificant compared to the disruption due to both dissolution/subsidence and erosion.

Hydrocarbon maturation data are roughly consistent with geological inferences about overburden, but both methods have considerable room for uncertainty. Hydrocarbon data suggest greater overburden. Geological data are better able to distinguish various episodes and place them in geological history.

## 6.0 Conclusions

Following deposition of the Rustler, the formation in the area of the WIPP site has been affected by tectonic events, dissolution, and erosion leading to unloading. Each of these processes has contributed to the evolution of the current hydrological properties of the Culebra Dolomite Member. They have been individually analyzed to identify their general magnitude and history preliminary to relating processes more directly to the hydrology of the Culebra in another report in preparation.

The upper Salado is relatively uniform in thickness from the WIPP site to the southeast. South and west of the WIPP, beds of the upper Salado abruptly thin across a horizontal distance of 2 or 3 mi (approximately 3 to 5 km). We attribute the thinning mainly to subsurface dissolution of halite in the upper Salado. Rustler units have subsided in this area relative to areas to the east. Livingston Ridge, the eastern margin of Nash Draw, is closely associated with this zone of thinning, as is the southeastern extension of Nash Draw. Erosion thus reflects the dissolution of the upper Salado around Nash Draw. Several Nash Draw drillholes fall on or near this zone of thinning, and it is an important contributor to developing hydrologic characteristics of the Rustler as well.

The Culebra has been structurally deformed by tectonic events as well as dissolution of underlying rocks. The regional attitude of beds underlying evaporites is an approximate north-south strike with east dip approximating 1°. Northeast of the WIPP, evaporites in the Castile Formation deformed, arching the Culebra in the same area (the ERDA 6 anticline). South of the WIPP, the regional dip combined with dissolution of the Salado to the south, forming the Remuda Basin anticline. More subtle indicators of structural changes of the Culebra at the WIPP site are attributed to tectonics, because there has not been sufficient salt dissolution to account for the apparent changes.

There is general agreement about the distribution of halite in the Rustler in the WIPP site area. We extended map margins of halite in various members through a larger area and separated the unit immediately under the Culebra (M-2/H-2) from the remainder of the unnamed lower member (M-1/H-1). The potential for sub-Culebra halite dissolution at the WIPP site is limited, because M-1/H-1 has salt throughout much of the site and because the thickness change in M-2/H-2 is 20 to 25 ft (approximately 6 to 7 m). Nonetheless, we believe, based on extensive work mapping in the shafts, describing cores, and interpreting geophysical logs, that little, if any, halite has been dissolved from the Rustler at the WIPP site since deposition. We attribute most of the lateral differences to depositional facies changes in a halite pan to mudflat environment. Relationships between thickness differences and other parameters will be compared in a further work in preparation.

The Culebra has been subjected to loading by sedimentation and unloading due to erosion since being deposited. It is most likely that the Triassic rocks were deposited at the site about as thick as in adjacent areas and that little more sediment was added afterwards. Exposure and erosion predominated from the end of the Triassic until late Cenozoic; there are thick Cretaceous deposits in the region, but remnants are scarce in the general area around WIPP. Wedge-like margins to the Dewey Lake and Santa Rosa suggest that erosion postdated regional tilting about mid-Cenozoic. The time from tilting to the beginning of Gatuña and Ogallala is likely to have been the most intense period of unloading at the WIPP site.

### 7.0 References

Adams, J. E., 1944, "Upper Permian Ochoan Series of Delaware Basin, West Texas and Southeast New Mexico," American Association of Petroleum Geologists Bulletin, Vol. 28, pp. 1596–1625.

Adams, S. S., Jr., 1970, "Ore controls, Carlsbad Potash District, Southeast New Mexico," in J. L. Rau and L. F. Dellwig, eds., *Third Symposium on Salt*, Vol. 1, pp. 246–257, Northern Ohio Geological Society, Cleveland, Ohio.

American Geological Institute, 1987, Glossary of Geology, R. L. Bates and J. A. Jackson, eds., American Geological Institute, Alexandria, Virginia, 788 pp.

Anderson, R. Y., 1978, "Deep Dissolution of Salt, Northern Delaware Basin New Mexico," report to Sandia National Laboratories, Albuquerque, New Mexico.

Anderson, R. Y., and D. W. Powers, 1978, "Salt Anticlines in the Castile-Salado Evaporite Sequence, Northern Delaware Basin, New Mexico" in *Geology and Mineral Deposits of Ochoan Rocks in Delaware Basin and Adjacent Areas*, G. S. Austin, ed., New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico, Circular 159, pp. 78-83.

Bachman, G. O., 1974, "Geologic Processes and Cenozoic History Related to Salt Dissolution in Southeastern New Mexico," *Open-File Report* 74-194, U.S. Geological Survey, Denver, Colorado.

Bachman, G. O., 1980, "Regional Geology and Cenozoic History of [the] Pecos Region, Southeastern New Mexico," *Open-File Report 80-1099*, U.S. Geological Survey, Denver, Colorado.

Bachman, G. O., 1984, "Regional Geology of Ochoan Evaporites, Northern Part of Delaware Basin," *Circular 184*, New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico:

Barker, C. E., and M. J. Pawlewicz, 1993, "Post-Tectonic Reheating of Portions of the Permian Basin as Expressed by Iso-Reflectance Lines on Regional Structural Sections," *New Mexico Geological Society Guidebook*, 44th Field Conference, Carlsbad Region, New Mexico and West Texas, D.W. Love et al., eds., pp. 29–32.

Barrows, L. J., S-E. Shaffer, W. B. Miller, and J. D. Fett, 1983, "Waste Isolation Pilot Plant (WIPP) Site Gravity Survey and Interpretation," *SAND82-2922*, Sandia National Laboratories, Albuquerque, New Mexico.

Beauheim, R. L., 1987, "Interpretations of Single-Well Hydraulic Tests Conducted at and Near the Waste Isolation Pilot Plant (WIPP) Site, 1983-1987," SAND 87-0039, Sandia National Laboratories, Albuquerque, New Mexico. Beauheim, R. L., 1988. "The Role of Pumping Tests in Characterizing Fracture Properties and Distribution in the Culebra Dolomite at the WIPP Site," *Transactions, American Geophysical Union*, Vol. 69, No. 44, p. 1177.

Beauheim, R. L., and R. M. Holt, 1990, "Hydrogeology of the WIPP Site: Geological and Hydrological Studies of Evaporites in the Northern Delaware Basin for the Waste Isolation Pilot Plant (WIPP), New Mexico," *Geological and Hydrological Studies of Evaporites in the* Northern Delaware Basin for the Waste Isolation Pilot Plant (WIPP), New Mexico, D. W. Powers et al., eds., Geological Society of America, Field Trip #14, pp. 131-179.

Beauheim, R. L., T. F. Dale, and J. F. Pickens, 1991, "Interpretations of Single-Well Hydraulic Tests of the Rustler Formation Conducted in the Vicinity of the Waste Isolation Pilot Plant Site, 1988-1989," SAND89-0869, Sandia National Laboratories, Albuquerque, New Mexico.

Borns, D. J., 1985, "Marker Bed 139: A Study of Drillcore From a Systematic Array," SAND85-0023, Sandia National Laboratories, Albuquerque, New Mexico.

Borns, D. J., 1987, "The Geologic Structures Observed in Drillhole DOE-2 and Their Possible Origins: Waste Isolation Pilot Plant," SAND86-1495, Sandia National Laboratories, Albuquerque, New Mexico.

Borns, D. J., and S-E. Shaffer, 1985, "Regional Well-Log Correlation in the New Mexico Portion of the Delaware Basin," *SAND83-1798*, Sandia National Laboratories, Albuquerque, New Mexico.

Borns, D. J., L. J. Barrows, D. W. Powers, and R. P. Snyder, 1983, "Deformation of Evaporites Near the Waste Isolation Pilot Plant (WIPP) Site," *SAND82-1069*, Sandia National Laboratories, Albuquerque, New Mexico.

Brinster, K. F., 1991, "Preliminary Geohydrologic Conceptual Model of the Los Medaños Region Near the Waste Isolation Pilot Plant for the Purpose of Performance Assessment," SAND89-7147, Sandia National Laboratories, Albuquerque, New Mexico, with addendum.

Cartwright, L. D., Jr., 1930, "Transverse Section of Permian Basin, West Texas and Southeastern New Mexico," American Association of Petroleum Geologists Bulletin, Vol. 14, pp. 969–981.

Davies, P. B., 1989, "Variable-Density Ground-Water Flow and Paleohydrology in the Waste Isolation Pilot Plant (WIPP) Region, Southeastern New Mexico," *Open-File Report 88-490*, U.S. Geological Survey, Albuquerque, New Mexico.

Doveton, J. H., 1986, Log Analysis of Subsurface Geology, Concepts and Computer Methods, Wiley-Interscience, New York, 273 pp.

Ewing, T. E., 1993, "Erosional Margins and Patterns of Subsidence in the Late Paleozoic West Texas Basin and Adjoining Basins of West Texas and New Mexico," *New Mexico Geological Society Guidebook*, 44th Field Conference, Carlsbad Region, New Mexico and West Texas, D. W. Love et al., eds., pp. 155–166.

Ferrall, C. C., and J. F. Gibbons, 1979, "Core Study of Rustler Formation Over the WIPP Site," *SAND79-7110*, Sandia National Laboratories, Albuquerque, New Mexico.

Gard, L. M., Jr., 1968, "Geologic Studies, Project Gnome, Eddy County, New Mexico," U.S. Geological Survey Professional Paper 589, 33 pp.

Giesey, S. C., and F. F. Fulk, 1941, "North Cowden Field, Ector County, Texas," American Association of Petroleum Geologists Bulletin, Vol. 24, pp. 603.

Gonzalez, D. D., 1983, "Groundwater Flow in the Rustler Formation, Waste Isolation Pilot Plant (WIPP), Southeast New Mexico (SENM): Interim Report," SAND82-1012, Sandia National Laboratories, Albuquerque, New Mexico.

Hills, J. M., 1984, "Sedimentation, Tectonism, and Hydrocarbon Generation in Delaware Basin, West Texas and Southeastern New Mexico," *American Association of Petroleum Geologists Bulletin*, Vol. 68, pp. 250-267.

Hiss, W. L., 1976, "Structure of the Permian Ochoan Rustler Formation, Southeast New Mexico and West Texas," *Resource Map 7*, New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico, scale: 1 inch = 8 miles.

Holt, R. M., and D. W. Powers, 1984, "Geotechnical Activities in the Waste Handling Shaft Waste Isolation Pilot Plant (WIPP) Project Southeastern New Mexico," WTSD-TME-038, U.S. Department of Energy, Carlsbad, New Mexico.

Holt, R. M., and D. W. Powers, 1986a, "Rustler Formation: Evaporite End Stages of a Continental Basin," *Abstracts, 12th International Sedimentological Congress,* Canberra, Australia, pp. 141–142.

Holt, R. [M.], and D. [W.] Powers, 1986b, "Geotechnical Activities in the Exhaust Shaft," DOE-WIPP-86-008, U.S. Department of Energy, Carlsbad, New Mexico.

Holt, R. M., and D. W. Powers, 1988, "Facies Variability and Post-Depositional Alteration within the Rustler Formation in the Vicinity of the Waste Isolation Pilot Plant, Southeastern New Mexico," *DOE/WIPP* 88-004, U.S. Department of Energy, Carlsbad, New Mexico.

Holt, R. M., and D. W. Powers, 1990, "Halite Sequences Within the Late Permian Salado Formation in the Vicinity of the Waste Isolation Pilot Plant," *Geological and Hydrological Studies of Evaporites in the Northern Delaware Basin for the Waste Isolation Pilot Plant* (WIPP), New Mexico, D. W. Powers et al., eds., Field Trip #14 Guidebook, Geological Society of America, Dallas Geological Society, pp. 45–78. Holt, R. M., and D. W. Powers, 1991, "Geologic Mapping of the Air Intake Shaft at the Waste Isolation Pilot Plant," *DOE/WIPP 90-051*, U.S. Department of Energy, Carlsbad, New Mexico.

Jones, C. L., 1972, "Permian Basin Potash Deposits, Southwestern United States," in Geology of Saline Deposits, UNESCO, Earth Science Series, No. 7, pp. 191-201.

Jones, C. L., 1978, "Test Drilling for Potash Resources: Waste Isolation Pilot Plant Site, Eddy County, New Mexico, Vols. 1 and 2," *Open-File Report 78-592*, U.S. Geological Survey, Denver, Colorado.

Jones, C. L., 1981a, "Geologic Data for Borehole ERDA-6, Eddy County, New Mexico," Open-File Report 81-468, U.S. Geological Survey, Denver, Colorado.

Jones, C. L., 1981b, "Geologic Data for Borehole ERDA-9, Eddy County, New Mexico," Open-File Report 81-469, U.S. Geological Survey, Denver, Colorado.

Jones, C. L., C. G. Bowles, and K. G. Bell, 1960, "Experimental Drill Hole Logging in Potash Deposits of the Carlsbad District, New Mexico," *Open-File Report 60-84*, U.S. Geological Survey, Denver, Colorado.

Jones, C. L., M. E. Cooley, and G. O. Bachman, 1973, "Salt Deposits of Los Medaños Area, Eddy and Lea Counties, New Mexico," *Open-File Report 4339-7*, U.S. Geological Survey, Denver, Colorado.

Kronlein, G. A., 1939, "Salt, Potash and Anhydrite in Castile Formation of Southeast New Mexico," American Association of Petroleum Geologists Bulletin, Vol. 23, pp. 1682–1693.

Lambert, S. J., 1983, "Dissolution of Evaporites in and Around the Delaware Basin, Southeastern New Mexico and West Texas," *SAND82-0461*, Sandia National Laboratories, Albuquerque, New Mexico.

Lang, W. B., 1935, "Upper Permian formation of Delaware Basin of Texas and New Mexico," American Association of Petroleum Geologists Bulletin, Vol. 19, pp. 262–276.

Lang, W. B., 1937, "The Permian Formation of the Pecos Valley of New Mexico and Texas," *American Association of Petroleum Geologists Bulletin*, Vol. 21, pp. 833–898.

Lang, W. B., 1939, "Salado Formation of the Permian Basin," American Association of Petroleum Geologists Bulletin, Vol. 23, pp. 1569–1572.

Lang, W. B., 1942, "Basal Beds of Salado Formation in Fletcher Potash Core Test Near Carlsbad, New Mexico," *American Association of Petroleum Geologists Bulletin*, Vol. 26, pp. 63–79.

Lang, W. B., 1947, "Occurrence of Comanche Rocks in Black River Valley, New Mexico," American Association of Petroleum Geologists Bulletin, Vol. 31, pp. 1472–1478.

Lowenstein, T. K., 1982, "Primary Features in a Potash Evaporite Deposit, the Permian Salado Formation of West Texas and New Mexico," *Depositional and Diagenetic Spectra of Evaporites—A Core Workshop*, C. R. Handford, R. G. Loucks, and G. R. Davies, eds., Society of Economic Paleontologists and Mineralogists Core Workshop No. 3, Calgary, Canada, pp. 276–304.

Lowenstein, T. K., 1988, "Origin of Depositional Cycles in a Permian "Saline Giant": The Salado (McNutt Zone) Evaporites of New Mexico and Texas," *Geological Society of America Bulletin*, Vol. 100, pp. 592–608.

Lucas, S. G., and O. J. Anderson, 1993a, "Stratigraphy of the Permian-Triassic Boundary in Southeastern New Mexico and West Texas," *New Mexico Geological Society Guidebook*, 44th Field Conference, Carlsbad Region, New Mexico and West Texas, D.W. Love et al., eds., pp. 219–230.

Lucas, S. G., and O. J. Anderson, 1993b, "Triassic Stratigraphy in Southeastern New Mexico and Southwestern Texas," *New Mexico Geological Society Guidebook*, 44th Field Conference, Carlsbad Region, New Mexico and West Texas, D.W. Love et al., eds., pp. 231–235.

Madsen, B. M., and O. B. Raup, 1988, "Characteristics of the Boundary Between the Castile and Salado Formations Near the Western Edge of the Delaware Basin, Southeastern New Mexico," *New Mexico Geology*, Vol. 10, No. 1, pp. 1–6, 9.

Maley, V. C., and R. M. Huffington, 1953, "Cenozoic Fill and Evaporite Solution in the Delaware Basin, Texas and New Mexico," *Geological Society of America Bulletin*, Vol. 64, pp. 539–546.

Mansure, A., and M. Reiter, 1977, "An Accurate Equilibrium Temperature Log in AEC No. 8, A Drill Test in the Vicinity of the Proposed Carlsbad Disposal Site," *Open-File Report No. 80*, New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico.

Mercer, J. W., 1983, "Geohydrology of the Proposed Waste Isolation Pilot Plant Site, Los Medaños Area, Southeastern New Mexico," *Water Resources Investigations Report 83-4016*, U.S. Geological Survey, Albuquerque, New Mexico.

Mercer, J. W., R. L. Beauheim, R. P. Snyder, and G. M. Fairer, 1987, "Basic Data Report for Drilling and Hydrologic Testing of Drillhole DOE-2 at the Waste Isolation Pilot Plant (WIPP) Site," *SAND86-0611*, Sandia National Laboratories, Albuquerque, New Mexico.

Powers, D. W., in review, "Tracing Early Studies of Shallow Dissolution, Waste Isolation Pilot Plant, Southeastern New Mexico," SAND94-3126, Sandia National Laboratories, Albuquerque, New Mexico.

301651

Powers, D. W., and B. W. Hassinger, 1985, "Synsedimentary Dissolution Pits in Halite of the Permian Salado Formation, Southeastern New Mexico," *Journal of Sedimentary Petrology*, Vol. 55, No. 5, pp. 769–773.

Powers, D. W., and R. M. Holt, 1995, "Gatuña Formation (Miocene to Pleistocene) Geology and Paleohydrology," report by IT Corporation, Albuquerque, New Mexico, to Westinghouse Electric Corporation, Carlsbad, New Mexico.

 Powers, D. W., and R. M. Holt, 1993, "The Upper Cenozoic Gatuña Formation of Southeastern New Mexico," *New Mexico Geological Society Guidebook*, 44th Field Conference, Carlsbad Region, New Mexico and West Texas, D.W. Love et al., eds., pp. 271-282.

Powers, D. W., and R. M. Holt, 1990, "Sedimentology of the Rustler Formation Near the Waste Isolation Pilot Plant (WIPP) Site," *Geological and Hydrological Studies of Evaporites in the Northern Delaware Basin for the Waste Isolation Pilot Plant (WIPP), New Mexico,* D. W. Powers et al., eds., Field Trip #14 Guidebook, Geological Society of America, Dallas Geological Society, pp. 79–106.

Powers, D. W., and D. V. LeMone, 1990, "A Summary of Ochoan Stratigraphy of the Western and Northern Delaware Basin," in *Geological and Hydrological Studies of Evaporites in the Northern Delaware Basin for the Waste Isolation Pilot Plant (WIPP), New Mexico,* D. W. Powers et al., eds., Field Trip #14 Guidebook, Geological Society of America, Dallas Geological Society, pp. 27-32.

Powers, D. W., M. Martin, and R. M. Holt, 1988, "Siliciclastic-Rich Units of the Permian Salado Formation, Southeastern New Mexico," in Abstracts with Programs, Geological Society of America, Vol. 20, No. 7, p. A174.

Powers, D. W., S. J. Lambert, S-E. Shaffer, L. R. Hill, and W. D. Weart, eds., 1978, "Geological Characterization Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico," SAND78-1596, Vols. I and II, Sandia National Laboratories, Albuquerque, New Mexico.

Reeves, M., G. A. Freeze, V. A. Kelley, J. F. Pickens, D. T. Upton, and P. B. Davies, 1991, "Regional Double-Porosity Solute Transport in the Culebra Dolomite Under Brine-Reservoir-Breach Release Conditions: An Analysis of Parameter Sensitivity and Importance," *SAND89-7069*, Sandia National Laboratories, Albuquerque, New Mexico.

Richardson, G. B., 1904, "Report of a Reconnaissance in Trans-Pecos Texas North of the Texas and Pacific Railway," *University of Texas Bulletin*, Vol. 23.

Richey, S. F., 1989, "Geologic and Hydrologic Data for the Rustler Formation Near the Waste Isolation Pilot Plant, Southeastern New Mexico," *Open-File Report 89-32*, U.S. Geological Survey, Albuquerque, New Mexico. Sandia National Laboratories and U.S. Geological Survey, 1983, "Basic Data Report for Drillhole ERDA 6 (Waste Isolation Pilot Plant—WIPP)," SAND79-0267, Sandia National Laboratories, Albuquerque, New Mexico.

Snyder, R. P., 1985, "Dissolution of Halite and Gypsum, and Hydration of Anhydrite to Gypsum, Rustler Formation, in the Vicinity of the Waste Isolation Pilot Plant, Southeastern New Mexico," *Open-File Report* 85-229, U.S. Geological Survey, Denver, Colorado.

Stein, C. L., 1985, "Mineralogy in the Waste Isolation Pilot Plant (WIPP) Facility Stratigraphic Horizon," SAND85-0321, Sandia National Laboratories, Albuquerque, New Mexico.

[TSC-D'Appolonia], 1983, "Geologic Mapping of Access Drills 'Double Box' Area, Geotechnical Field Data Report No. 5, Waste Isolation Pilot Plant, Carlsbad, New Mexico.

U.S. Department of Energy, 1980, "Final Environmental Impact Statement Waste Isolation Pilot Plant: Vol. I & II," *DOE/EIS-0026*, U.S. Department of Energy, Albuquerque, New Mexico.

Vail, P. R., R. M. Mitchum, Jr., and S. Thompson III, 1977, "Seismic Stratigraphy and Global Changes of Sea Level, Part 4: Global Cycles of Relative Changes of Sea Level," *Seismic Stratigraphy—Applications to Hydrocarbon Exploration, Memoir 26*, American Association of Petroleum Geologists, pp. 83–97.

Vine, J. D., 1963, "Surface Geology of the Nash Draw Quadrangle, Eddy County, New Mexico," U.S. Geological Survey Bulletin 1141-B.

## APPENDIX A DATA FOR DRILLHOLES IN HOLT AND POWERS (1988) PLUS ADDITIONAL DRILLHOLES INTERPRETED BY POWERS

## APPENDIX A DATA FOR DRILLHOLES IN HOLT AND POWERS (1988) PLUS ADDITIONAL DRILLHOLES INTERPRETED BY POWERS

This appendix includes the drillhole data from an appendix in Holt and Powers (1988) as well as some additional boreholes more recently interpreted by Powers for eventual use in interpreting Rustler geology.

A location table (Appendix A-1) lists basic identification and location data for the boreholes. A uniform (in format) and a unique numerical identifier (ID #) has been assigned to each borehole for ease in manipulation. Another identifier (Hole ID) was used in Holt and Powers (1988), based on the system used by Borns and Shaffer (1985). That system did not produce unique identifiers and is not as easily manipulated during database management. It is included here (column 2) in order to refer back to these earlier references. Standard township, range, section, and distance (in feet) from section boundaries are included, as they are the common means of locating these drillholes. A drillhole name has been included based generally on an entry on one or more geophysical logs. *These drillhole names may differ slightly from source to source*. Some common words have been abbreviated to shorten the borehole name. A last column includes any revisions or notes that may be helpful to the reader.

The remainder of the appendix presents tables of depth data for relevant stratigraphic units: Salado—Appendix A-2, Rustler—Appendix A-3, Dewey Lake and Santa Rosa—Appendix A-4. Drillhole sources are referenced by ID # to Appendix A-1. The reference elevation is the point from which depth was measured, and it was frequently the Kelly bushing (KB) of the drill rig. A correction (KB) to surface elevation is given where it is known, but some geophysical logs did not include this number. For most uses in this report, the KB correction is unnecessary.

The basic data from Holt and Powers (1988) were prepared under quality assurance procedures and check provided by IT Corporation. The additional drillholes added to this data set were prepared under similar procedures. Some typographical errors have been corrected, as noted, from the Holt and Powers data set. One borehole was reinterpreted, as noted in other appendices.

A-1

## APPENDIX A-1 LOCATIONS FOR RUSTLER FORMATION DATA POINTS

#### **Rustier Formation Location Data**

ID	Hole			Loca	tion Data*		Drillhole Name	Revisions
No.	D	Т.		Sec		fe,wl		
	====: W04	=== 18	=== 29	==== 4	===== 1980n		Roach Drilling, Western Development Miller No. 1	
1002	T19	18	29	19	660s	1980e	Martin Yates III and S.P. Yates, Travis Fed. 2	,
1003	L18	18	30	18	1650n	924w	Newmont Oil Co., Loco Hills 21-B-6	
1004	C25	18	30	25	990n	330e	Yates Petroleum Corp., Creek "AL" #1	
1005	G26	18	30	26	<b>990s</b>	330e	Hanson Oil Corp., Ginsberg Fed. No. 11	
1006	M27	18	30	27	990n	1651w	Texaco, Inc., L.R. Manning "B" NCT-1 Well #20	
1007	R28	18	30	28	330s	1491e	Texaco, Inc., L.R. Manning Fed. "B" (NCT_1) #4	
1008	MO2	18	31	2	330s	660w	W.S. Montgomery, Magnolia St. #1	
1009	S11	18	31	. 11	660s	660w	Hudson & Hudson Inc., Shugart B-1	
1010	M16	18	31	16	660s	1980e	M.R. Voltz, Magnolia St. #2	
1011	F22	18	31	22	660s	660w	Gulf Oil Corp., Fed. Littlefield #1	
1012	F28	18	31	<b>28</b> :	1980n	660w	Gulf Oil Corp., Fed. Keohane et al "B" No. 1	
1013	K28	18	31	28	<b>1980n</b>	1980w	Gulf Oil Corp., FedKeohane et al "B" #3	
1014	<b>C3</b> 1	18	31	31	<b>1980n</b>	1980e	Campana Petroleum Co., Pure Fed. #1	
1015	H31	18	31	31	<b>330n</b>	844w	Ray M. Hall, Pure-Fed. #1	
1016	M32	18	31	32	<b>1980n</b>	1980w	Chambers and Kennedy, Monterey St. #4	
1017	S32	18	31	32	1650n	2310e	Sunray Mid-Continent Oil Co., St. "Y" #1	
1018	P32	18	31	32	<b>330n</b>	330w	L.T. Pate, Monterrey St. #5	
1019	W33	18	31	33	<b>330n</b>	330w	V.S. Welch [indet] No. 2, Shugart No. 5-B	
1020	J04	18	32	4	1650n	990e	B.M. Jackson, Fed. No. 2	
1021	G16	18	32	16	1980n	1980w	Gulf Oil Corp., Lea St. "HS" #3	
1022	J20	18	32	20	2310s	990w	John M. Beard, Young Fed. #5	
1023	C28	18	32	28	1980n	660w	Texaco, Inc., Cotton Draw Unit No. 53	
1024	C10	18	33	10	<b>1980n</b>	660e	Carper Drilling Co., Corbin R #1	
1025	B12	18	33	12	660n	1980e	P.W. Miller Drilg. & Prod. Co., Brit. Am. St. #2	
1026	D13	18	33	13	1650s	2310w	J.I. O'Neill, Jr., Dorothy Swigart #1	
1027	<b>S28</b>	18	33	28	<b>1980s</b>	660e	Sunray Mid-Continent Oil Co., Fed. "E" #1	Rev loc ctr, NE1/4, SE1/4
1028	H30	18	33	<b>3</b> 0	<b>1980s</b>	1980w	Penzoil United Inc., Hudson "29" Fed. #3	
1029	N01	18	34	1	560n	760w	Texaco, Inc., St. of New Mexico "M" #5	
1030	L06	18	<b>34</b> .	6	<b>989n</b>	330w	Phillips Petroleum Co., Lea No. 17	
1031	B07	18	34	7	660s	660e	Richardson & Bass, St. of New Mexico #1	
1032	S22	18	34	22	<b>1980s</b>	1980w	Continental Oil Co., St. V-22 #2.	
1033	T22	18	34	22	330s	1980w	Continental Oil Co., St. V-22 #1	
1034	M33	18	34	33	<b>330s</b>	1980w	Tom Brown Drilling Co., Marathon St. #1	
1035	F03	18	35	3	2310s	330e	Phillips Petroleum Co., Santa Fe No. 114	

•

•

.

.

•					<u>.</u>	<b>.</b>	ě .		
,	ID	Hole	-		Location			Drillhole Name	Revisions
	No.	ID ====:	Т.	R.	Sec	fn,sl 	fe,wl		
	1036	V04	 18	=== 35	4	<b>1980n</b>		Standard Oil Co. of Texas, Vac Edge Unit #2	
	1037	F05	18	35	5	1650n		Phillips Petroleum Co., Santa Fe No. 111	
•	1038	S05	18	35	5			Phillips Petroleum Co., Santa Fe No. 93	
•	1039	V05	18	35	5	990s	990e	Standard Oil Co. of Texas, Vac Edge Unit #19	
	1040	W06	18	35	6	330s	913w	The Ohio Oil Co., St. Waren Account 2 #9	
	1041	A07	18	35	7	330n	990e	Tidewater Oil Co., St. AN #1	
	1042	C29	18	35	29	1980n		Carper Drilling Co., Carper-Luthy No. 1	
	1043	C01	18	36	1	1980s	1980e	Cactus Drilling Corp., Catron "B" No. 2	
		- P11	18	36	11	1980s	1980w	John M. Kelly, St. PE #1	•
. ,	1045	K11	18		11	660s	660e	John M. Kelly, St. J.J. #1	
	1046	<b>C12</b>	18	36	12	660n	1980 <del>w</del>		
	1047	A14	18	37	14	1650s	2310w	Amerada Petroleum Corp., St. W.H. "B" #2	
	1048	W31	18	37	31	1980n	660w	Amerada Petroleum Corp., St. WM "E" #3	
	1049	A03	18	<b>38</b>	3	1980s	1980e	O.D. Alsabrook, Saunders #1	
	1050	M19	18	38	19		1650e	Shell Oil Co., Shell et al McKinley A-19 #1	
A-4	1051	N06	19	29	6	<b>1980s</b>	1765w	Shamrock Drilling Co., Nix & Curtis #1	
4	1052	S21	19	29	21	2015n	1880e	Wayne J. Spears, Stout St. #1	
	1053	U26	19	29	26	660n	660w	Wayne J. Spears, Union St. #1	Rev loc NW1/4, NW1/4
	1054	P05	19	30	5	1980n	330w	Yates Petroleum Corp., Perkins "AD" #3	
	1055	U06	19	31	6	330n	1650w	Texaco, Inc., USA Fed. #1	
•	1056	<b>S13</b>	19	31	13	660s	1980e	Phillips Petroleum Co., Simon "A" No. 1	
	1057	S14	19	31	14	660s	660e	Phillips Petroleum Corp., Simon "A" #2	
	<b>1058</b>	T21	19	31	21	<b>1980s</b>	660e	Texas Crude Oil Co., Tennessee-Fed. #1-21	
	1059	E29	19	32	29	<b>1980n</b>	660e	El Paso Natural Gas Co., Southern Cal. Fed. #1	· .
1 - A	1060	C12	19	34	12	660n	660w	Carper Drilling Co., U.S. Smelting St. #1	
	1061	A14	19	35	14	660s	660w	Atlantic Refining Co., St. AU #1	
	1062	S27	19	35	27	<b>1980n</b>	660e	Shell Oil Co., Allen ESt. A #1	
	1063	C28	19	35	28	1980s	660w	Cabot Carbon Co., St. G #1	
	1064	L33	19	35	33	<b>1980n</b>	660e	Gulf Oil Corp., Lea St. BG #8	
	1065	P01	19	36	1	<b>1980n</b>	330e	Pan American Petroleum Corp., St. "B" #1	
	1066	H11	19			660s	1980w	Humble Oil and Refining Co., New Mex. St. "AO" #1	
	1067	S18	19	36			1980w	•	
	1068	A25	19	36			1980w		<b>Rev loc NE1/4, NW1/4</b>
	1069	A32	19	37			1980e	• •	· · ·
	1070	F21	20		21			Amoco Prod., Fed. Gas Com No. 1-G	Log lacks loc data

ID No.	Hole ID	T.	R.	Locatio Sec	on Data [‡] fn,sl	fe,wl	Drillhole Name	Revisions
	2=2=1		===					=8=2525252
1071	L31	20	30	31	1980n		Texas International Petrol. Corp., Lowe Fed. #1	
1072	B07	20	31	7	1650s		Pan American Petroleum Corp., Big Eddy Unit #11	
1073 1074	B21	20	31	21	660n	660w	Pennzoil United, Big Eddy Unit No. 12	
1074	F10	20	32	10	330n	990w	Shell Oil Co., Perry Fed. #1	
1075	H13	20	32	13 15	660s	1980w	Flag-Redfern Oil Co., Hanson St. #1	
	P15	20	32 33			1980w	Phillips Petroleum Co., Plata Deep Unit #1	
1077 1078	L05 S14	20		5	660s 2310s	1980w	Pan American Petroleum Corp., Little Eddy Unit #1	
		20 20	33 33	<u>.</u> 14 18			Carl Engwall, Sinclair Fed. #1	
1079	B18				660n	2080w		
1080	S18	20	33	18		1650w	Randall F. Montgomery, Bass St. #2	
1081	F27	20	33	27		1650e	Amoco Prod. Co., API #30-025-26241, Fed."Y" Com #1	
1082	L13	20	34	13		1980e	Marathon Oil Co., Lea Unit #3	
1083	H20	20	34	20		1650w	Burk Royalty, Hanson Fed. B #2	
1084	F29	20	34	29	1980s		Earl G. Colton, Fed. #1	
1085	B28	20	35	28	660n	660e	W.H. Black, Phillips St. No. 1	
1086	S02	20	36	2	660n	1980e	The Superior Oil Co., St. "A" No. 2	
1087	U30	20	36	30	660n	660w	Union Oil Co. of California, Sims St. 1-30	
1088	H01	20	37	1	990n	1650w	Humble Oil and Refining Co., N.M. St. "AG" No. 6	
1089	W27	20	38	27	660s	660w	Continental Oil Co., Warren Unit "BT" No. 26	
1090	P03	21	29	3		1980w	Pan American Petroleum Corp., Big Eddy Unit #18	
1091	N04	21	29	4	4620s	1980w	Union Oil Co. of California, Cowden Fed. #1	
1092	P05	21	29	5	1980n		Meadco Properties, Ltd., Harris-Bell #1	
1093	M05	21	29	5	980n	1880w	Meadco Properties Ltd., Harris Bell #2	
1094	M06	21	29	6	3147n		Meadco Properties Ltd., Harris "6" #1	
1095	B15	21	29	15	1980s	1980w	Perry R. Bass, Big Eddy Unit #61	
1096	P18	21	29	18	1980s	1980e	Pan American Petroleum Corp., Big Eddy Unit #16	
1097	B22	21	29	22		1980e	Perry R. Bass, Big Eddy Unit No. 40	
1098	E34	21	29	34	660n	1980w	Bass Enterprises Prod. Co., Big Eddy Unit No. 38	•
1099	D21	21	30	21	90n	1485w	WIPP 27	
1100	P26	21	30	26	660s	1980w	Phillips Petroleum Co., James "D" 1	
1101	P35	21	30	35	1980s	660w	Phillips Petroleum Co., James "C" #1	
1102	D18	21	31	18	99n	2401e	WIPP 28	
1103	D33	21	31	33	668n	177w	WIPP 30	Ref El from SAND79-0284
1104	Q35	21	31	35	2152s		ERDA6	
1105	E01	21	32	1	3255n	1972e	Phillips Petroleum Co., ETZ Fed. #1	

A-5

<u>م</u>

	Revisions								Rev loc SE1/4, SE1/4									Surf El from log					Rev loc SE1/4, SW1/4; log elev		Rev loc SE1/4, SW1/4							B#10 or B#127, log unclear			
	Drillhole Name		Kimball Production Co., Fed. #1	Phillips Petroleum Co., Hat Mesa "A" #1	Amini Oil Co., Pubco Fed. #1	Amini Oil Co., New Mexico Fed. #1		-																									William A. and Edward K. Hudson, Eddy Fed. #1 WIDD 22	•	
		fe;wl -	1980w	1980e	660w	1650w	500e	1980e	660e	1980w	1980e	660w	660e	1980w	2040e	1980e	2310w	660e	660w	660e	660e	1650w	1980w	1980w	1980e	1980e	010e	19806	1980e	660w	765e	M092	660e	22C	20201
	1 Data	fn,sl	= 900 900	660s	<b>3300n</b>	1683n																				-							660s		
	Location Data	R. Sec	32 1	32 2	32 2	32 4 .	32 6	32 10	32 11	32 11	32 11	32 21	32 26																				29 6 20 33		5 67
		Ë I	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	53	22	77	21	51	57	21	ដ	3 2	77
	Hole	8	F01	H02	P02	<b>X04</b>	<b>S06</b>	G10	FII	H11	M11	S21	G26	H31	<b>U31</b>	G32	<b>S02</b>	W01	NQ	<b>C1</b> 6	R32	C17	A21	H26	A27	G27	23	5	<b>A33</b>	<b>R34</b>	3	M31	E E E E E		ち
-	8	No.	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	0611	1131	1132	1133	1134	1135	1136	113/	0011

A-6

Revisions	Rev loc, elev from SAND79-0279	Ref elev typo revised	
Drillhole Name	Troporo Oil and Gas Co., Cabana #1 Phillips Petroleum Co., James "A" #1 WIPP 33 WIPP 25 P-14 P-12 Richardson & Bass, Fed. Legg #1 WIPP 26 B. McKnight et al, Campana No. 1 Fenix & Scissons Inc., WIPP No. DOE-2 WIPP 11 WIPP 34	<ul> <li>WIPP 34</li> <li>WIPP 14</li> <li>WIPP 14</li> <li>AEC8</li> <li>P-20</li> <li>Fenix &amp; Scisson, WIPP HYDRO H-5c</li> <li>P-21</li> <li>Clayton W. Williams Jr., Badger Unit Fed. No. 1</li> <li>Fenix &amp; Scisson, Unc., WIPP M.0. 12</li> <li>P-5</li> <li>P-13</li> <li>Fenix &amp; Scisson, Inc., WIPP H-6c</li> <li>P-13</li> <li>Fenix &amp; Scisson, Inc., WIPP H-6c</li> <li>P-3</li> <li>Fenix &amp; Scisson, Inc., WIPP #18</li> <li>Fenix &amp; Scisson, Inc., WIPP H-6c</li> <li>P-13</li> <li>Fenix &amp; Scisson, Inc., WIPP H-6c</li> <li>P-13</li> <li>Fenix &amp; Scisson, Inc., WIPP #18</li> <li>Fenix &amp; Scisson, Inc., WIPP #18</li> <li>Fenix &amp; Scisson, Inc., WIPP #19</li> <li>Fenix &amp; Scisson, Inc., WIPP #21</li> <li>Fenix &amp; Scisson, Inc., WIPP #22</li> <li>Fenix &amp; Scisson, Inc., WIPP #23</li> <li>Fenix &amp; Scisson, Inc., WIPP #24</li> <li>Fenix &amp; Scisson, Inc., WIPP #25</li> <li>Fenix &amp; Scisson, Inc., WIPP #26</li> <li>Fenix &amp; Scisson, Inc., WIPP #26</li> <li>Fenix &amp; Scisson, Inc., WIPP #27</li> <li>Fenix &amp; Scisson, Inc., WIPP #28</li> </ul>	P-10
fe,wl		2000w 1979w 1979w 1134e 1150e 1177w 3122e 50e 50e 1176 1177w 330e 330e	39w
ocation Data	9905 6655 117628 117628 18538 3128 167n 167n 167n 167n 18538 1128 1980n 660n 1980n 1980n 1980n 2028	2028 99% 99% 99% 99% 99% 99% 99% 99% 99% 99	2315a 3
Locati Sec	- ~ I I I I X X X Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 3 3 3 8 8 8 8 8 8 9 8 8 8 8 8 8 8 8 8	8
×		************************	
÷.	******	**********************	8
Hole ID ====		W09 109 114 114 114 114 114 114 114 114 114 11	
8 2 8 1		1151 1152 1153 1155 1155 1155 1155 1155	

•	:						К. К. С. С.	· · · · · · · · · · · · · · · · · · ·	
,	ID	Hole			Locati	on Data	•	Drillhole Name	Revisions
	No.	ID	Т.	R.	Sec	fn,sl	fe,wl		
· ·	=== 1174	===== P28	=== 22	=== 31	====: 28	===== 146s	==== 1487e	======================================	
	-	DOE1	22	31	28	1 <b>82s</b>	608e	DOE-1	
• • • • • •	1176	O28	22	31	28	125n	172e	P-2	Rev loc from OFR78-592
· · · ·	1177	L29	22	31	<b>29</b>	623n	1083e	H-1	
	1178	H29	22	31	29	372s	562w	Department of Energy, H-14	Elev from SAND89-0202; ?Cul
	1179	R29	22	31	29	770n	3584e	ERDA, Hydrological H-2c	
•	1180	Y29	22	31	29	3200n	140e	Sandia National Laboratories, Hydrological No. 3	
	1181	P29	22	31	29	327s	551w	P-1.	
	1182	P30	22	31	30	2767s	199w	<b>P-6</b>	
	1183	P31	22	31	31	<b>398</b> s	184 <del>w</del>	P-15	
	1184	H33	22	31	33		105e	H-11	Rev for H11b3; SAND89-0200
	1185	P33	22	31	33	1 <b>493s</b>		P-9	
	1186	T13	22	32	<b>13</b> :	660s	660e	Ray Smith Drilling Co., B&H Fed. 1	
	1187	C14	22	32	14	660s	1980w	Carper Drilling Co., #2 Red Tank Unit	
. •	1188	C17	22	32	17	<b>1980s</b>		Cleary Petroleum Corp., Fed. 1-17	
A-8	1189	<b>T18</b>	22	32	18	660s	660e	J.H. Trigg Co., Fed. Jennings 1-18	· · · ·
ò	1190	B19	22	32	19	660s	660e	Ralph Lowe, Bass Fed. #1	
	1191	<b>M2</b> 0	22	32	20		1980e	R.J. Zonne, #1 Fed.	
	1192	T22	22	32	22		660w	John M. Trigg Co., Fed. Red Tank Unit #1-22	
	1193	A25	22	32	25	660n	1980w	Gulf Oil Co U.S., Covington "A" Fed. #1	
•	1194	T36	22	32	36	660n	660e	Tidewater Oil Co., Richardson & Bass St. "AO" #1	
	1195	H01	22	34	1	1980s		Humble Oil and Refining Co., N.M. St. BS #1	
	1196	N08	22	34	8	660s	1980e	Sunray Mid-Continent, New Mexico St. "AE" No. 1	Elev from Richey (1989); KB??
	1197	H10	22	34	10	1980n		Hudson & Hudson Personal, Allison Fed. No. 1	· .
· · · ·	1198	J01	22	35	1	660s	660w	British American Oil Prod. Co., Jalmat Deep #1	
	1199	D03	22	35	3	660n	660w	Western Drilling Co., Donegan St. No. 1	
	1200	A04	22	35	4	660s	660e	Ashmun & Hilliard No. 3 Ltd., Skelly St. #1-U	
	1201	S05	22	35	5	660n	660e	Skelly Oil Co., St. "U" #1	
	1202	H09	22	35	9		1980w	William A. & Edward R. Hudson, Humble St. #1	
	1203	B11	22	35	11	660s	990w	British American Oil Prod. Co., Hall St. "F" #9	
	1204	C20	22	35	20	1980n		Carper Drilling Co., Carper Aztec No. 1	
	1205	H22	22	35	22		1980e	Curtis Hankamer, Humble St. #1	
	1206	A23	22	35	23		330e	Atlantic Refining Co., St. "AN" #1	
	1207	G35	22	35	35	660s	660w	John M. Kelly, Gulf St. 1-A	
	1208	L03	22	36	3	660n	660w	Gulf Oil Corp., Harry Leonard (NCT-D) No. 9	

•								;
ID	<b>TT</b> - 1 -				•		TX 1111 1 X7	
ID	Hole	<b>7</b> 10	п.		ion Data	e : 1	Drillhole Name	Revisions
No.	1D	<b>T</b> .	<b>R</b> .	Sec	•	fe,wl		
1209	===== G03	====	=== 36	3		===: 1980w	Gulf Oil Corp., Harry Leonard NCT-D No. 10	
1210	J04	22	36	4	1980s		Gulf Oil Corp., J.F. Janda NCT F#15	
1210	G09	22	36	<del>7</del> 9		660e	Sinclair Oil & Gas Co., St. 157 A #4	
1212	S09	22	36	9.	1900s	660e	Sinclair Oil & Gas Co., St. 157 A #4 Sinclair Oil & Gas Co., St. 157 A #3	
1212	W10	22	36	10	560s	660w	Western Natural Gas Co., Record #2	
1214	A17	22	36	17		1980w	Continental Oil Co., Arrowhead Deep Unit #1	
1215	C19	22	36	19	660n	330w	Cities Service Oil Co., Closson "B" #14	
1216	C23	22	36	23	660s	660w	Shell Oil, Christmas #A-2	Co. name uncertain
1217	A33	22	36	33		1830w	Atlantic Refining Co., J.L. Selby No. 2	
1218	M36	22	36	36	2310n		The Ohio Oil Co., St. McDonald A/C 1-B #11	
1219	W15	22	37	15	1980s		Amerada Petroleum Co., E.W. Walden No. 4	Rev loc NW1/4, SW1/4
1220	<b>R16</b>	22	37	16	2310s		E.P. Campbell, R.E. Cole #1	
1221	A36	22	37	36		1980e	Aztec Oil & Gas Co., St. BD 36 #1	
1222	<b>W30</b>	22	38	<b>30</b> [°]	990s	330w	Western Oil Fields Inc., Gulf Drinkard #2	
1223	M02	23	28	2	1560s	330w	Neil H. Wills, Martin & Pardue #1	
1224	C11	23	28	11	2316s	2290w	Neil H. Wills, C.P. Pardue #1	
1225	P17	23	28	17	660n	2310e	Cities Service Co., Polk "A" #1	
1226	N12	23	<b>2</b> 9	12	<b>1980</b> s	1980w	Mesa Petroleum Co., Nash Unit #3	
1227	P13	23	29	13	2310s	330e	Mesa Petroleum, Nash Unit #5	
1228	M13	23	29	13	<b>990</b> n	330e	Mesa Petroleum Co., Nash Unit #4	
1229	U13	23	<b>2</b> 9	13	1980n		Mesa Petroleum Co., Nash Unit #1	
1230	H14	23	30	14		2471w	Fenix & Scisson, Inc., WIPP H-7c	
1231	F16	23	30	16		1980e	Skelly Oil Co., Forty-Niner Rdige Unit #1	
1232	U18	23	30	18	1980n		Mesa Petroleum Co., Nash Unit #6	
1233	S21?	23	30	21		1980e	Skelly Oil, Forty Niner Ridge Unit 2; ? DUP 1234	
1234	N21	23	30	21		1980e	Skelly Oil Co., Forty Niner Ridge Unit 2	
1235	S24	23	30	24	1980n		Phillips Petroleum Co., Sandy Unit #1	
1236	Q34	23	30	34	200n	2327e	ERDA 10	Rev from BDR: SAND79-0271
1237	U34	23	30	34		2640w	Atomic Energy Commission, U.S.G.S. Test Hole #1	
1238	S02	23	31	2	660n		Continental Oil Co., St. AA 2 No.1	Defeter CDD 70 FM
1239	O04	23	31	4	1351s		P-17	Ref elev from OFR78-592
1240	P04	23	31	4	642n	96w 710m	P-8 Envir & Solaton WIRD No. LL 4C	
1241	H05 P05	23	31	5	447n 512-	719w	Fenix & Scisson, WIPP No. H-4C	
1242	rus	23	31	5	513n	396w	P-7	

I	D	Hole			Locatio	on Data		Drillhole Name	Revisions
	No.	Ш	Т.	R.	Sec	fn,sl	fe,wl		
		====:		===	=====		====		
	1243	<b>C</b> 05	23	31			2017e	M.P. Grace Cabin Baby Fed. 1	Data from WTSD-TME-020
	1244	005	23	31	5	951s			
	1245	B11	23	31	11	660s	660e	Max M. Wilson, Bauerdorf-Fed. #1	
	1246	T14	23	31	14		1980w	Texas American Oil Corp., Todd Fed. "14" No. 1	
	1247	H15	23	31	15	23n	92e	H-12	Rev from BDR; SAND90-0201
	1248	A16	23	31	16		1980w	El Paso Natural Gas Co., Arco St. #1-16	· · · ·
	1249	P21	23	31	21	660s	660e	Patoil Corp., Muse Fed. #1	
	1250	F23	23	31	23		1800e	Texas American Oil Corp., Todd Fed. 23 #3	
	1251	T23	23	31	23	660s	1650e	Texas American Oil Corp., Todd "23" Fed. No. 1	
	1252	T25	23	31	25		1970w	Skelly Oil Co., Todd 25 Fed. #1-Z	
	1253	A26	23	31	26		1650e	Texas American Oil Corp., Todd Fed. #2	
	1254	T26	23	31	26		1980e	Texas American Oil Corp., Todd Fed. "26" No. 1	
	1255	<b>B</b> 26	23	31	26	660n	1980e	Texas American Oil Corp., Todd Fed. #4	Rev elev from geophys log
	1256	P27	23	31	27	<b>1980s</b>		Patoil Corp., Wright-Fed. #1	
	1257	M29	23	31	29		1980e	El Paso Natural Gas Co., Mobil-Fed. #1	
	1258	L32	23	31	32	660n		J.A. Leonard, Continental St. No. 1	· · · ·
	1259	W33	23	31	33	<b>1980n</b>		Patoil Corp., Wright-Fed. #2	
	1260	H36	23	31	36	660s	660w	Charles P. Miller, Pauley Harrison St. #1	sw1/4,sw1/4 converted
	1261	K03	23	32	3	<b>1980n</b>		O.B. Kiel, Jr., Fed. #1	
	1262	M09	23	32	9	660s	1980e	McBee Oil Co., Continental Fed. #1-9	
	1263	H11	23	32	11		1980e	Hill & Meeker & Ambass. Oil Corp., Matthews "11" #1	
	1264	T15	23	32	15		1980e	John H. Trigg, Fed. Continental 1-15	
	1265	F18	23	32	18	<b>1980n</b>		Skelly Oil Co., Fed. Sand 18-1	
	1266	<b>K2</b> 0	23	32	20	660s	1980e	Kirklin Drilling Co., Fed. Estill AF-1	Grnd elev from topo map
1	1267	H20	23	32	20	<b>381s</b>	1978e	Fenix & Scisson, Inc., WIPP No. H-10c	
1	1268	G21	23	32	21	660n	1980e	Curtis Hankamer, Gulf-Fed. "A-A" #1	
1	1269	H24	23	32	24	<b>1650s</b>	330e	H.L. Johnston, Sr., Conoco-Fields-Fed. #1	
1	1270	C24	23	32	24	660s	660e	Continental Oil Co., Fields Fed. No. 1	
1	1271	C25	23	32	25	<b>990</b> s	330w	Continental Oil Co., Fields No. 2	
1	1272	J25	23	32	25	990n	2310w	H.L. Johnston, Sr., Wehrli-Fed. #1	
1	1273	W26	23	32	26	330s	330e	John H. Trigg, Fed. "WL" #3-26	
1	1274	F26	23	32	26	1980s	330e	P.M. Drilling Co., Fed. James No. 4	
1	1275	P26	23	32	26	660s	1980w	P.M. Drilling Co., Fed. Field #1	Ref elev rev from log
1	1276	L26	23	32	26	330s	1650e	John H. Trigg Co., No. 4-26 Fed. WL	
1	1277	W28	23	32	28	660n	1980w	Max Wilson, Continental Fed. No. 1	

1278 H31 1279 C33 1280 P34 1281 Q35	T. 23 23 23 23 23	R. = = = 32 32	31	=====			
1278 H31 1279 C33 1280 P34 1281 Q35	23 23 23	32	31				~~
1280 P34 1281 Q35	23	32		0000	660w	Curtis Hankamer, Hankamer No.1 Continental Fed.	
1281 Q35			33	1980n	660e	Curtis Hankamer, Holder Fed. #1	
	. 22	32	34	<b>1980</b> s	330e	The Pure Oil Co., Fed. "K" No. 1	
	23	32	35	1980s	1980e	PM Drilling Co., Fed. James No. 3	Ref elev rev from log
1282 A35	23	32	35	1650n	2310e	John H. Trigg, Fed. WL 1-35	
1283 T35	23	32	35	660n	660e	P.M. Drilling Co., FedJames No. 1	Ref elev rev from log
1284 M35	23	32	35	<b>990n</b>	2310w	P-M Drilling Co., Payne No. 2	
1285 J35	23	32	35	1650n	990e	John H. Trigg, Fed. "WL" No. 2-35	Ref elev rev from log
1286 F35	23	32	35	<b>1980n</b>	660w	P.M. Drilling Co., Payne Fed. No. 4	
1287 P35	23	32	35	<b>2310n</b>	2310w	P-M Drilling Co., FedPayne No. 1	
1288 R35	23	32	35	660n	1980e	P.M. Drilling Co., Fed. James No. 2	
1289 D35	23	32	35	<b>1980</b> s	330w	P.M. Drilling Co., Fed. Payne No. 3	
1290 P36	23	32	36	330n	330w	Penroc Oil Corp., Triste St. #1	Ref elev rev from log
1291 B36	23	32	36	<b>1980</b> s	1980e	The Pure Oil Co., Brinninstool Deep Unit #1	
1292 G36	23	32	<b>36</b>	1980n	660w	David Fasken, Gulf St. #1	
1293 C04	23	33	4	660s	660e	Cabeen Exploration Corp., Continental Fed. #1-P	
1294 T06	23	33	6	330s	330e	William A. & Edward R. Hudson, Shell Fed. #1-6	
1295 H07	23	33	7	660s	660w	William A. & Edward R. Hudson, Fed. 7 Well #1	
1296 T17	23	33	17	660s	660w	P-M Oil Co., Texaco St. No. 1	
1297 S18	23	33	18	660s	660w	Helbing & Podpechan, #1 "A" Shell St.	
1298 T18	23	33	18	660n	1980e	Tenneco Oil Co., Skelly St. #1	
1299 M19	23	33	19	660s	1980w	Continental Oil Co., Marshall #3	
1300 B19	23	33	19	660s	660w	Continental Oil Co., I.J. Marshall 19-1	
1301 A19	23	33	19	<b>1980s</b>	625w	Continental Oil Co., Marshall #4	
1302 C19	23	33	19	<b>1980s</b>	1910w	Continental Oil Co., Marshall #19-2	
1303 A20	23	33	20		1980e	American Quasar, Brinninstool #1	
1304 C20	23	33	20	660s	660e	Continental Oil Co., Levick Fed. #1	
1305 K31	23	33	31	660n	660e	Kirklin Drilling Co., Lea St. #1	
1306 H32	23	33	32	660n	1980e	El Cinco Production Co., Ltd., Humble St. 1-32	
1307 B35	23	33	35	660s	660w	George L. Buckles Co., St. 1-35	
1308 B18	23	34	18	1980s		Continental Oil Co., Bell Lake #9	
1309 L19	23	34	19		1980w	Continental Oil Co., Bell Lake Unit #10	
1310 N22	23	34	22		1980e	Shell Oil Co., North Antelope Ridge Unit #1	
1311 <b>S</b> 34	23	34	34	1980s	1650w	Shell Oil Co., Antelope Ridge Unit 34-1	
1312 E01	23	35	1	660n	660e	Kenwood Oil Co., Ehrman Fed. No. 1	

. .

•								
ID	Hole			Locatio	on Data	I	Drillhole Name	Revisions
No.	ID	T.	R.	Sec	fn,sl	fe,wl		
=== 1313	==== M01	=== 23	=== 35	= <b>==</b> == 1	==== 2310s	130w	Schermerhorn Oil Corp., Malco Fed. No. 1	
1313	G03	23	36	3		660e	Albert Gackle, Sinclair St. #7	
1315	F17	23	36	17	1650n		Continental Oil Co., Farney A-17 No. 3	
1316	S20	23	36	20	1980s	1980w	Sinclair Oil & Gas Co., Fed. 714 #4	
1317	H04	23	37	4	1980s	660w	Samedan Oil Corp., Hughes A-1 #6	
1318	K06	23	37	6	330n	330e	Ralph Lowe, King "B" #5	
1319	H09	23	37	9	1980s	1980w	Skelly Oil Co., Harrison B-10	
1320	T16	23	37	16	1980s	1980e	The Texas Co., #3 St. of New Mexico "BZ" NCT-8	
1321	024	23	37	24	660s	660e	Earl M. Craig, Ohio St. #1	
1322	B31	23	37	31	1980s	660e	Texaco Inc., E.E. Blinberry A NCT 1-2	•
1323	C05	24	29	5	1650s	660w	Chase Petroleum Co., Valley #1	
1324	E06	24	29	6	330s	2310e	El Capitan Oil Co., Fed. Reid No. 1	
1325	F07	24	29	7	2310s	2310e	Southern California Petrol. Corp., Fed. Reid #1	
1326	R07	24	29	7		2310e	Southern California Petrol. Corp., Fed. Reid #2	
1327	V07	24	29	7	990s	330w	Tennessee Production Comp., Valley Land Co. #2	
1328	T07	24	29	7	1650s	1650w	Tennessee Production Co., Valley Land #3	
1329	C09	24	29	9	770s	770e	Skelly Oil Co., Cedar Canyon #1	
1330	S09	24	29	9	660s	1980e	Skelly Oil Co., Cedar Canyon 9D #1	
1331	C10	24	29	10		1980w	Skelly Oil Co., Cedar Canyon #10-1	
1332	P27	24	29	27	660s	660w	Penzoil United Inc., Mobil-Fed. *27" #1	
1333	P04	24	30	4	660s	1980e	Perry R. Bass, Poker Lake Unit #54	
1334	P18	24	30	18	460n	660e	Perry R. Bass, Poker Lake Unit #45	
1335	H23	24	30	23	2062n		Fenix & Scisson, Inc., WIPP H No. 8-C	
1336	B25	24	30	25	660s	660w	Hill & Meeker, Bass Fed. #1-25	
1337	C29	24	30	29	660s	660e	Ford Chapman & Associates, FedNettles No. 1	
1338	<b>T02</b>	24	31	2		1980w	Skelly Oil Co., Todd "2" St. #1	
1339	J03	24	31	3	660s	660e	Max Wilson, Jennings Fed. No. 1	
1340	F03	24	31	3	660n	660w	Jack L. McClellan, Jennings Fed. No. 1	
1341	<b>S04</b>	24	31	4	660n	660e	Texaco, Inc., M.M. Stewart Fed. #1	
1342	H04	24		4	2482n		Fenix & Scisson, Inc., WIPP No. H-9C	
1343	B04	24	31			2310w	Sundance Oil Co., Betty Fed. #1	
1344	E04	24	31			1980w	El Paso Natural Gas Co., Sundance Fed. #1	
1345	D06	24	31			1980w	American Quasar, Dunes Unit Fed. #1	
1346	Y07	24		7		660e	Ambassador Oil Corp., Fed. "Y" #1	
1347	G11	24	31			1980e	Gulf Oil Corp., Fed. Littlefield "CT" #1	

								į.
ID No.	Hole ID	T.	R.	Locati Sec	on Data [*] fn,sl	fe,wi	Drillhole Name	Revisions
=== 1348	==== E12	=== 24		====;		====≈ 1000	Convine Oil Come El Bace End No. 1	=======================================
1349	W17	24	31	12		660e	Coquina Oil Corp., El Paso Fed. No. 1 W.J. Weaver, Continental Fed. #1	Ref elev calc from log
1350	R18	24 24	31	18	660s	660e	Charles B. Read, Ritchie Fed. #1	Kei elev calc li olli log
1351	P20	24	31	20 ·		660e	Pauley Petroleum Inc., Jennings Fed. #1	•
1352	F20	24	31	20	660s	1980w	David Fasken, Poker Lake #40	
1353	H21	24	- 31	20	660n	660e	Hill & Meeker, Carper Fed. #1-21	
1354	T24	24	31	24	660s	1980e	The Texas Co., T. Heflin-Fed. #1	
1355	M28	24	31	28	660s	660e	Pan American Petroleum Corp., Poker Lake Unit #36	
1355	M35	24	31	35		660w -	Texaco, Inc., Cotton Draw Unit No. 67	
1357	U01	24	32	1	1900s	1980e	Union Oil Co. of California, Union Fed. "1" #1	
1358	C01	24	32	1	1980s		Cabeen Exploration Corp., Continental Fed. #1-L	
1359	M02	24	32	2		1990w	Calco, Marathon St. #1	
1360	002	24	32	2	1980n		P.M. Drilling Co., Ohio St. No. 1	
1361	H06	24	32	6	660n	1980e	Curtis Hankamer, Bondurant Fed. No. 1	
1362	G10	24	32	10		1980e	Guif Oil Corp., Fed. Hanagan D #1	
1363	C11	24	32	11	660n	660e	Continental Oil Co., Wimberly #2	
1364	N11	24	32	11	660s	1980e	Curtis Hankamer, Hanagan Fed. No. 2	
1365	H11	24	32	11	1980s	660e	Gulf Oil Corp., Fed. Hanagan D #3	
1366	F11	24	32	11	1980s	1980e	Gulf Oil Corp., Fed. Hanagan D #2	
1367	G11	24	32	11	660s	660e	Curtis Hankamer, Gulf Hanagan #1	
1368	W11	24	32	11		1980e	Continental Oil Co., Wimberly #1	
1369	W12	24	32	12	660n		Continental Oil Co., Wimberly 12 #1	Loc rev from geoph log
1370	C12	24	32	12	1980n		Continental Oil Co., Wimberly "12" #2	
1371	H12	24	32	12		660w	Curtis Hankamer, Hanagan Fed. No. 3	Ref elev rev from log
1372		24	32	13	660s	660e	WeSt.s Petroleum Corp. of Texas, Woolley #1	
1373	A13	24	32	13	660n	1980e	Continental Oil Co., Wimberly "A" #1	
1374	J14	24	32	14	660n	1980w	Tenneco Oil Co., #1 USA Jennings	
1375	T14	24	32	14	882s	882w	Tenneco Oil Co., USA Jennings N.M. 033503 No. 2	
1376	F14	24	32	14	1980s	1650w	Tenneco Oil Co., Jennings Fed. No. 4	
1377	U14	24	32	14	660n	1980e	Tenneco Oil Co., USA Jennings N.M. 033503 Well #3	
1378	F15	24	32	15	660s	720e	Gulf Oil Corp., Fed. Hanagan "B" #2	
1379	G15	24	32	15	1980s	660e	Gulf Oil Corp., Fed. Hanagan "B" #3	
1380	T15	24	32	15	660s	1980w	Tenneco Oil Co., Hicks-Fed. #1	
1381	H15	24	32	15	660s	1980e	Gulf Oil Corp., Fed. Hanagan "B" #1	
1382	<b>B22</b>	24	32	22	<b>1980s</b>	1980e	Charles B. Read, Bradley #1	

•				·.				
ID	Hoie			Locat	ion Data [*]	<b>I</b> .	Drillhole Name	Revisions
No.	ID	T.	R.	Sec	fn,si	fe,wl		
1383	==== R22	=== 24	32	==== 22	===== 1980n	==== 990e	Charles B. Read, Bradley #2	Ref elev rev from lo
1384	G22	24	32	22	<b>1980n</b>	660w	Tenneco Oil Co., U.S. Smelting U.S.A. #2	
1385	S22	24	32	22	<b>1980s</b>	660e	Tenneco Oil Co., U.S. Smelting U.S.A. Well #3	•
1386	U22	24	32	22	2310n	1650e	Tenneco Oil Co., U.S Smelting USA #4	
1387	T22	24	32	22	660n	1980e	Tennessee Gas Transmission Co., US Smelting USA #1	
1388	N22	24	32	22	<b>990s</b>	330e	Tenneco Oil Co., U.S. Smelting, USA No. 5	
1389		24	32	23	<b>1980n</b>	660w	Curtis Hankamer, Ernest Fed. #1	
1390	B23	24	32	23	660n	660e	Charles B. Read, Bradley #3	
	W27	24	32	27	660n	1980e	Ralph E. Williamson, Wright Fed. No. 1	
1392	<b>P30</b>	24	32	30	<b>1980n</b>	1980e	Union Oil of California, Paduca Fed. #1	
1393	D33	24	32	33	660s	660e	Texaco Inc., Cotton Draw Unit Well #72	
1394	C34	24	32	34	<b>1980s</b>	1980w	Texaco, Inc., Cotton Draw Unit #69	
1395	R35	24	32	35:	660s	660w	Sid W. Richardson, Inc., Fed. Delbasin #1	
1396	B01	24	33	1	660n	660e	Continental Oil Co., Bell Lake Unit #7	
1 <b>397</b>	H06	24	33	6	<b>1980s</b>	660w	Hondo Drilling Co., Gulf N.W. #2	
1398	G06	24	33	6	660s .	660w	Hondo Drilling Co., Gulf St. "NW" #1	
1399	107	24	33	7	<b>1980n</b>	660w	Tom L. Ingram, St. "O" #2	
1400	007	24	33	7	660n	660w	Tom L. Ingram, St. "O" #1	
1401	<b>T07</b>	24	33	7	330n	1750w	Tom L. Ingram, St. "P" #1	
1402	R07	24	33	7	660s	660e	George W. Riley Inc., St. #1-7	
1403	F07	24	33	7	2310n	2310w	David Fasken, Gulf St. #7-2	
1404	<b>S08</b>	24	33	8	660n	660w	Sunray Mid-Continent Oil Co., N.M. St. A.G. 1	
1405	<b>B13</b>	24	33	13	<b>1980n</b>	660e	Byard Bennett, Holland #1	
1406	T17	24	33	17	660s	660w	Tenneco Oil Co., St. Lowe #1	
1407	H17	24	33	17	660n	1980e	Robert B. Holt, Holly-St. #1	
1408	C20	24	33	20	660s	1980w	Continental Oil Co., St. "BB" 20 No. 1	
1409	J22	24	33	22	<b>1980n</b>	660w	F.R. Jackson, St. #1	
1410	T27	24	33	27	<b>1980s</b>	1980w	Tenneco Oil Co., Sunray St. #1	
1411	T29	24	33	29	660s	1980e	Tidewater Oil Co., St. "AP" #1	
1412	<b>C3</b> 0	24	33	30	330n	330w	Kirklin Drilling Co., Inc., Continental St. #1	
1413	G31	24	33	31	1980s	660e	Albert Gackle Operator, Continental St. #1	
1414	K36	24	33	36	660n	660e	Gulf Oil Corp. & Kirklin Drilling, #1 Lea St. "GX"	
1415	H01	24	34	1	1980n		Hanagan Petroleum Corp., #1 Gerdlag	
1416	D04	24	34	4	660n	1650e	Shell Oil Co., Fed. "BE" #1	
1417	C05	24	34	5	1650n		Continental Oil Co., Bell Lake Unit #14	

•

•

								·
ID	Hole			Locat	lon Data		Drillhole Name	Revisions
No.	ID	T.	R.	Sec	fn,sl	fe,wl		
=== 1418	B06	=== 24	=== 34	====		==== 3300e	Continental Oil Co., Bell Lake Unit No. 3	*=*=*=*=*=
1419	S09	24	34	9		1980e	Shell Oil Co., Hall Fed. #1	
1420	W05	24	35	5		1980w	Gulf Oil Co U.S., Wilson Fed. Com. #1	
1421	A16	24	35	16	1650n		Texas International Pet. Corp., Aztec St. No. 1	
1422	F05	24	37	5		1980e	Texaco Inc., E.D. Fanning No. 7	
1423	H30	24	38	30		2310w	Ralph Lowe, Hair #2	
1424	E28	25	28	28		1980w	Gulf Oil Corp., Eddy St. FD #1	
1425	B03	25	29	3	660n	660e	J. Glen Bennett, Superior Fed. #1-3	
1426	<b>B08</b>	25	29	8	<b>980n</b>	660w	J. Glen Bennett, Superior #1-8	
1427	W08	25	29	. 8	660s	660e	Neil H. Wills, Superior Fed. #1	
1428	M14	25	29	14	<b>1980s</b>	1980w	Mobil Oil Corp., Corral Draw Unit #1	
1429	B15	25	29	15	660s	660w	J. Glen Bennett, Superior Fed. 15 No.1	
1430	W22	25	29	22	- 1580s	1980w	Mobil Oil Corp., Corral Draw Unit #2	
1431	<b>B26</b>	25	29	26	660s	660e	J. Glen Bennett, No. 1-26 Superior Fed.	Ref elev rev from log
1432	B27	25	29	27	660s	660w	J. Glen Bennett, Superior Fed. 1-27	- · · ·
1433		25	29	<b>29</b>	660n	1880w	Bell Petroleum Co., Fed. #1	
1434	<b>B3</b> 0	25	29	<b>30</b>	660s	760e	Bell Petroleum Co., Cities Service Fed. #1	
1435		25	<b>30</b>	3	<b>1980s</b>		Bass Enterprises Prod. Co., Poker Lake Unit #47	
1436		25	30	4		1980w	Pat Oil Corp., R & B Fed. #1	
1437		25	30	4	660s	660w	J.M.C. Ritchie & Chambers & Kennedy, #1 Hopp Fed.	
1438		25	30		1980n		Fred Pool Drilling Co., Superior St. #1	Grnd el from topo; ref is +9ft
1439	K08	25	30	8	663s	667w	Ralph Lowe, Poker Lake St. #1	Ref el from log; topo differs
1440		25	30	8	660s	660w	Raiph Lowe, Poker Lake St. #1; ? DUP 1439	Ref el rev from geoph log
1441	<b>T08</b>	25	30	8	660n	660w	Ralph Lowe, T&P St. #1	
1442		25	30			1980w	Ralph Lowe, Superior St. #1	
1443		25	30	8	1980s		Ralph Lowe, Poker Lake St. #3	Ref el from topo; KB not given
1444	A10	25	30	10	660s	645w	Alamo Corp., Poker Lake Unit #5X-1A	
1445	P10	25	30	10		2180e	Bass Enterprises, Poker Lake #44	
1446		25	30	17	610n	610w	Ralph Lowe, #1-X R&B Fed. *A"	
1447	A17	25	30	17	660s	660w	Alamo Corp., Poker Lake Unit #11A-7	
1448		25	30	17	1980n		J. Ray Stewart, Poker Lake #61	
1449		25	30	17	330n	1650w	Jubilee Energy Corp., Poker Lake Unit 64	
1450		25	30	17		330w	J. Ray Stewart, 66 Poker Lake Unit	
1451	B18	25	30	18	660n	1980e	Perry R. Bass, Jennings-Fed. No. 1	
1452	M18	25	30	18	660n	660e	Ralph Lowe, R&B Fed. #1	

ł

				} r		feet i		
ID No.	Ho <b>le</b> ID	T.	R.		on Data [*] fn,sl	fe,wi	Drillhole Name	Revisions
					•	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	============
1453	A18	25	30	18	660s	1980e	Alamo Corp., Poker Lake #12A-9	
1454	P19	25	30	19	330n	900e	Central St.s Oil Co., Poker Lake Unit No. 38	
1455	L19	25	30	19	660n	660e	J.R. Stewart, Poker-Lake Unit No. 65	•
1456	C20	25	30	<b>20</b>	<b>1980s</b>	660w	Perry R. Bass, Continental-Fed. #2	
1457	F20	25	30	<b>2</b> 0	660n	660w	Perry R. Bass, Continental Fed. #1	
1458	A21	25	30	21	660n	660e	Alamo Corp., Poker Lake Unit #6-2A	
1459	P25	25	<b>30</b>	25	660s	660w	Bass Enterprises Prod. Co., Poker Lake Unit No. 56	
1460	D02	25	31	2	<b>1980n</b>	1980e	Texaco Inc., Cotton Draw Unit No. 65	
1461	A28	25	31	28	660n	660w	Alamo Corp., Poker Lake Unit 7-A-3	
1462	C32	25	31	32	660n	660w	J.A. Leonard, Continental St. No. 1	
1463	S35	25	31	35	660s	660w	Gold Metals & Santana Pet. Corp., #1 Del Basin Fed	
1464	C03	25	32	3	1650s	1980e	Texaco, Inc., Cotton Draw Unit No. 49	
1465	R09	25	32	<b>9</b> e	330s	330e	Texaco Inc., E.F. Ray NCT-2 No. 1	Grnd el 3451 from topo map
1466	D09	25	32	9	1650s		Texaco Inc., Cotton Draw Unit No. 52	
1467	T10	25	32	10	660n	660w	Tennessee Gas & Oil Co., Ray U.S.A. #1	· · · · · ·
1468	<b>C10</b>	25	32	10	<b>1980n</b>	660w	Texaco Inc., Cotton Draw Unit No. 39	· · · ·
1469	D10	25	32	10	660n	1980w	Texaco Inc., Cotton Draw Unit No. 40	
1470	Q10	25	32	10	2080n	760w	Texaco Inc., Cotton Draw Unit #66	
1471	<b>Y10</b>	25	32	10	660n	660w	Texaco Inc., Cotton Draw Unit No. 63; may dup 1467	
1472	M10	25	32	10	2145n	2310e	Texaco Inc., Cotton Draw Unit No. 60	
1473	R10	25	32	10	<b>1980n</b>	1980w	Texaco Inc., E.F. Ray Fed. "B" No. 2	Grnd el 3454 from topo, no KB
1474	V10	25	32	10	660s	1980e	Texaco Inc., E.F. Ray-Fed. "B" Well #1	Grnd el 3449 from topo map
1475	<b>S10</b>	25	32	10	660s	1980w	Texaco Inc., E.F. Ray Fed. No. 1	Grnd el 3445 from topo map
1476	F10	25	32	10		1980w	Texaco Inc., E.F. Ray-Fed. (NCT-1) No.2	Grnd el 3448 from topo map
1477	E10	25	32	10	1650s	660w	Tenneco Oil Co., Emily Flint Ray U.S.A. #41	
1478	C11	25	32	11	660s	1980e	WeSt.s Petroleum Corp. of Texas, Cont. Fed. #1	Loc rev from SW1/4, SE1/4
1479	P13	25	32	13	660s	1980w	Patoil Co., Union Fed. #1	
1480	F14	25	32	14	660s	660e	Joseph O'Neill Jr., Fed. "O" #1	
1481	O14	25	32	14	<b>1980s</b>	660e	Joseph O'Neill, Fed. "O" #2	
1482	H14	25	32	14	2310n	330w	Hill & Meeker, Ora Hall-Fed. 14 #1	
1483	U15	25	<b>32</b> -	15	660s	660w	Tennessee Gas Transmission, #1 USA G.E. Jordan	
1484	F15	25	32	15	<b>1980n</b>	660w	Texaco Inc., G.E. Jordan Fed. (NCT-2) Well No.1	Grnd el 3441 from topo, +KB
1485	J15	25	32	15	<b>1980s</b>	1980w	Texaco Inc., G.E. Jordan Fed. (NCT-1)#2	Grnd el 3428 from topo, +KB
1486	R15	25	32	15	660n	1980w	Tennessee Gas & Oil Co., G.E. Jordan #3	

	-			-				
ID No.	Hole ID	Т.	R.		on Data fn,sl	fe,wl	Drillhole Name	Revisions
==:		===				====		
1487		25		15	660n		Texaco Inc., G.E. Jordan Fed. (NCT-1) No. 8	Grnd el 3443 from topo, +KE
1488		25	32	15	660n	660w	Texaco Inc., G.E. Jordan-Fed. (NCT-2) No. 2	Grnd el 3443 from topo, +KI
1489		25	32	15	<b>1980s</b>	660w	Tennessee Gas & Oil Co., G.E. Jordan USA #4	•
1490	T15	25	32	15	<b>1980n</b>	1980e	Texaco Inc., G.E Jordan Fed. (NCT-1) #6	
1491	M15	25	32	15	1980 <b>n</b>	1980w	Tennessee Gas Transmission Co., G.E. Jordan USA #2	
1492	W15	25	32	15	2130s	2130e	Texaco Inc., Cotton Draw Unit No. 46	Grnd el 3431 from topo; +Kl
1493	N16	25	32	16	660s	1980w	Tennessee Gas & Oil Co., St. Monsanto #4	-
1494	<b>B16</b>	25	32	16	1980n	660e	Tennessee Gas Trans. Co., St. E.L. Bradley #1	
1495	P16	25	32	16	1650s	2310w	Tenneco Oil Co., St. Monsanto #6	
1496	M16	25	32	16	1980s	660e	Tennessee Gas Transmission Co., St. Monsanto #1	
1497	L16	25	32	16	1650s	1650e	Tenneco Oil Co., St. Monsanto #5	
1498	<b>S16</b>	25	32	16	1660s	990w	Tenneco Oil Co., Monsanto St. #8	
1499	<b>F16</b>	25	32	16	660n	660e	Tennessee Gas & Oil Co., St. Bradley #2	
1500	<b>C</b> 16	25	32	16	330s	990w	Tenneco Oil Co., St. Monsanto #7	
1501	T16	25	32	16	<b>2310</b> n	2310w	Tenneco Oil Co., St. E.L. Bradley #3	
1502		25	32	16		1980e	Continental Oil Co., St. Z 16 #1	
1503		25	32	16	660s	1980e	Tennessee Gas & Oil Co., St. Monsanto #3	
1504		25	32	16	660s	660e	Tennessee Gas & Oil Co., Monsanto #2	
150		25	32	16		1650e	Shoreline Exploration Comp., Continental St. #1	Ref el rev from log
1500		25	32	18	660n	1650w	Texaco Inc., Cotton Draw Unit #64	0
1500		25	32	18	660n	1980e	The Texas Co., Jack B. Shaw Fed. #1	
1508	C20	25	32	20		330e	Texaco Inc. (formerly PRBass), Cotton Draw Unit #42	
1509		25	32	21	990s	990e	Texaco Inc., Cotton Draw Unit #57	Grnd el 3392 from topo, +K
1510	M21	25	32	21	660s	660w	Panther City Investment Co., Perry Fed. #37	<b>- - - - - - - - -</b>
151		25	32	21		660w	Panther City Investment Co., Perry Fed. #35	
1512		25	32	21		1980w	Panther City Investment, Inc., Perry Fed. No.6	Grnd el 3400 from log, no Kl
1513		25	32	21	660n	1980w	Panther City Invest. Inc., Perry Fed. No. 7	
1514		25	32	21	2310s		Panther City Investment Co., Perry Fed. #27	
1515		25	32	21		1980e	Panther City Investment Co., Perry Fed. #28	
1510		25	32	21		1980e	Tennessee Gas & Oil Co., #3 E.H. Perry-U.S.A.	
1517	•	25	32	21	660s	1980w	Panther City Investment Co., Perry Fed. #38	
1518		25	32	21	330s	330e	Perry R. Bass, Perry Fed. #43	
1519		25	32	21	990s	2310e	Texaco Inc. (formerly Panther), Cotton Draw Unit 44	
1520		25	32	21		660w	Tenneco Oil Co., E.H. Perry "USA" Well No. 36	
152		25	32	21	660n	660w	Tennessee Gas & Oil Co., E.H. Perry U.S.A. 2	

A-17

•

**,** 1

				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8 /			
ID	Hole			Locati	on Data	I	Drillhole Name	Revisions
No.	ID	T.	R.	Sec	fn,sl	fe,wl		
===		===	==:	====:			======================================	*===========
1522	R21	25	32	21	1980n		Panther City Investment Co., Perry Fed. #2	
1523	. T21	25	32	21	660n	1980e	Tennessee Gas Transmission Co., E.H. Perry USA #1	
1524	F21	25	32	21	.660n	660e	Panther City Investment Co., Perry Fed. #1	Dof alors for the log
1525	G21	25	32	21 ·		1980w	Panther City Investment Co., Perry Fed. #5	Ref elev rev from log
1526	J22	25	.32	22	1980n		Texaco Inc., G.E. Jordan Fed. #3	Grnd el 3409 from topo, +KB
1527	E22	25	32	22	660n	660w	Texaco Inc., G.E. Jordan Fed. No. 1	
1528	C22	25	32	22	2310s	330w	Texaco Inc., Cotton Draw Unit No. 48	
1529	T22	25	32	22	510n	1830w	Texaco Inc., G.E. Jordan Fed. NCT-1 #5	me TTO in TYSE DOOD mislos
1530	D22	25	32	22		1650w	Texaco, C.D. Unit No. 18	was T22 in T25S, R33E; misloc
1531	O23	25	32	23	660n	1980e	Joseph L. O'Neill, Fed. "P" #1	
1532	G25	25	.32	25	660s	1980w	Texaco Inc., G.E. Jordan Fed. No. 4	
1533	C27	25	32	27	330n	330w	Texaco Inc., Cotton Draw Unit No. 61	
1534	U28	25	32	28	660n	1980w	Texaco Inc., Cotton Draw Unit No. 47	
1535	N28	25	32	28	660n	990e	Texaco Inc., Cotton Draw Unit No. 56	
1536	J28	25	32	28	•		Tenneco Oil Co., J.D. Sena U.S.A. No. 1	
1537	X28	25	32	28	660n	2310e	Texaco Inc., Cotton Draw Unit No. 51	
1538	W28	25	32	28		2310e	Texaco Inc., Cotton Draw Unit No. 54	
1539	C28	25	32	28	660n	660w	Texaco Inc., Cotton Draw Unit No. 45	
1540	Z28	25	32	28	1650n		Texaco Inc., Cotton Draw Unit No. 59	
1541	V28	25	32	28		1980w	Texaco Inc., Cotton Draw Unit No. 50	
1542	D28	25	32	28			Tenneco Oil Co., J.D. Sena Jr. U.S.A. No. 2	
1543	T29	25	32	29	1980n		Texaco Inc., Cotton Draw Unit No. 58	
1544	C29	25	32	29	990s	330e	I.W. Lovelady, Conoco Fed. #1-29	· ·
1545	S31	25	32	31	1980n		Ray Smith, Ray Smith #1	
1546	C32	25	32	32		1980w	R.C. Graham, Conoco St. No. 1	
1547	W33	25	32	33	1980s	560e	WeSt.s Petroleum Corp. of Texas, Jennings #1	Ref el rev from log
1548	H33	25	32	33	660s	660w	Hill & Meeker, Hall-Fed. 1-33	
1549	M33	25	32	33		2310w	Hill & Meeker, Jennings-Fed. 1-33	DF 3354 log; grnd el 3346 topo
1550	J01	25	33	1		660w	Perry R. Bass, FedMuse #1	
1551	H05	25	33	5	660n	660e	Hill & Meeker, Bass Fed. #1	
1552	<b>S08</b>	25	33	8		660e	Santana Petroleum Corp., Annie Bass Fed. #1	
1553	H11	25	33	11	660n	660w	Curtis Hankamer, Muse Fed. #1	
1554	J18	25	33	18	660n	660w	Sam H. Jolliffe Jr., #1 Bass Fed.	
1555	H20	25	33	20	660n	1980e	Curtis Hankamer, Fed. Bass #1	
1556	<b>B21</b>	25	33	21	660n	660e	George L. Buckles Co., Fed. Marshall No. 1	

•

	ID	Hole			Loca	tion Data*		Drilihole Name	Revisions
	No.	ID	T.	R.	Sec	fn,sl	fe,wi	•	
									.============
	1557	A21	25	33	21		660e	American Quasar Petroleum Co., Vaca Draw #1	
		M23	25	33	23	660s	660w	Hill & Meeker, Muse-Fed. 23 #1	
	1559	F24	25	33	24	660s	660w	R.B. Farris, Perry Fed. 1	•
	1560	K25	25	33	25		660w	King Resources, Pan American Fed. No. 1	
	1561	A25	25	.33	25	660s	660e	Ashmun & Hilliard, Fed. No. 1-25	
	1562	D27	25	. 33	27	660s	660e	Robert A. Dean, Harry Dickson #1	
	1563	T28	25	33	28	660s	660e	Tidewater Oil Co., Annie R. Bass Fed. #1	
	1564	C28	25	33	28	660n	660e	Curtis Hankamer, Conley Fed. #1	
	1565	T29	25	33	29	1980n		Tenneco Oil Co., W.H. Jennings Inc USA No. 1	
	1566	T31	25	33	31	660s	660w	Tenn. Gas Transmission Co, Richardson & Bass USA#1	
	1567	D32	25	33	32	330s	2310e	Pure Oil Co., Red Hills Unit #1	
	1568	W32	25	33	32		660e	Neil H. Wills, Continental St. No. 1	
	1569	W36	25	33	36	660s	660w	Max M. Wilson, Marathon-St. #1	
·	1570	A36	25	33	36	660n	660w	Ashmun Hilliard Oil Co., St. #1-36	
	1571	F19	25	34	19	660n	1980w	Ashmun & Hilliard, Fed. 2-19	
	1572	C27	25	34	27	<b>1980n</b>		Tenneco Oil Co., Conoco Fed. #1	,
	1573	S02	25	37	2	<b>2310</b> s	1650e	Continental Oil Co., St. A-2 #2	log not recovered
	1574	L03	25	37	3	330s	990w	George L. Buckles Co., Liberty Royalty No. 4	log not recovered
	1575	J14	25	37	14	560n	330e	Johnson & French, Fed. "A" #1	log not recovered
	1576	L14	25	37	14	1650s	1650e	Atlantic Refining Co., Langlie Fed. #2	-
	157 <b>7</b>	W24	25	37	24	<b>1980n</b>	990w	Western Natural Gas, Wimberly #4	log not recovered
	1578	H11	26	29	11	660s	660e	Curtis Hankamer, Hanson "A" #1	-
	1579	H12	26	29	12	458s	744w	Curtis Hankamer, Hansen Fed. #2	
	1580	G13	26	29	13	660s	660w	Curtis Hankamer, Gulf Fed. #4-B	
	1581	F13	26	29	13	660s	1980w	Curtis Hankamer, Gulf-Fed. No.1	•
	15 <b>82</b>	C13	26	29	13	<b>1980s</b>	660w	Curtis Hankamer, Gulf Fed. 5-B	
	1583	D13	26	29	13	<b>1980s</b>	1980w	S.P. Dillon, Gulf Fed. #1	
	1584	G14	26	29	14	1980s	660e	Curtis Hankamer, Gulf Fed. Beady #3	
	1585	F14	26	29	14	1980n	660e	Gulf Oil Corp., Fed. Boothe "E" #2	
	1586	M22	26	29	22	2310s	330e	Challenger Energy Inc., Mobil "22" Fed. #2	
	1587	F23	26	29	23	660s	660w	Gulf Oil Corp., Fed. Boothe E #1	
	1588	G24	26	29	24	660n	660w	Curtis Hankamer, Gulf-Beaty No. 1	
	1589	A27	26	29	27	2310n		Worth Petroleum Co., Amoco Fed. #4	
	1590	F34	26	29	34			Gulf Oil Corp., Fed. Littlefield "BO" #1	
	1591	S02	26	30	2	660s	660w	Ford Chapman Associates, Sinclair St. No. 1-2	
						-		• •	

-

	÷						с. 1. д.		
	ID No.	Hole ID	T.	R.		ion Data fn,sl	fe,wl	Drillhole Name	Revisions
		====					====		
	1592	S03	26	30	3	660s	660w	Charles B. Read, Scott Fed. #1	
	1593	K04	26	30	4	660n	660w	Aztec Oil Co., Fed. K.W. No. 1 [also Late Oil Co.]	Ref el 3179, 3180 from log
	1594	B06	26	30	6	660s	660w	J. Glen Bennett, No. 1 Brunson Fed.	<i>.</i>
	1595	F06	26	30	6	660n	660w	T.W. Loffland, Brunson Fed. #2	
	1596	M12	26	30	12	660s	660e	Montery Oil Co., Monteray Blaydes #1	
	1597	F18	26	30	18	660s	660w	Curtis Hankamer, #1 AT Fed.	
	1598	M18	26	30	18	330s	330w	Curtis Hankamer, McKenna Fed. #2	
	1599	R28	26	30	28	1980s	660e	Penroc Oil Corp., Ross Draw Unit #6	
·	1600	B09	26	31	9	660s	660w	George L. Buckles, Buckles Fed. No. 1	
·	1601	F15	26	31	15	660s	660w	George L. Buckles Co., Fed. No. 1-15	
	1602	P17	26	31	17	1980s	660e	Union Oil Co of Cal, Phantom Banks Unit Fed. 17 #1	
	1603	P20	26	31	20	800s	1000w	Texas Pacific Oil Co., Phantom Draw Unit-Fed. #1	
	1604	M20	26	31	20,	. 660s	660w	Max Wilson, Hanson Fed. No. 1	
	1605	C05	26	32	5	660n	1980w	Fred Pool Drilling Co., Conoco Bradley #1	
	1606	B15	26	32	15	<b>1980s</b>		Brown & Krug Co., Ben Fed. #1	Loc rev from NE1/4, SE1/4
	1607	R19	- 26	32	19	660s	1980w	Continental Oil Co., Russell Fed. 19 No. 4	
	1608	J25	26	32	25	990n	990w	Continental Oil Co., Wilder #23	
	1609	G25	26	32	25	1980s		Continental Oil Co., Wilder #13	
	1610	F25	26	32	25	660s	660e	Continental Oil Co., Wilder #12	
	1611	E25	26	32	25	1980n		Continental Oil Co., Wilder #10	
	1612	B25	26	32	25	1980s		Continental Oil Co., W.W. Wilder No. 7	
	1613	125	26	32	25	660n	1980w	Continental Oil Co., Wilder #15	Ref el rev from log
	1614	H25	26	32	25	1980n		Continental Oil Co., Wilder #14	
	1615	A25	26	32	25		1980w	Continental Oil Co., Wilder #6	Grnd el 3122 from topo, +KB
	1616	D25	26	32	25		1980e	Continental Oil Co., W.W. Wilder Fed. #9	
	1617	C25	26	32	25	1980n		Continental Oil Co., W.W. Wilder #8	
	1618	K25	26	32	25	330s	330w	Continental Oil Co., Wilder 25 Fed. No. 1	
	1619	L17	26	33	17	660s	660w	Gulf Oil Corp., Fed. Littlefield DP Optional #1	
	1620	P30	26	33	30	1980s	660w	Continental Oil Co., Payne #3	
	1621	Y03	26	34	3		1980w	Gulf Oil Co., Gulf Yates Fed. #1	
	1622	B19	26	34	19		1980e	Continental Oil Co., Bradley 19 #2	
	1623	L20	26	34	20		660e	Max Wilson, Leonard Fed. No. 1	
	1624	<b>S</b> 05	26	36	5	660s	660w	Cities Service Oil Co., Sand Hills Unit #9-A	
	1625	J04	26	37	4	990s	990w	Jal Oil Co. Inc., Farnsworth #6	

ID	Hole			Locatio	n Data	1	Drillhole Name	Revisions
No.	ID	T.	R.	Sec	fn,sl	fe,wl		
	====	===	= = =	- = = = =	====		=======================================	
1626	L11	26	37	11	660s	660e	Stanolind Oil & Gas Co., U.S.A. Leonard Oil Co. #1	
1627	F07	26	38	7	1980s	660w	Forest Oil Corp., Fed. Lowe #1	
<b>1628</b>	S15	21	33	15	<b>1980s</b>	1980e	Getty Oil Co. Stock Unit #1	data entered from geophysical log
1629	S32	21	33	32	1980s	1980w	Amoco Production Co. St. "LT" #1	data entered from geophysical log
1630	H28	22	31	28	<b>89n</b>	175e	Department of Energy WIPP No. H-15	data from SAND89-0202
1631	R05	22	33	<b>5</b> -	660s	330e	Dual Production Co. Richardson-Bass St. No. 1	data from geophysical log
1632	G15	22	33	15	<b>1980s</b>	1980e	Getty Oil Co. Getty Fed. "15" No. 1	data from geophysical log
1633	C20	22	33	20	1980n	660w	Davis and Collins Conoco Fed. #1	data from geophysical log
1634	E11	24	29	11	<b>1980n</b>	660e	Exxon Co., USA Exxon Pouche Fed. No. 1	data from geophysical log
1635	H04	24	33	.4	1980n	1650w	Getty Oil Co. HNG St. 4-F #1	data from geophysical log
1636	G28	24	33	28	<b>1980s</b>	1680e	Getty Oil Co. Getty 28 St. No. 1	data from geophysical log
1637	S31	25	29	31	<b>1980s</b>	660e	Duncan Drilling Co. Slater "A" #1	data from geophysical log
1638	P05	25	31	5 .	660n	660w	Pauley Petroleum Poker Lake #46	data from geophysical log
1639	S32	22	33	32	660s	660w	Helbing & Podpechan Shell St. #1-B	data from geophysical log
1640	B14	26	29	14	660n	660w	Ford Chapman Booth Fed. #1	data from geophysical log
1641	<b>Y20</b>	22	31	20	1113s	1241e	H-16	data from SAND89-0203
1642	Z03	23	31	3	1466s	993w	H-17	data from SAND89-0204
1643	<b>Z2</b> 0	22	31	20	964n	446w	H-18	data from SAND89-0204

÷.

All townships (T) are south and all ranges (R) east of the New Mexico Base Line. Distances from the section lines are in feet and are followed by a letter designation. This letter (n,s,e,w) and number designate the <u>feet from</u> the <u>north</u>, <u>south</u>, <u>east</u>, or <u>west</u> section line, respectively. Other tables of drillhole data are keyed to this location table by the identification number.

Names of drillholes have been shortened with some consistent abbreviations.

***

**

۰

A few likely duplications in the original Holt and Powers (1988) data set are noted here.

A-21

## **APPENDIX A-2**

## TABLE OF DEPTHS TO SELECTED MARKER BEDS OF THE SALADO FORMATION

# Table of Depths to Selected Marker Bedsof the Salado Formation

					Depth	s (ft) to	Marke	r Beds					
Borehole	Reference	KB	Тор	Тор	Base	Тор	Base	Тор	Base	Тор	Base	Тор	Base
ID no.	Elevation	(ft)	Sal	103	103	109	109	VT	VT	Un'n	Un'n	123	124
=====	*******	====	====	====	====	===:	====	====	====	====	====	====	
4004		2	070										
1001	3568	3 10	278										
1002	3510	0	316										
1003 1004	3618	1	736										
1004	3466	10	624										
1005	3554	10	587										
1008	3510	9	557										
1007	3766	9	1017										
1008	3733	9	990										
1009	3651	7	840										
1010	3648	, 18	040										
1011	3624	10	<b>79</b> 0										
1012	3631	10	775										
1013	3551	10	785										
1014	3568	3	735										
1015	3566	3	810										
1010	3580	5	830									•	
1018	3571	0	840										
1019	5072	3	828										
1020	3885	10	1394							•			
1021	3783	0	1350	·									
1022	3751	Ō	1274										
1023	3382	10	1300			•							
1024	4027	13	1828										
1025	4104	10	1988										
1026	3952	10	1880										
1027	3800	0	1663										
1028	3779	21	1546										
1029	4011	12	1677										
1030	4098	8	1843										
1031	- 1	12	2026										
1032	4023	11	2075										
1033	4000	13	2050		· · ·								
1034	3957	17	1983										
1035	3920	14	1968										
1036	3961	.14	1810										
1037	3962	11	1765										
1038	3968	13	1744										
1039	3958	14	1814										
1040	3991	12	1678										
1041	3980	0	1720										
1042	3948	13	2112										
1043	3789	0	2038								•		
1044	3822	11	2137										

,													
					Depth	s (ft) to	) Marke	r Beds					
Borehole	Reference	KB	Top	Тор	Base	-	Base	Тор	Base	Тор	Base	Тор	Base
ID no. =====	Elevation	(ft) ====	Sal =====	103 ====	103 :====	109 ====:	109 ====	VT ====	VT ====	Un'n ====:	<b>Un'n</b>	123 ====	124 ===
1045	3816	0	2030										
1046	3783	0	1 <b>997</b>										
1047	3698	0	1810										
1048	3750	13											
1049	3660	0	2168										
1050	3664	. 0	1653							•			
1051	3399	9	305										
1052		0	218										
1053	a 400	0	245										
1054	3402	10	388										
1055	3529	0	740										
1056	3577	21	978										
1057	3559	21	898										
1058	3526	8	746										
1059	3576	16	1172										
1060	3974	10	2150										
1061	3815	13	2080										
1062	3723	0	2045										
1063	3743	0	2052										
1064	3703	12	2080										
1065	0550	0.	1680						•				
1066	3759	11	1704										
1067	3744	11	2038										
1068	3702	0	1446										
1069	3580	0	1397	·									
1070	0005	0	520										
1071	3325	18	-	074	005		1000						
1072	3505	19	713	874	887	993	1006	1147	1153			1420	1433
1073	3523	16	1170										
1074	3448	16	1170	1 < 50	1//0	1000	1004	1005	1010				
1075	3550	16	1495	1650	1660	1770	1794	1937	1943			2184	2200
1076	3510	15	1236	1376	1387	1487	1509	1650	1657	0054		1876	1903
1077	3565	15	1524	1660	1670	1770	1793	1952	1962	2051	2053	2129	2148
1078	3586	7	1756	1907	1918	2022	2046	2230	2244	•		2408	2422
1079	3524	0 0	1470										
1080	3509	U	1450										
1081	3642	19	1887	2044	2057	2163	2186	2335	2344			2538	2554
1082	3677	21	2110										
1083	3708	7	1957	2104	2117	2222	2246	2382	2391	2542	2545	2594	2608
1084	3720	10	1949										2000
1085	3701	0 ·	2315										
1086	3603	0	1218	-									
1087	3662	Ŏ	2330		•								
1087	3604	0	1671										
1089	3542	0	1635										
1089	3412	20	495										
1090	3471	18 [·]	500										
10/1	5474		200										

		•			Dent	hs (ft) t	o Mark	er Reds					
Borehole	Reference	KB	Тор	Тор	Base		Base	Тор	Base	Тор	Base	Тор	Base
ID no.	Elevation	<b>(ft</b> )	Sal	103	1 <b>03</b>	109	109	VĪ	VT	Un'n	Un'n	123	124
=======================================	====== 3472	===== 13	==== 550	:====		====	====	:==::	:===:	==22	====	====	:===
1092	3468	13	740										
1094	3487	17	1145										
1095	3432	18	680						•				
1096	3309	16	450										
1097	3458	18	655										
1098	3444	18	505										
1099	3177	0	421										
1100	3250	23	502										
1101	3218	22	485	492	508	612	618	785	798	<b>97</b> 0	975	1040	1063
1 <b>102</b>	3347	0											
1103	3428	0	<b>748</b>							_			
1104	3540	0	811	<b>97</b> 0	984	1091	1114	1277	1287	1445	1454	1518	1538
1105	3748	14	1890								_		
1106	3792	18	1945	2104	2116	2216	2235	2390	2400	2555	2562	2610	2628
1107	3793	22	1988										
1108	3740	21	1950			•							
11 <b>09</b>	3668	15	1765										
1110	3652	18	1580	1735	1 <b>748</b>	1855	1879	2043	2051	2214	2219	2269	2287
1111	3800	17	1885										
1112	3862	10	2005									•	
1113	3861	22	1947		_								
1114	3834	21	1972	2139	2150	2258	2274	2440	2448	2608	2618	2660	2673
1115	3679	21	1455	1630	1645			1953	1963	2198	2202	2240	2258
1116	3798	13	1781	1958	1970	2092	2112	2282	2297	2470	2478	2544	2560
1117	3504	0											
1118	3662	8	982	1162	1178	1297	1318	1500	1508	1691	1700	1770	1787
1119	3780	23	1090	1272	1280	1394	1417	1584	1597	1763	1767	1835	1853
1120	3802	4	2180					2922	2930	3075	3088	3128	3150
1121	3564	0	1758										
1122	3638	17	2095										
1123	3603	11	2200	2359	2374	2483	2500						
1124		0											
1125		0	4 (80										
1126	3594	5	1670			*			,				
1127	3550	0	1660										
1128	3593	10	1670			•	·						
1129	3568	0	1720		. •								
1130	3545	10	1720										
1131	3635	0	1900										
1132	3581	.0	1817	~.									
1133	3580	3	1817										
1134	÷ .	0	1377										
1135		0	1368										
1136	3304	12	495										
1137	3023	0	166										
1138	2977	0	.130										
1139	3357	20	625										

					Denth	s (ft) to	Morke	r Rede					
Borehole	Reference	KB	Тор	Тор	Base	Top	Base	Тор	Base	Тор	Base	Тор	Base
ID no.	Elevation	(ft)	Sal	103	103	109	109	VT	VT	Un'n	Un'n	123	124
=====			====	====	====	*****	====	====	====	====	====:	====;	===
1140	3193	18	520	562	573	<b>686</b>	710	880	887	1056	1064	1130	1152
1141	3221	23	600			760	786	950	960	1130	1140	1205	1227
1142	3323	0	677										
1143	3214	1	565										
1144	3358	0	686	824	840	946	970	1133	1140	1315	1327	1393	1419
1145	3376	0	747	908	924	1034	1061	1226	1234	1405	1416	1484	1507
1146	3309	23	535										
1147	3152	0	306										
1148		0	708										
1149	3418	0	962										
1150	3439	13	964	1125	1139	1252	1273	1429	1434	1597	1606	1670	1688
1151	3433	0	973										
1152	3429	0	952										
1153	3541	9	990	1158	1170	1278	1302	1468	1475	1648	1658	1723	1743
1154	3553	0	1100	1276	1291	1405	1425	1602	1608	1784	1792	1862	1887
1155	3508	0	1041					•					
1156	3510	0	1040	1211	1225	1333	1359	1527	1533	1706	1715	1780	1805
1157	3496	21	- · -										
1158	3405	0	845	1031	1042	1161	1183	1359	1372	1543	1551	1622	1645
1159	3484	12	966										
1160	3472	0	946	1108	1120	1234	1260	1428	1434	1598	1610	1678	1702
1161	3345	0	720	884	898	1012	1039	1200	1211	1377	1384	1449	1474
1162	3349	0		0.60		4000		4005					
1163	3382	0	783	960	978	1088	1118	1287	1298	1473	1484	1556	1580
1164	3457	0	928		10/0	1100		10/0	4050				
1165	3426	0	885	1050	1063	1172	1196	1363	1378				
1166	3417	0	867			•							
1167	3433	0	894	4040	1050	11/8	1100	40/5	10/8	4 5 40		1 (00)	
1168	3420	12	860	1040	1050	1165	1188	1365	1367	1549	1557	1630	1653
1169	3506	0	1058	1229	1244	1354	1378	1550	1556	1730	1740	1809	1832
1170	3546	0:0	1116	1296	1310	1422	1446	1620	1630	1808	1822	1892	1916
1171	3596	8	1190	1376	1387	1504	1526	1700	1717	1895	1910	1979	1998
1172	3479	0	1084	1258	1276	1400	1422	1601	1619	1789	1806	1866	1888
1173	3508	0	1084	1262	1276	1394	1416	1594	1602	1780	1797	1864	1886
1174	3441 ~ 2472	0	928	1108	1124	1240	1268	1446	1456	1644	1660	1728	1752
1175	⁻ 3473	8	977 1008	1152 1188	1163 1204	1286 1312	1310 1336	1484 1506	1490	1682	1695	1764	1785
1176	3478	0 0	7	1100	1204	1312	1550	1500	1514	1694	1706	1774	1 <b>796</b>
1177	3398 3346		1										
1178	3377	0											
1179		0	076										
1180	3395 3345	. 6	826 676	921	97A	094	1011	1100	1102	1270	1201	1460	1492
1181	3345 2254	0	676	861 840	874 957	986 965	1011	1190	1193	1379	1391	1460	1483
1182	3354	0	656 542	840	857	965 860	989 989	1162	1166	1354	1363	1432	1460
1183	3310	0	<b>542</b> ·	729	743	860	883	1058	1062	1248	1261	1323	1352
1184	3413	0	000	10/0	1077	1000	1007	1400	1 410	1 504	1/10	1//0	1000
1185	3409	0	880	1062	1077	1200	1226	1400	1410	1591	1610	1668	1693
1186	3644	10	1275	1447	1461	1584	1604	1762	1777	1938	1954	2012	2030
1187	3731	11	1290	1470	1482	1607	1630	1823	1840	2033	2048	2118	2140
		· ·											

A-26

Borehase is defermente         Norme is defermente <th <="" colspan="5" th=""><th></th><th></th><th></th><th></th><th></th><th>Dent</th><th>he (#) t</th><th>o Maria</th><th>er Rede</th><th></th><th></th><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th></th> <th></th> <th>Dent</th> <th>he (#) t</th> <th>o Maria</th> <th>er Rede</th> <th></th> <th></th> <th></th> <th></th> <th></th>										Dent	he (#) t	o Maria	er Rede					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Romehole	Reference	KB	Top	Ton		• •	-		Rase	Top	Rase	Тор	Base					
1188       3701       20       1200       1409       1421       1562       1735       1750       1920       1932       2008       2031         1189       3666       15       1230       1409       1421       1562       1735       1750       1920       1932       2008       2031         1190       3620       9       1245       1429       1440       1562       1735       1756       1940       1957       2022       2041         1191       3640       19       1240       1225       1448       1462       1587       1609       1785       1973       1989       2046       2057         1193       3766       0       1608       13       2160       2326       2337       2444       2463       2600       2609       2770       2786       2828       2839         1196       3537       0       2185       133       2275       2333       2487       2506       2638       2643       2794       2808       2842       2854         1201       3631       7       2285       2353       2383       2487       2506       2638       2643       2794       2808       28				-	-		-				-		-						
1189       3696       15       1230       1409       1421       1540       1552       1735       1750       1920       1932       2008       2031         1190       3640       19       1240       1440       1562       1583       1758       1768       1940       1957       2022       2041         1192       3687       12       1265       1448       1462       1587       1609       1786       1795       1973       1989       2046       2067         1193       3786       0       1608       133       2160       2326       2337       2444       2463       2600       2609       2770       2786       2828       2839         1195       3640       13       2160       2326       2337       2444       2463       2600       2609       2770       2786       2828       2839         1196       3537       0       2185       1418       1225       2353       2833       2487       2506       2638       2643       2794       2808       2842       2854         1201       3623       1       12229       2351       13       1225       13       1425       14				====		:===	====	====	:====	====		====	====						
1190       3620       9       1245       1429       1440       1562       1583       1758       1768       1940       1957       2022       2041         1191       3640       19       1240       1265       1448       1462       1587       1609       1786       1795       1973       1989       2046       2067         1193       3789       25       1442       1452       1587       1609       1786       1795       1973       1989       2046       2067         1194       3756       0       1068       2337       0       2092       1700       2786       2828       2839         1196       3537       0       2025       2333       2487       2505       2638       2643       2794       2808       2842       2854         1197       3613       7       2285       11       2000       11       11       2000       1201       3613       1221       1303       3610       0       1202       3531       10       2227       1203       3610       0       1204       3533       22       2470       1210       3560       0       1667         1210 <td< td=""><td>1188</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1188																		
1191       3640       19       1240         1192       3687       12       1265       1448       1462       1587       1609       1786       1795       1973       1989       2046       2067         1193       3789       25       1462       1587       1609       1786       1793       1973       1989       2046       2067         1194       3756       0       1608       2326       2337       2444       2463       2600       2609       2770       2786       2828       2839         1196       3537       0       2092       1185       1482       2361       2302       2353       2487       2506       2638       2643       2794       2808       2842       2854         1200       3611       11       2300       1       1       2300       1       1       1202       3610       0       1       1       2300       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1																			
1192       3687       12       1265       1448       1462       1587       1609       1786       1795       1973       1989       2046       2067         1193       3769       25       1462       252       2337       2444       2463       2600       2609       2770       2786       2828       2839         1196       3537       0       2185       2333       2487       2506       2638       2643       2794       2808       2842       2854         1198       3611       18       2225       2333       2487       2506       2638       2643       2794       2808       2842       2854         1200       3611       11       2300       2275       2353       283       2487       2506       2638       2643       2794       2808       2842       2854         1200       3610       0       11       2300       2215       2353       288       181       140       141       2300       141       110       2202       381       13       1255       1214       3533       22       275       1216       3571       0       1825       1210       3560       1755					1429	1440	1562	1583	1758	1768	1940	1957	2022	2041					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1 4 4 0	1400	1507	1600	1700	1705	1050	1000	2046	00/7					
1194       3756       0       1608         1195       3640       13       2160       2326       2337       2444       2463       2600       2609       2770       2786       2828       2839         1196       3537       0       2022       2353       2383       2487       2506       2638       2643       2794       2808       2842       2854         1198       3611       18       2225       2353       2383       2487       2506       2638       2643       2794       2808       2842       2854         1200       3611       11       2300       2275       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5					1448	1402	1291	1009	1/80	כפיו	19/3	1989	2046	2067					
1195       3640       13       2160       2326       2337       2444       2463       2600       2609       2770       2786       2828       2839         1196       3537       0       2185																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					2326	2337	7444	2463	2600	2609	2770	7786	2828	7830					
1197       3573       0       2185         1198       3611       18       2225       2353       2383       2487       2506       2638       2643       2794       2808       2842       2854         1199       3613       7       2225       2353       2383       2487       2506       2638       2643       2794       2808       2842       2854         1199       3611       11       2300       3610       0       202       3561       13       2275       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5					220	<u> </u>	2	2700	2000	2007	2,70	2/00	2010	2007					
1198       3611       18       2225       2353       2383       2487       2506       2638       2643       2794       2808       2842       2854         1199       3613       7       2285       2353       2387       256       2638       2643       2794       2808       2842       2854         1109       3611       11       2300       1       2265       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5<																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					2353	2383	2487	2506	2638	2643	2794	2808	2842	2854					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3581	13	2275															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3610	0																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1204	3533	22	2470															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1205	3571	10	2292															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1206		0																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			
1214       3582       18       1685       1795       1824       1918       1942       2067       2074       2232       2246       2282       2297         1215       3589       11       2008       11       2008       1216       3507       0       1805         1217       3498       0       1683       1835       111       2008       1683       111       1918       1942       2067       2074       2232       2246       2282       2297         1216       3507       0       1805       1835       1918       1942       2067       2074       2232       2246       2282       2297         1216       3507       0       1805       1835       181       1918       1942       184       1918       1942       184       1918       1942       184       1918       1942       1918       1942       1918       1942       1918       1942       1918       1942       184       184       184       184       184       1918       1942       1918       1942       1918       1918       1918       1918       1918       1918       1918       1918       1918       1918       1918 <td></td>																			
1215 $3589$ 11 $2008$ 1216 $3507$ 0 $1805$ 1217 $3498$ 0 $1683$ 1218 $3469$ 0 $1684$ 1219 $3410$ 0 $1385$ 1220 $3405$ 0 $1360$ 1221 $3316$ 0 $1408$ 1222 $3337$ 0 $1350$ 12231011224011225 $3045$ 181226 $2996$ 191227 $3027$ 121228 $3014$ 121229 $3024$ 191220 $3163$ 01231 $3197$ 241232 $3028$ 121233 $3215$ 151234 $3215$ 15					1705	1004	1010	1042	2067	2074		2246	2202	2207					
1216       3507       0       1805         1217       3498       0       1683         1218       3469       0       1684         1219       3410       0       1385         1220       3405       0       1360         1221       3316       0       1408         1222       3337       0       1350         1223       10       1223       10         1224       0       1224       0         1225       3045       18       1226         1226       2996       19       1227         1227       3027       12       212         1228       3014       12       195         1229       3024       19       212         1230       3163       0       283         1231       3197       24       425         1232       3028       12       217         1233       3215       15       15					1/90	1024	1910	1742	2007	2074	2232	2240	LLOL	1191					
1217 $3498$ 0 $1683$ $1218$ $3469$ 0 $1684$ $1219$ $3410$ 0 $1385$ $1220$ $3405$ 0 $1360$ $1221$ $3316$ 0 $1408$ $1222$ $3337$ 0 $1350$ $1223$ 1010 $1224$ 0 $1226$ $2996$ 19 $1227$ $3027$ 12 $1228$ $3014$ 12 $1229$ $3024$ 19 $1221$ $3163$ 0 $1231$ $3197$ $24$ $425$ $1232$ $3028$ 12 $1233$ $3215$ $15$																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			
$            \begin{array}{ccccccccccccccccccccccccc$																			
1220       3405       0       1360         1221       3316       0       1408         1222       3337       0       1350         1223       10       1         1224       0       1         1225       3045       18         1226       2996       19         1227       3027       12         1228       3014       12         1229       3024       19         1230       3163       0         1231       3197       24         1232       3028       12         1233       3215       15         1234       3215       15			_																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			
1222333701350122310122401225304518122629961912273027121228301412129302419123031630123131972412323028121233321515																			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								•											
1225304518122629961912273027121228301412129302419123031630123131972412333215151234321515																			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3045	18			. •	•												
122830141219512293024192121230316302831231319724425123230281221712333215151234321515		2996	<b>19</b>																
12293024192121230316302831231319724425123230281221712333215151234321515	1227	3027	12	212															
1230316302831231319724425123230281221712333215151234321515		3014	12	195															
1231       3197       24       425         1232       3028       12       217         1233       3215       15         1234       3215       15			19																
1232     3028     12     217       1233     3215     15       1234     3215     15																			
1233     3215     15       1234     3215     15																			
1234 3215 15				217															
1235 3290 23 470 622 634 754 775 946 956 1141 1155 1211 1232						<i>.</i>													
	1235	3290	23	470	622	634	754	775	946	956	1141	1155	1211	1232					

A-27

					Depth	Depths (ft) to Marker Beds							
Borehole	Reference	KB	Тор	Тор	Base	Top	Base	Тор	Base	Тор	Base	Тор	Base
ID no.	Elevation	(ft)	Sal	103	103	109	109	VŤ	VT	Un'n	Un'n	123	124
1236	3384	13	640										
1237		0	710					_					
1238	3453	10		1247	1260	1391	1414	1590	1603	1785	1804	1853	1871
1239	3340	0	713	890	904	1028	1052	1234	1240	1436	1452	1510	1532
1240	3336	0	715	894	906	1026	1052	1236	1240	1440	1454	1520	1540
1241	3335	.0	626			• • •							_
1242	3332	0	627	810	828	948	972	1154	1160	1354	1371	1430	1458
1243	3328	8	653		~								
1244	3323	0	642	822	836	965	990	1173	1180	1372	1388	1446	1468
1245	3492	10	1118	1292	1308	1432	1454	1635	1646	1834	1852	1903	1921
1246	3511	27	1100	1242	1252	1448	1468	1689	1702	1858	1875	1922	1934
1247	3426	0	976										
1248	3381	23	808	993	1005	1130	1149	1332	1348	1540	1557	1608	1629
1249	3374	9	797	<b>97</b> 9	992	1116	1126	1333	1357	1566	1582	1637	1655
1250	3452	22	1092										
1251	3461	11	1090					· .					
1252	3506	21	1190										
1253	3454	10	1063	1247	1258	1395	1412	1602	1609	1832	1846	1902	1920
1254	3464	27	1070	1246	1260	1380	1400	1602	1610	1827	1843	1897	1916
1255	3459	12	1060										
1256	3402	12	837	1013	1028	1151	1172	1370	1381	1592	1610	1662	1671
1257	3374	22											
1258	3358	8	695	880	892	1038	1058	1235	1248	1458	1473	1528	1545
1259	3392	8	816	1021	1040	1192	1216	1408	1422	1645	1662	1718	1737
1260		7	1095										
1261	3727	12	1584	1752	1767	1883	1904	2072	2093	2250	2267	2308	2328
1262	3699	11	1545	1708	1724	1840	1860	2041	2050	2225	2240	2282	2300
1263	3723	5	1680	1852	1866	<b>1988</b> )	2010	2190	2199	2376	2393	<b>2439</b>	2457
1264	3722	12	1640	1812	1828	1940	1957	2132	2140	2320	2335	2378	2395
1265	3622	21 📎											
1266	3697	<b>11</b> ]};	1512	1682	1697	1812	1830	2004	2017	2213	2228	2276	2292
1267	3699	14											1688
1268	3701	-	1517	1688	1702	1819	1840	2018	2026	2212	2230	2274	2290
1269	3720	10	1710	1888	1903	2025	2044	2214	2227	2417	2431	2477	2498
1270	3725	13	1727	1903	1919	2044	2064	2233	2243	2441	2456	2504	2520
1271	3700	13	1683	1863	1 <b>878</b>	2002	2020	2194	2210	2405	2420	2470	2485
1272	3720	10	1695	1873	1888	2013	2032	2203	2217	2407	2420	2468	2485
1273	3698	12	1678	1861	1876	2003	2022	2201	2212	2412	2429	2478	2496
1274	3705	9	1680	1860	1873	1996	2010	2188	2200	2394	2410	2457	2474
1275	3659	11	1630		1830	1950	1968	2147	2160	2360	2374	2424	2443
1276	3713	12	1667	1858	· 1870	1995	2014	2192	2202	2405	2423	2471	2490
1277	3687	0	1535		1730	1850	1868	2048	2059	2257	. 2273	2321	2338
1278	3551	8	1206	1396	1411	1539	1556	1735	1748	1970	1988	2025	2048
1279	3666	8	1520										
1280	3629	9	1508	1700	1712	1840	1857	2031	2043	2248	2264	2316	2336
1281	3671	11	1623	1821	1837	1970	1990	2172	2180	2390	2407	2460	2478
1282	3694	12	1657	1854	1868	1993	2013	2190	2198	2404	2420	2472	2490
1283	3676	: 11	1675	1872	1884	2015	2029	2213	2227	2428	2443	2496	2512

Borehole ID         Reference Devailo         RB         Top (R)         Sal (S)         Top (S)         Base (S)         Top (S)         Dist (S)         Di	Depths (ft) to Marker Beds													
ID no.         Elevation         (R)         Sai         103         103         109         VT         VT         Urb         Urb         Urb         124         124         125         124         126         127         2378         2393         2444         2465           1286         3692         12         1653         1831         1844         1969         1980         2166         2177         2378         2393         2444         2465           1286         3663         8         1567         1775         1775         2004         2103         2303         2375         2395         2385         2375         2395         2385         2375         2386         2302         2302         2302         2302         2302         2302         2302         2302         2302         2302         2405         2407         2442         2462         2302         2406         2506         2506         2576         1292         3664         11         1657         1803         1848         1898         2042         2102         2202         2430         2442         2400         2442         2460         2506         2477         2449         2460         2	Borehole	Reference	KB	Тор	Тор		• •			Base	Тор	Base	Тор	Base
1284       3700       8       1635       1841       1844       1969       1965       2166       2177       278       2393       2444       2465         1286       3663       8       1567       1762       1775       1900       1918       2047       2103       2303       2325       2375       2386         1287       3669       11       1653       1818       1832       1960       1980       2157       2167       2302       2325       2375       2386         1289       3630       8       1505       2044       2052       2202       2216       2181       2344       2560       2576         1290       3685       8       1670       1884       1872       2005       202       2246       257       2482       2486       2500       2516         1291       3669       11       1675       1890       1848       1892       2002       2175       184       2342       2422       235       2500       2516       2344       2402       2445       2500       2516       2344       2449       2442       2402       2442       2442       2420       2442       2442       2				-	-	103	-		-		-		-	
1285       3692       12       1653       1846       1860       1995       2014       2107       214       2430       2420       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430       2430 <t< th=""><th></th><th>_ = = = = = = = =</th><th></th><th>====</th><th>~~==</th><th>====</th><th></th><th>====</th><th></th><th>****</th><th></th><th>====</th><th>====</th><th>:===</th></t<>		_ = = = = = = = =		====	~~==	====		====		****		====	====	:===
1286       3663       8       1567       1762       1775       1900       1918       2094       2103       2308       2323       2375       2367         1287       36699       11       1653       1818       1832       1960       1980       2157       2167       2369       2352       2352       2352       2352       2351       2351       2352       2351       2352       2351       2352       2351       2352       2351       2352       2350       2352       2350       2352       2350       2352       2350       2352       2350       2352       2350       2352       2350       2352       2350       2352       2350       2352       2350       2352       2350       2352       2350       2352       2350       2352       2350       2352       2350       2352       2351       2354       2464       2464       2500       2516       2344       2400       2445       2500       2516       2344       2401       2445       2540       2551       2531       2254       2451       2452       2451       2452       2450       2551       2535       2530       2551       2533       2536       2535														
1287       3689       11       1623       1818       1832       1960       1960       2157       2167       2369       2385       2437       2457         1288       36609       11       1655       2004       2054       2255       2280       2332       2350         1290       3695       8       1570       1858       1872       2005       2022       2202       2216       2187       2448       2486       2560       2576         1292       3664       11       1673       1864       1877       2010       2030       2105       2132       2445       2500       2576         1292       3664       11       1673       1840       1877       2009       210       2237       2432       2478       2492       233       2530       2531         1294       3704       10       1777       1947       1940       2093       2112       2287       2478       2470       2515       2534         1296       3702       11       1710       1947       1960       2003       2115       2249       2445       2460       2504       2569       25251       1509       2569														
$  \begin{array}{ccccccccccccccccccccccccccccccccccc$														
1289       3630       8       1505       2744       2044       2054       2265       2280       2332       2350         1291       3689       0       1680       1884       1898       2062       2202       210       2418       2434       2486       2507         1292       3664       11       1673       1864       1877       2100       2030       2210       2220       230       2445       2500       2515         1293       3636       11       1673       1864       1877       2100       2030       2110       2220       230       2445       2402       255       2550         1294       3704       10       1772       1947       1960       2099       2112       2287       2484       2560       2563       2749       2484       2500       2564       2489       2560       2564       2489       2560       2564       2489       2560       2565       1297       3711       13       1730       13       1730       13       1730       203       2046       2260       2245       2445       2460       2505       2565       1300       3713       13       1710       1870					1818	1832	1960	1980	2157	2167	2369	2385	2437	2457
1291       3689       0       1680       1884       1898       2042       2062       2246       2482       2482       2482       2560       2516         1292       3664       11       1673       1864       1877       2010       2030       2210       2220       2482       2482       2452       2500       2516         1293       3636       11       1677       1848       1848       1982       2008       2175       2184       2462       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2482       2560       2553         1298       3711       13       1710       1875       1903       1920       2045       2042       2516       2534 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0005</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							0005							
	- rectine													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
1296       3715       12       1773       1947       1960       2093       2115       2284       2294       2484       2500       2548       2566         1297       3722       11       1710       2013       2030       2199       2210       2387       2401       2443       2488         1298       3726       9       1958       1975       2103       2107       22055       2304       2488       2500       2550       2551         1300       3720       13       1735       1906       1923       2046       2065       2240       2250       2415       2460       2509       2526         1301       3713       13       1710       1875       1892       2047       2218       2207       2417       2432       2480       2480       2480       2481       2484       2484       2484       2484       2484       2484       2484       2484       2484       2484       2484       2484       2484       2484       2484       2484       2484       2500       2510       2589       1306       3633       0       1815       1989       2012       2130       2148       2323       2333														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1947	1960								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1710		4085								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
1302       3703       11       1720       1890       1905       2028       2047       2218       2227       2417       2432       2480       2498         1303       3713       25       1790							2048	2066						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							0000	00/7						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1890	1905	2028	2047	2218	ZZZI	2417	2432	2480	2498
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						4000	0000							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3701												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													2598	2613
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1660	10/2	1810	1830	2000	2012	2209	2224		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3494												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2460												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1920										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1000										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
1322       3320       9       1435         1323       2968       10         1324       2984       0         1325       6         1326       0         1327       4         1328       6         1329       2969         1330       2941         11       454         454       460														
1323       2968       10         1324       2984       0         1325       6         1326       0         1327       4         1328       6         1329       2969         281       1330         131       454         460       665         690						• •								
1324       2984       0         1325       6         1326       0         1327       4         1328       6         1329       2969         281         1330       2941         11       454       460         665       690				1433										
1325       6         1326       0         1327       4         1328       6         1329       2969         1330       2941         11       454         460         665         690		•												
1326       0         1327       4         1328       6         1329       2969       28         1330       2941       11       454       460       665       690		2784	U											
1327       4         1328       6         1329       2969       28         1330       2941       11       454       460       665       690				•										
1328     6       1329     2969     28       1330     2941     11     454     460     665     690														
13292969281330294111454460665690														
1330 2941 11 454 460 665 690		2000								-				
									45 4					~~~
1441 /WV/ IX									454	460			665	690
	1331	2331	18											

					Depth	s (ft) to	Marke	r Beds					
Borehole	Reference	KB	Тор	Тор	Base	Top	Base	Тор	Base	Тор	Base	Тор	Base
ID no.	Elevation	(ft)	Sal	103	103	1.09	109	VŤ	VT	Un'n	Un'n	123	124
=====	=====	====:	====	====	====		====	====	====	====	====	====:	===
1332	2924	11	696										
1333	3447	12	660										
1334	<b>3179</b>	11											
1335	3433	0							•				
1336	3429	12	840	848	858	928	946	1132	1141	1360	1378	1430	1454
<b>1337</b> ·	3266	.5	÷										
1338	3502	23	1250										
1339	3500	9	1010	1152	1167	1300	1320	1509	1517	1722	1736	1788	1805
1340	3432	2	835										
1341	3436	10	832	1017	1032	1155	1178	1368	1380	1582	1600	1645	1663
1342	3406	0	<b>79</b> 1										
1343	3414	10	812	<b>997</b>	1011	1132	1152	1340	1354	1562	1578	1630	1645
1344	3430	28	805	920	933	1062	1082	1260	1274	1485	1504	1556	1573
1345	3438	23	826										
1346	3535	11	960	960	976	1115	1135	1317	1325	1540	1560	1617	1634
1347	3528	13	1130	1 <b>299</b>	1317	1450	1468	1644	1660	1860	1874	1923	1940
1348	3553	13	1098	1300	1312	1448	1466	1651	1667	1889	1905	1966	1986
1349	3553	4	1025										
1350	3514	10	915	944	956	1080	1100	1280	1284	1490	1510	1560	1 <b>578</b>
1351	3530	11	965	968	981	1125	1145	1330	1342	1548	1565	1622	1641
1352	3490	12	895	918	924	1040	1062	1245	1252	1455	1472	1530	1 <b>549</b>
1353	3535	11	923	993	1012	1140	1160	1340	1350	1562	1580	1629	1 <b>647</b>
1354	3551	12	1017					•					
1355	3502	23		-									
1356	3508	25	1010										
1357	3620	10	1562	1748	1761	1888	1908	2084	2099	2301	2317	2368	2388
1358	3623	12					. •						
1359	3632	11	1500			•	•						
1360	3631	11	1533	1727	1740	1870	1892	2074	2088	2296	2314	2369	2390
1361	3584	8	1246	1439	1453	1580	1600	1776	1783	2000	2017	2067	2088
1362	3628	10	1394	1599	1608	1752	1771	1959	1966	2182	2206	2263	2280
1363	3615	11											
1364	0010	8											
1365	3637	14	•					•					
1366	3637	12							÷.				
1367	3637	11	1504	1688	1 <b>703</b>	1 <b>855</b>	1874	2069	2078	2293	2309	2360	2378
1368	3640	11	1502	1698	1708	1852	1867			2288	2304	2361	2376
1369	3590	10				1939	1958	2140	2152		2382	2437	2458
1370	3600	10										2.27	2.00
1371	3605	9	1495	1689	1 <b>700</b>	1842	1863	2048	2063	2285	2300	2354	2373
1372	3586	,	1503	1002		10.2	1000	2010	2000	22.50		2001	20.00
1373	3599	9	1000										
1374	3628	8	1445	1628	1640	1844	1966	2089	2104	2324	2340	2393	2410
1374	3588	10		1620	1644	1800	1820	2009	2029	2267	2288	2305	2324
			1457	1653	1665	1890	1915	2010	2149	2310		2386	2402
1376	3591	9 · 10	1450		1650	1850	1870	2066	2080		-		
1377	3624	10 10		1638						2295	2311	2363	2380
1378	3606	10	1438	1632	1646	1796 1778	1822 1803	2072	2090	2298	2313	2375	2405
1379	3591	10	1428	1612	1625	1//0	1003	1996	2003	2230	22:47	2299	2317

					Denti	hs (ft) t	o Mark	er Beds					
Borehole	Reference	KB	Тор	Тор	Base		Base	Тор	Base	Тор	Base	Тор	Base
ID no.	Elevation	(ft)	Sal	103	103	109	109	VŤ	VT	Un'n	Un'n	123	124
	******												
1380	3602	12	1340	1524	1539	1679	1700	1882	1897	2106	2122	2187	2208
1381	3622	10	1396	1571	1585	1730	1753	1940	1955	2174	2192	2252	2271
1382	3608	11	1368	1571	1583	1721	1741	1946	1957	2186	2206	2267	2287
1383	3605	10	1400	1598	1612	1757	1777	1980	1990	2216	2235	2296	2316
1384	3618	12	1312	1513	1528	1667	1688	1874	1887	2112	2130	2192	2212
1385	3607	11	1375	1590	1599	1745	1760	1968	1975	2201	2219	2280	2296
1386	3604	10	1383	1590	1602	1745	1764	1970 1958	1975	2210	2227	2290	2308
1387	3602	11	1384	1579	1592 1579	1735 1718	1758 1738	1958	1967	2192	2211	2275	2295
1388	3591	9	1362	1565		1786			1946	2172	2190	2252	2272
1389	3609	8	1415	1627	1640		1807	2009	2020	2243	2262	2320	2340
1390	3605	10	1412	1602	1618 1548	1763 1676	1783	1984	1992	2218	2234	2295	2316
1391	3589	11	1323	1535			1695	1883	1895	2113	2129	2185	2206
1392	3554	9	1070	1292	1304	1453	1479	1682	1696	1917	1932	1987	2007
1393	3510	10	1145	1345	1359	1485	1508	1707	1716	1937	1955	2010	2030
1394	3519	11	1190	1400	1412	1544	1565	1754	1762	1985	2004	2056	2075
1395	3524	12	1239	1455	1463	1598	1616	1806	1817	2036	2052	2108	2127
1396	3625	19	1806	1981	1995	2120	2140	2312	2324	2520	2539	2599	2613
1397	3606	8	1635	1829	1840	1969	1989	2172	2183	2393	2408	2460	2478
1398	3598	8	1612	1819	1830	1963	1982	2165	2175	2385	2403	2455	2473
1399	3603	10	1595	1797	1810	1948	1967	2152	2161	2371	2388	2442	2463
1400	3590	11	1635	1836	1850	1983	2003	2182	2192	2402	2418	2470	2486
1401	3636	10	1647	1846	1862	1996	2015	2195	2203	2416	2432	2483	2501
1402	3547	14	1620	1829	1835	1968	1987	2158	2168	2376	2392	2440	2457
1403	3578	11	1630	1835	1848	1982	2000	2175	2186	2393	2412	2462	2480
1404	3637	8	1700	1900	1911	2042	2063	2238	2248	2455	2472	2522	2540
1405	3598	11	1785	1988	2004	2135	2154	2342	2354	2562	2577	2633	2651
1406	3554	10	1540	4000	4000	0000			~~~~		- · - ·		
1407	3592	11	1676	1880	1890	2022	2042	2214	2222	2436	2454	2503	2522
1408	3540	11	1495	1709	1725	1859	1870	2110	2120	2285	2304	2359	2374
1409	3594	12	1735	2004	2024	2165	2190	2385	2396	2702	2723	2792	2820
1410	3502	11	1621	1851	1864	2006	2025	2216	2226	2449	2466	2525	2543
1411	3525	10	1492	1720	1734	1875	1896	2092	2100	2321	2339	2390	2408
1412	3556	10	1410	1620	1637	1773	1792	1982	1990	2203	2220	2270	2288
1413	3524	11	1392	1605	1620	1755	1775	1978	1986	2210	2229	2280	2300
1414	- · · -	11	1695	1915	1926	2059	2077	2255	2265	2500	2521	2579	2595
1415	3447	10	1125										
1416	3567	19	1537	1735	1750	1885	1904	2089	2100	2308	2338	2400	2418
1417	3619	19	1690										
1418	3630	0	1760										
1419	3570	18	1660										
1420	3488	.33	1085	•									
1421	3378	19	1186										
1422	3295	9											
1423	3156	0	1482										
1424	2997	19											
1425	2985	2 2	340										
1426	2921			•									
1427	2923	9		417	438	488	508	653	659			835	862

		Depths (ft) to Marker Beds												
	Borehole	Reference	KB	Тор	Тор	Base .		Base	Тор	Base	Тор	Base	Тор	Base
	ID no.	Elevation	(ft)	Sal	103	103	109	109	VŤ	VT	Un'n	Un'n	123	124
		=======			====	====	====	=====	===					= = =
	1428	3118	17	945										
	1429	3041	1	775										
	1430	3078	16	905										
	1431	3044	0	530										
	1432	2990	2	414							600	610	(20	(12
	1433	2936	12	202							603	610	630	643
•	1434	2945	12 9	393										
	1435	3333	9 13	1096							1769	1781	1808	1972
	1436	3273 3283	12	1050							1709	1/01	1000	1823
	1437	3223	9	760		772	796	809	955	962	1147	1162	1204	1225
	1438			1255		112	130	003	555	502	114/	1102	1204	1440
	1439	3210	11	915										
	1440	3200	11	915 790										
	1441	3197	10					• .						
	1442	3210	10	1100			1290	1300	1530	1542	1773	1784	1940	1950
	1443	3192	0	880			1290	1200	1330.	1.542	1/75	1/04	1840	1 <b>859</b>
	1444	3282	2	1235	1061	1077	1212	1230	1404	1414	1626	1640	1688	1703
	1445	3317	14	1050	1061 787	<b>798</b>	840	858	1014	1022	1020	1040	1283	1303
	1446	3210	11	786 898	/8/ 898	790 907	956	976	1139	1022	1307	1325	1265	1305
	1447	3219	9	070	070 790	507 804	858	878	1045	1057	1249	1263	1300	1323
	1448	3207	11 7		/90	004	000	0/0	1042	1057	1243	1205	1307	1343
	1449	3217 3209	11	829	829	840	890	912	1070	1080	1263	1279	1322	1333
	1450	3186	10	1075	1076	1083	1140	1163	1404	1413	1558	1574	1522	1555
	<b>1451</b> 1 <b>452</b>	3192	11	1205	1010	1005	1133	1157	1253	1266	1414	1438	1465	1477
	1452	3192	11	1542	•		1155	1107	ويعير	1400	1414	1430	1400	1411
	1455	3207	12	1100										
	1454	3203	10	942	942	951	1060	1070						
	1455	3205 3184	8	840	840	852	900	918	1108	1117	1191	1202	1210	1218
	1450	3204	8	915	915	940	957	983	1187	1195	1393	1410	1455	1473
	1457	3252	5	1373		~~	507	200	110/	11)5	1373	1410	1433	1475
	1458	3336	11	1015										
	1459	3476	<b>21</b>	1012			1090	1108	1300	1310	1530	1550	1604	1622
	1461	3348	2	1123			1020	1100	1000	1310	1000	1550	1004	
	1462	3358	8	697	880	892	1037	1058	1235	1250	1448	1464	1528	1547
	1463	3319	9	1622	1 <b>790</b>	1806	1923	1935	2073	2079	2221	2230	2262	2274
	1464	3486	11	1127	1320	1334	1468	1483	1680	1697	1923	1938	1996	2013
	1465	3461	10	1160			1304	1327	1520	1535	1762	1780	1833	1850
	1466	3461	9	1104		1192	1323	1345	1540		1780	1802	1853	1870
	1467	3460	11	1122	1191	1207	1334	1353	1548	1557	1780	1799	1852	1870
	1468	3472	10	1130		1245	1380	1397	1594	1609	1834	1850	1908	1923
	1469	3478	10	1127		1284	1418	1437	1630	1640	1875	1892	1948	1967
	1409	3480	19	1140	1233	1250	1383	1402	1600	1613	1842	1860	1912	1930
	1470	3477	9	1125				1.102	2000		1071D	1000		1750
	1471	3464	· 9	1118	1240	1255	1390	1408	1595	1610	1840	1859		
	1472	3454	0	1123	1210	1227	1368	1384	1550	1595	1821	1840	1893	1913
	1475	3459	1Ó	1140	1210	1240	1372	1392	1584	1600	1826	1842	1895	1915
	1474	3455	10	1140	1203	1220	1360	1380	1573	1588	1808	1825	1879	1899
	14/J	5733	10	. 1120	1003	I COLON	1.500	1.500	5,01	1.00	1000	1042	10/9	1022

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Base         Top         Item         Item	1910 1903 2008
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	124 1910 1903 2008
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1910 1903 2008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1237136613851572159018121830188313501488151216941706192319381991127414101437162116371113281460148116731687111222135913821569158318111829188211491262128114661480168817041753	1903 2008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	135014881512169417061923193819911274141014371621163713281460148116731687132814601481167316871222135913821569158318111829188211491262128114661480168817041753	2008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1274141014371621163713281460148116731687122213591382156915831811182911491262128114661480168817041753	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1274141014371621163713281460148116731687122213591382156915831811182911491262128114661480168817041753	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132814601481167316871222135913821569158318111829188211491262128114661480168817041753	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1222135913821569158318111829188211491262128114661480168817041753	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1149 1262 1281 1466 1480 1688 1704 1753	4004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1901
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11/0 1303 1320 1320 1330 1/00 1//6 1630	1772
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1850 1804
14873453101140120012181352137118101827188018148834531011581160117113051327152815421770178918431814893441111138113811501273129314881500172217391792181490344710113711911208133913621545155617731792184318		1895
148834531011581160117113051327152815421770178918431814893441111138113811501273129314881500172217391792181490344710113711911208133913621545155617731792184318	·	1898
1489         3441         11         1138         1138         1150         1273         1293         1488         1500         1722         1739         1792         18           1490         3447         10         1137         1191         1208         1339         1362         1545         1556         1773         1792         1843         18		1860
1490 3447 10 1137 1191 1208 1339 1362 1545 1556 1773 1792 1843 18		1810
		1862
1491 3443 10 1165 1164 1178 1307 1328 1520 1530 1754 1773 1824 18	1178 1307 1328 1520 1530 1754 1773 1824	1845
		1826
		1725
	—	1830
		1747
		1798
		1752
		1748
		1853
	· · · · · · · · · · · · · · · · · · ·	1700
1501 3434 11 1110 1125 1221 1243 1441 1457 1678 1698 1751		
	1140 1258 1282 1485 1495 1720 1739 1792	1812
1503 3434 9 1115 1115 1125 1213 1233 1425 1438 1650 1668 1720 17	1125 1213 1233 1425 1438 1650 1668 1720	1738
1504 3433 9 1125 1136 1229 1250 1440 1451 1667 1682 1732 17	1136 1229 1250 1440 1451 1667 1682 1732	1750
1505 3443 8 1130 1130 1142 1265 1284 1482 1498 1721 1738 1792 18	1142 1265 1284 1482 1498 1721 1738 1792	1810
1506 3431 20 940 986 995 1083 1102 1310 1322 1547 1565 1616 16	995 1083 1102 1310 1322 1547 1565 1616	1635
1507 3438 16 1015		
1508 3394 13 1086 1096 1159 1184 1380 1391 1618 1636		
		1775
		1720
		1736
		1758
		1718
		1780
		1772
		1789
		1750
		1717
		1758
		1702
	11174 11717 1161 1451 1262 1602 12701 4255	1674
1523         3428         9         1130         1145         1233         1254         1448         1462         1677         1693         1746         17	1122 1240 1262 1455 1469 1688 1706 1759	1777 1764

Depths (ft) to Marker Beds														
	Borehole	Reference	КВ	Тор	Тор	Base	Тор	Base	Тор	Base	Тор	Base	Тор	Base
	ID no.	Elevation	(ft)	Sal	103	103	109	109	VT	VT	Un'n	Un'n	123	124
					====				==== 1465					
	1524	3430	11	1128		1140	1255 1220	1276 1240	1405	1480 1449	1695 1668	1712 1687	1764 1741	1782 1758
	1525	3409	13	1117		1141	1263	1288	1450	1449	1687	1702	1741	1772
	1526	3419	10	1130	1100	1141 1130	1242	1267	1465	1460	1689	1702	1752	1768
	1527	3419	9	1115	1120	1130	1242	1275	1458	14/2	1683	1698	1750	1769
	1528	3411	10	1117	1144	1150	1272	1296	1456	1409	1694	1710	1760	1778
	1529	3421	9	1142 1130	1130	1143	1270	1294	1475	1450	1696	1710	1759	1780
÷	1530	3414	10 11	1085	1240	1256	1389	1412	1598	1610	1090	1/10	1739	1700
	1531	3429	10	1155	1240	12.00	1285	1310	1485	1496	1700	1718	1770	1782
	1532	3430		1130	1132	1144	1266	1284	1470	1482	1700	1719	1770	1787
	1533	3391	11	1150	1152	1180	1240	1260	1448	1460	1675	1690	1744	1759
	1534	3392	10			1132	1220	1242	1430	1442	1668	1683	1740	1756
	1535	3388	9	1118		1268	1333	1356	1537	1552	1767	1782	1833	1850
	1536	3375	10	1140		1200	1333	1265	1357	1352	1677	1693	1750	1766
	1537	3398	10	1140		1100	1246	1265	1444	1465	1677	1695	1750	1767
	1538	3386	9	1178	4486	1188								
	1539	3382	10	1175	1175	1188	1244	1266	1457	1470	1685	1701	1753 1740	1772 1 <b>758</b>
	1540	3386	10	1148	1150	1160	1242	1260	1440	1453	1668	1684		
	1541	3414	10	1230	1231	1240	1298	1318	1502	1514	1728	1742	1796	1812
	1542	3370	11	1335	1336	1350	1390	1409	1596	1608	1850	1872	1922	1937
	1543	3356	9	1310	1310	1322	1430	1452						
	1544	3366	11	1485		1499	1634	1656						
	1545	3311	2	1417		1 458	1504	1004	1900		0000	0000	0074	2000
	1546	3307	10	1412	1446	1457	1584	1604	1768	1777	2009	2030	2074	2092
	1547	3349	11	1297	1297	1308	1336	1351	1546	1555	1760	1775	1825	1837
	1548	3332	9	1440	•	1449	1550	1573	1741	1752	1962	1975	2009	2027
	1549		0	1405		1417	1507	1527	1700	1712	1932	1948	1996	2013
	1550	3490	10	1673	1880	1897	2040	2058	2250	2258	2490	2507	2578	2597
	1551	3478	11	1433	1668	1682	1816	1836	2032	2045	2260	2278	2333	2352
	1552	3456	11	1428	1633	1646	1773	1792	1978	1993	2212	2229	2283	2302
	1553	3424	11	1550	1752	1767	1910	1928	2112	2128	2360	2378	2444	2464
	1554	3497	8	1312	1524	1538	1665	1689	1872	1883	2098	2116	2169	2188
	1555	3431	10	1347	1565	1581	1716	1742	1932	1945	2164	2185	2245	2264
	1556		0	1374									2268	2284
	1557	3392	34	1335										
	1558	3353	11	1410	1608	1625	1758	1778	1960	1976	2190	2206	2259	2280
	1559	3358	9	1463	1670	1684	1822	1842	2030	2040	2280	2298	2355	2379
	1560	3342	12	1435	1635	1650	1788	1807	1986	2000	2225	2242	2297	2317
	<b>156</b> 1	3332	11	1395		1612	1744	1763	1950	1964	2198	2217	2271	2292
	15 <b>62</b>	3320	12	1387	1585	1607	1741	1762	1935	1946	2162	2178	2230	2249
	1563	3353	10	1315	1510	1528	1658	1675	1848	1859	2072	2088	2140	2157
-	1564	3344	.11	1339	1528		1675	1695	1862	1873	2082	2099	2152	2170
	1565	3422	9	1385	1564	1585	1726	1748	1944	1956	2177	2192	2245	2264
	1566	3386	12	1096	1220	1237	1377	1400	1586	1604	1846	1862	1915	1934
	1567	3332	0	1192	1374	1392	1535	1552	1734	1748	1977	1992	2042	2062
	1568	3391	13	1224	1428	1443	1580	1 <b>599</b>	1 <b>780</b>	1792	2022	2038	2088	2108
	1569	3325	7	1334	1542	1556	1697	1716	1902	1915	2152	<b>2168</b>	2222	2240
	1570	3346	11	1432	1625	1642	1783	1801	1983	<b>1998</b>	2222	2240	2292	2310
	1571	3346	12	1437	1639	1651	1792	1810	2005	2017	2256		2332	2353
				•	'									

					Denti	hs (ft) t	n Mark	er Beds					
Borehole	Reference	KB	Тор	Тор	Base	Top	Base	Тор	Base	Тор	Base	Тор	Base
ID no.	Elevation	(ft)	Sal	103	103	109	109	VŤ	VT	Un'n	Un'n	123	124
====== 1572	======== 3339	==== 0	==== 1265	==== 14 <b>7</b> 0	==== 1486	==== 1640	==== 1666	===== 1884	====: 1901	====: 2195	==== 2216	==== 2288	2313
1573	3163	10	1095	1470	1.00			1007					
1574	3143	1	1290										
1575	3123	0	1068										
1576	3115	10	1065										
1577	3087	0	973										
1578		0											
1579	3012	4											
1580	2965	10	375	430	447	472	491	652	662	855	872	932	950
1581	2975	11	600	634	645	753	770	923	933				
1582	2978	8											
1583	2993	8	790	810	<b>83</b> 1								
1584	2953	8	388	434	452	518	539	697	706	912	925	<b>97</b> 1	986
1585	2964	14	512	512	528	550	564			<b>90</b> 0	915	939	962
1586	2912	7	330	346	362	431	446			847	871	914	932
1587	2900	12	360	415	426	549	569	712	722	870	886	934	942
1588	2972	9										-	
1589	2875	9											
1590	2892	10	414	484	499	538	557	650	654	765	778	884	898
1591	3201	1	1545										
1 <b>592</b>	31 <b>65</b>	10	1632					. :				•	
1593	3179	9						1 <b>58</b> 0	1590			1677	1687
1594	3059	8	1162										
1595	3090	10									_		
1596	3210	10	1294	1294	1306	1356	1371	1540	1548	1742	1761	1783	1797
1597	3059	9					• • • •						
1598		0	850	<b>90</b> 0	910	<b>929</b>	948	1050	1071				
1599	2982	10											
1600	3220	0	1300	1403	1416	1520	1538	1704	1714	1950	1972	1 <b>995</b>	2008
1601		0.5%	1267	1336	1345	1484	1500	1712	1723				
1602	3238	9	1202	1259	1271	1368	1382	1568	1579	1782	1796	1848	1868
1603	3225	32		4000		1010		4550					-
1604		0	1245	1270	1280	1348	1365	1550	1558	1720	1730	1754	1772
1605	3282	11	1685	0.54	0.40	4004		4000					
1606	3177	10	956	956	968	1094	1113	1298	1308	1525	1543	1591	1611
1607	3180	0	1595	0.00	0.54	4000	4406	1010	40.50				4 600
1608	3133	11	963	963	974	1090	1106	1346	1353	1523	1540	1587	1608
1609	3122	11	1020	1024	1035	1165	1183	1388	1400	1642	1660	1713	1735
1610	3113	11	1006	1010	1020	1157	1166	1382	1390	1632	1648	1708	1726
1611	3130	11	1034	1034	1047	1182	1200	1406	1419	1658	1675	1728	1749
1612	3122	.11	987	993 ·	1003	1114	1133	1342	1353	1589	1607	1660	1682
1613	3132	11	967	967 060	982	1097	1103	1298	1307	1522	1538	1583	1602
1614	3124	11	967 075	969 075	979	1084	1102	1292	1303	1527	1544	1596	1616
1615	3134	12	975	975 1000	988 1019	1093	1112	1302	1312	1528	1545	1588	1613
1616	3130	19	1005	1009	1018	1144	1163	1361	1371	1604	1622	1673	1696
1617	3131	9	994 020	994 020	1008	1126	1147	1347	1358	1585	1603	1652	1673
1618	3113	11	930	930 1200	942 1314	1033	1054	1243	1254	1484	1501	1554	1576
1619	3264	10	1095	1300	1314	1450	1472	1656	1665	1887	1903	1954	1976

					Depth	s (ft) to	Marke	r Beds					
Borehole	Reference	KB	Тор	Тор	Base ·	Тор	Base	Тор	Base	Тор	Base	Тор	Base
Ш по.	Elevation	(ft)	Sal	103	103	109	109	VT	VT	Un'n	Un'n	123	124
	=======			====	====	=====	====	====	====	====	====	====	===
1620	3122	11	1055	1055	1066	1215	1233	1433	1443	1679	1697	1754	1775
1621	3414	10	1235	1458	1473	1637	1653	1865	1875	2155	2175	2253	2278
1622	3392	11	1115	1342	1356	1509	1532	1743	1756	2030	2048	2118	2142
1623	3332	0	1005			1402	1428	1671	1682	1990	2010	2088	2110
1624		9	1203										
1625		0	1265										
	3013	0	1163										
1627	3032	0	1194										
1628	3853	17	2331	2506	2516	2634	2646	2803	2815			3058	3069
1629	3741	26	1878	2076	2087	2212	2230	2398	2410	2600	2609	2674	2693
1630	3480	0											
1631	3659	9	1638	1840	1852	1985	2000	2180	2198	2383	2392	2454	2472
1632	3572	22	1467	1667	1680	1808	1816	1 <b>994</b>	2007	2182	2196	2254	2269
1633	3645	11	1227	1412	1430	1557	1578	1742	1758	1937	1955	2010	2030
1634	3094	12	594										
1635	3612	24	1840	2030	2048	2178	2197	2374	2384	2587	2602	265 <b>8</b>	2673
1636	3506	20	1550										
1637	2968	8	240										
1638	3456	11				858	874	1058	1068	1288	1308	1360	1377
1639	3726	12	1708	1885	1898	2030	2042	2220	2228	2403	2420	2463	2483
1640		2	1105										
1641	3410	0	842										
1642	3384	0											
1643	3413	0	821										

All drillholes within the Rustler data base were included, even if the Salado was uninterpretable. Drillhole locations, names, and other data are presented in tables of Rustler location data and can be cross-indexed with the identification number.

• A-36

APPENDIX A-3 TABLE OF DATA ON DEPTH TO RUSTLER UNITS

# Table of Data on Depth to Rustler Units

.

ID	Reference	KB		Depth	(ft) to	top of u	nits		
No.	Elevation	(ft)	<b>49'r</b>	Mag	Tam	-	ulm	Sal	Revisions
====				====		====	====	====	========================
1001		3	118					278	
1002	3568	10						-	
1003	3510	0	164					316	
1004	3618	1	504	565	582	660	675	736	
1005	3466	10	500			576	587	624	
	3554	10	358	411	434	508	525	587	
1007	3510	9	314	375	396	468	483	557	
1008	3766	9	794 757	841	856	927	942	1017	
1009	3733	9	757	808	824	902	913 754	990 840	
1010	3651	7	561	606	628	730	754	840	
1011	3648	18	5.00	(10	624	704	700	700	
1012	3624	10	563	619 622	634 650	706 701	720	790 775	
1013	3631	10	578	632	650	721	736	775	
1014	3551	10	545	596	618 576	692	708	785 725	
1015	3568	3	500	555	576	648 720	663 724	735	
1016	3566	3 5	574 500	622	640	720 720	734 749	<b>8</b> 10	
1017	3580		590	638	660	732	748 775	830	
1018	3571	0	606	665 (70	682	760 750	775	840 828	
1019	2005	3	613	670	687 1000	759	775	828	
1020	3885	10	1158	1207	1222 1168	1302	1322	1394	
1021	3783	0	1103	1150		1260	1275	1350	
1022	3751	0	1017	1044	1060	1157	1168	1274	
1023	3382	10 12	940 1597	996 1624	1019	1112	1137 1755	1300	
1024	4027	13	1587	1634	1652	1743 1904	1915	1828	
1025	4104	10	1753	1797	1815			1988	
1026	3952	10	1633	1682	1699	1796	1807	1880	Device etc. NE1/4 OP1/4
1027	3800 3779	0	1407	1460	1479 1251	1576	1588	1663	Rev loc ctr, NE1/4, SE1/4
1028 1029	4011	21 12	1278 1483	1330 1525	1351 1540	1447 1602	1462 1615	1546	
1029	4011	8	1631	1675	1694	1774	1783	1677 1843	
1030	4070	12	1775	1875	1842	1932	1947	2026	
1031	4023	11	1820	1872	1892	1932	1999	2020	
1032	4000	13	1793	1852	1852	1960	1999	2075	
1033	3957	17	1714	1775	1793	1885	1905	1983	·
1034	3920	14	1745	1794	1807	1885	1905	1965	
1035	3961	14	1600	1645	1658	1733	1750	1810	
1030	3962	11	1562	1604	1619 ·	1690	1705	1765	
1038	3968	13	1535	1580	1595	1668	1683	1744	
1039	3958	14	1598	1643	1657	1737	1748	1814	
1040	3991	12	1512	1566	1582	1647	1653	1678	
1040	3980	0	1501	1547	1562	1640	1655	1720	
1041	3948	13	1853	1908	1926	2022	2036	2112	
1042	3789	0	1825	1870	1883	1945	1948	2038	
1043	3822 -	11	1909	1958	1969	2042	2050		
				1958	1909	2042 1940		2137	
1045	3816 2792	0	1811				1943	2030	
1046	3783	0.	1783	1828	1840	1904	1908	1997	
1047	3698	0	1643	1685	1700			1810	
1048	3750	13	•						

D	Reference	KB		Deptl	h (ft) to	top of 1			
No.	Elevation	(ft)	<b>49'r</b>	Mag	Tam	Čul	ulm	Sal	Revisions
=== 1049	======== 3660	=======================================	===== 1965	2007	==== 2017	==== 2084	2090	-=== 2168	=======================================
1050	3664	Ō	1520	1560	1572			1653	
1051	3399	9	-					305	
1052		0	•			<b>90</b>	114	218	
1053		0				120	142	245	Rev loc NW1/4, NW1/4
1054	3402	10	183	223	245	290	310	388	
1055	3529	0	524	576	<b>596</b>	673	692	740	
1056	3577	21	682	745	764	853	873	978	
1057	3559	21	619	685	702	775	796	898	
1058	3526	8	497	565	586	666	683	746	
1059	3576	16	802	906	927	1045	1064	1172	
1060	3974	10	1855	1920	1940	2037	2063	2150	
1061	3815	13	1805	1867	1884	1979	2000	2080	
1062	3723	0	1761	1822	1840	1944	1963	2045	
1063	3743	0	1753	1818	1838	1950	1966	2052	
1064	3703	12	1779	1845	1863	1970	1995	2080	
1065		0	1480	1525	1538	1604	1614	1680	
1066	3759	11	1474	1517	1533	1650	1660	1704	
1067	3744	11	1777	1828	1841	1942	1955	2038	
1068	3702	0	1230	1280	1293	1363 1320	1371 1325	1446 1397	Rev loc NE1/4, NW1/4
1069	3580	0	1220	1257	1272	403	1525	1397 520	Log looks log data
1070	2225	0 18				403		520	Log lacks loc data
1071	3325	10	480	536	553	629	645	713	
1072	3505 3523	19	400	330	555	029	045	/15	
1073 1074	3323	16	828	892	915	1052	1068	1170	
1074	3550	16	1121	1184	1207	1370	1387	1495	
1075	3510	15	883	949	972	1112	1128	1236	
1077	3565	15	1163	1248	1274	1404	1422	1524	
1078	3586	7	1372	1440	1464	1623	1648	1756	
1079	3524	0	1103	1172	1194	1343	1362	1470	
1080	3509	Ō	1076	1140	1165	1314	1335	1450	
1081	3642	19	1485	1560	1580	1752	1770	1887	
1082	3677	21	1743	1814	1830	1994	2009	2110	
1083	3708	7	1590	1654	1674	1832	1854	1957	
1084	3720	10	1567	1639	1660	1827	1847	1949	
1085	3701	0	1973	2048	2067	2208	2220	2315	
1086	3603	0	1005	1050	1062	1135	1143	1218	
1087	3662	0	1985	2058	2073	2210	2227	2330	
1088	3604	0	1465	1505	1516			1 <b>671</b>	
1089	3542	0	1427	1470	1480	1551	1559	1635	
1090	3412	20	187					495	
1091	3471	18	200					500	
1092	3472	13	255				410	550	
1093	3468 -	13	445				608	740	
1094	3487	17	830	895	915	1012	1032	1145	
1095	3432	18	312	402	423	546	561	680	
1096	3309	16	146				291	450	

D	Reference	KB		Depth	(ft) to t	top of u	nits		
No.	Elevation	<b>(ft</b> )	<b>49'r</b>	Mag	Tam	Cul	njm	Sal	Revisions
===: 1097	======= 3458	:==== 18	345	3231	====:		==== 490	==== 655	
1097	3438 3444	18	200				470	505	
1098	3177	0	152	175	193	292	318	421	
1100	3250	23	160	1/5	175	272	510	502	· · ·
1100	3218	22	130				356	485	
1101	3347	0	215	285	310	420	446	531	rev from geoph log
1102	3428	Õ	449	513	537	631	653	748	Ref El from SAND79-0284
1105	3540	Õ	538	598	623	713	739	811	
1104	3748	14	1505	1575	1598	1772	1785	1890	
1106	3792	18	1550	1622	1645	1820	1840	1945	
1107	3793	22	1568	1645	1665	1840	1862	1988	
1108	3740	21	1530	10.0		1838	1860	1950	
1109	3668	15	1345			1545	1570	1765	
1110	3652	18	1162	1236	1260	1444	1466	1580	
1111	3800	17	1450	1525	1550	1734	1760	1885	
1112	3862	10	1565	1642	1664	1837	1858	2005	Rev loc SE1/4, SE1/4
1112	3861	22	1515	1593	1617	1833	1858	1947	
1113	3834	21	1555	1630	1654	1840	1857	1972	
1115	3679	21	1056	1110	1130	1282	1303	1455	
1116	3798	13	1293	1360	1382	1610	1635	1781	
1117	3504	õ	12/0	2000					
1118	3662	8	670	732	758	872	896	982	
1110	3780	23	778	837	860	992	1008	1090	
1120	3802	4	1760	1838	1858	2032	2055	2180	
1120	3564	0	1455	1504	1526	1655	1668	1758	Surf El from log
1121	3638	17	1757	1825	1843	1983	1997	2095	···· 2. 102.05
1123	3603	11	1825	1900	1917	2074	2092	2200	
1124	5005	0	1804	1880	1896	2094	2105		
1125			1001	1000	1070				
1126	3594	5	1425	1464	1475	1582	1590	1670	Rev loc SE1/4, SW1/4; log elev
1127	3550	Ō	1420		<b>_</b>	1572	1579	1660	
1128	3593	10	1426	1466	1478	1583	1589	1670	Rev loc SE1/4, SW1/4; ?DUP 1126
1129	3568	0	1476	1517	1527	1634	1640	1720	
1130	3545	10	1486	1517	1527	1630	1640	1720	
1131	3635	0	1580	1642	1661	1799	1807	1900	
1132	3581	Ō	1560	1600	1612	1735	1740	1817	
1133	3580	3	1555	1597	1614	1722	1732	1817	
1134		Ō	1167	1210	1219	1295	1305	1377	
1135		Ō	1150	1190	1200	1275	1283	1368	
1136	3304	12	,					495	
1137	3023	0,	0	19	36	61	90	166	
1138	2977	0					43	130	
1139	3357	20	315	380	400	495	515	625	
1140	3193	18	170	200				520	
1140	3221 -	23	275					600	
1141	3323	õ	401	449	468	550	578	677	
1142	3214	1	232	302	328	447	472	565	Rev loc, elev from SAND79-0279
1145	3358	0	387	452	477	576	595	686	
1144		•							

D	Reference	KB		Dept	h (ft) to	top of	onits		
No.	Elevation	(ft)	49'r	Mag	Tam	Cul	ulm	Sal	Revisions
	2222222				====	:====	====	====	
1145	3376	0	462	519	544	636	656	747	
1146	3309	23	215					535	
1147	3152	0	12	79	<del>99</del>	187	208	306	
1148		0	395	454	479	572	591	708	
1149	3418	0	641	700	724	828	849	962	
1150	3439	13	676	740	764	857	881	964	
1151	3433	0	657	716	740	834	860	973	
1152	3429	0	639	707	<b>7</b> 29	817	836	952	Ref elev typo revised
1153	3541	9	668	<b>7</b> 27	750	848	873	990	
1154	3553	0	780	839	866	957	979	1100	
1155	3508	0	732	784	809	900	922	1041	
1156	3510	0	734	786	812	904	924	1040	
1157	3496	21							
1158	3405	0	517	564	583	704	725	845	
1159	3484	12	641	703	727	825	848	966	
1160	3472	0	623	685	710	808	827	946	
1161	3345	0	426	<b>490</b>	513	608	628	720	
1162	3349	0	427	492	515	612	632		
1163	3382	0	468	5 <b>28</b>	553	645	665	783	
1164	3457	0	614	674	<b>698</b>	<b>791</b>	810	928	
1165	3426	0	574	630	654	742	763	885	
1166	3417	0	559	617	641	732	752	867	
1167	3433	0	590	647	672	756	777	894	
1168	3420	12	550	608	632	716	73 <del>9</del>	860	
1169	3506	0	746	<b>799</b>	823	916	938	1058	•
1170	3546	0	759	816	<b>839</b> .	972	<b>995</b>	1116	
1171	3596	8	755	830	856	1018	1038	1190	
1172	3479	0	626	703	728	912	936	1084	
1173	3508	0	686	758	781	935	957	1084	
1174	3441	0	610	662	685	782	802	928	
1175	3473	8	668	722	745	829	851	977	rev from TME3159 BDR
1176	3478	0	<b>690</b>	748	774	864	884	1008	Rev loc from OFR78-592
1177	3398	0							
1178	3346	0	357	422	446	545	572		Elev from SAND89-0202; ?Cul
1179	3377	0	457	516	542	627	647		
1180	3395	6	509	565	590	<b>680</b>	<b>700</b> °	826	
1181	3345	0	359	424	448	546	<u>567</u>	676	
11 <b>82</b>	3354	0	358	418	442	- 540	560	656	
1183	3310	0	232	296	322	420	436	542	
1184	3413	0	566	623	649	740	766		Rev for H11b3; SAND89-0200
1185	3409	0	562	617	644	738	758	880	
1186	3644	10	860	920	<del>9</del> 42	1100	1125	1275	
<b>1187</b>	3731	11	950	1005	1025	1140	1165	1290	
1188	3701	20	885	940	960	1072	1103	1200	
1189	3696 -	15	900	955	<b>980</b>	1090	1110	1230	
1190	3620	9	760	835	860	1 <b>07</b> 0	1090	1245	
<b>119</b> 1	3640	19	835	895	920	1080	1110	1240	
1192	3687	12	870	935	960	1100	1125	1265	
	•								

D	Reference	KB		Depth	(ft) to	top of u	nits		
No.	Elevation	(ft)	<b>49°r</b>	Mag	Tam	Cul	ulm	Sal	Revisions
===: 1193	======= 3789	==== 25	===== 1048	==== 1115	====: 1140	==== 1285	==== 1315	===== 1462	.========================
1194	3756	0	1145	1210	1230	1430	1460	1608	
1195	3640	13	1715	1785	1805	2000	2030	2160	
1196	3537	0	1600	1682	1700	1918	1942	2092	Elev from Richey (1989); KB??
1197	3573	0	1690	1778	1795	2005	2032	2185	
1198	3611	18	1822	1900	1915	2102	2112	2225	
1199	3613	7	1856	1936	1952	2148	2160	2285	
1200	3611	11	1860	1935	1955	2142	2175	2300	
1201	3623	1							
1202	3581	13	1810	1885	1905	2110	2142	2275	
1203	3610	0	1877	1960	1 <b>97</b> 9	2180	2193		
1204	3533	22	1920	2005	2020	2290	2322	2470	
1205	3571	10	1815	1890	1910	2130	2165	2292	
1206		0	1755	1840	1855	2098	2108	2210	
1207		0	1770	1860	1877	2125	2142	2275	
1208		13	1560	1603	1611	1724	1735	1825	
1209	3571	0	1560	1603	1612	1722	1734	1822	
1210	3587	0	1567	1610	1620	1728	1739	1825	
1211	3552	0	1465	1508	1517	1632	1641	1725	
1212	3540	0	1424	1472	1480	1590	1600	1687	
1213	3560	0	1475	1517	1528	1637	1645	1735	
1214	3582	18	1360	1420	1430	1572	1588	1685	
1215	3589	11	1602	1678	1700	1 <b>875</b>	1890	2008	
1216	3507	0	1535	1578	1588	1700	1715	1805	
1217	3498	0	1360	1415	1427	1562	1575	1683	
1 <b>218</b>	3469	0	1422	1466	1474	1584	1 <b>594</b>	1684	
1219	3410	0	1125	11 <b>7</b> 0	1180	1295	1305	1385	Rev loc NW1/4, SW1/4
1220	3405	0	1130	1173	1182		•	1360	
1221	3316	0	<b></b>					1408	
1222	3337	0	1123	1160	<b>1170</b>	1259	1268	1350	
1223		10							
1224		0							
1225	3045	1 <b>8</b>	•						
1226	2996	19							
1227	3027	12			·			212	·.
1228	3014	12						1 <b>95</b>	
1229	3024	19						212	
1230	3163	0	87	117	140	237	274	283	
1231	3197	24			+			425	
1232	3028	12						217	
1233	3215	15	•		~1				?DUP 1234
1234	3215	15	• •						
1235	3290	23	150	210	235	330	353	470	DWP reinterp log 9/20/94
1236	3384	13	•	378	397	489	517	640	Rev from BDR: SAND79-0271
1237	-	0	310		. · ·			710	
1238	3453	10	623	<b>700</b>	722	891	917	1068	rev from geoph log
1239	3340	0	382	438	463	562	582	713	Ref elev from OFR78-592
1240	3336	0	391	450	477	565	587	715	
	· •								

$\mathbf{N0.}$ Elevation(ft)49rMagTamCulubnSalRevisions124133350312377433515626124233320312373398500521677124333288363375444469487653Data from WTSD-TME-0201244332303163764025035236421245349210742809833986992111812463511277948508769869901100124734260621678703825849976Rev from BDR; SAND90-02011248338123476-65768289011001249345222763817841942968109212513461117758308509459781090125235062186585292094510631254345410075081083092795010631255345912750806825920945106012563402124755856807058771256340212750806850975109512573574221505153214051542 <t< th=""><th>D</th><th>Reference</th><th>KB</th><th></th><th>Depti</th><th>1 (ft) to</th><th>top of u</th><th>mits</th><th></th><th></th></t<>	D	Reference	KB		Depti	1 (ft) to	top of u	mits		
12413335031537740349351562612423332031237339850052162712433323031637640250352364212443323031637640250352364212453492107428098339689901100124734260621678703825849976Rev from BDR; SAND90-02011248338123476-677682808100212493374946052054264566379712503452227638178419429681002125134611177583083092795010631254346427758814835922955107012553459127508068259209459451256340212497560585680705837126636771211551231123514201445158412633723511951275128414051545126437721211551231120514201445158412643772121178123314051545154 <trr< th=""><th>No.</th><th>Elevation</th><th>(ft)</th><th></th><th>Mag</th><th>Tam</th><th>Cul</th><th>ulm</th><th></th><th></th></trr<>	No.	Elevation	(ft)		Mag	Tam	Cul	ulm		
124233320312373398500521627124333288363375414469487653Data from WTSD-TME-0201244332303163764025035236421245349210742809833968992111812463511277948508769689901100124734260621678703825849976Rev from BDR; SAND90-0201124833812347667768280810921100125034522276381784194296810921251346111775830850927950106312533454107508108309279501063125434642775881483592294510601255345912430435520622648816125634021249756058568070583712573374227501063837945005871258335883604304505705876951261372712115512341236144515841264372212117812314451545<										
124333228363375414469487653Data from WTSD-TME-02012443323031637640250352364212453492107428098339689901100124734260621678703825849976Rev from BDR; SAND90-0201124833812347665768280880810021249337494605205426456637971250345222763817841942968109212513461117758308509459781090125334541075081083092795010631254346427758814835922955107012553459127508068259209451060Rev elev from geophys log12663402124975605856807058378161261372712115512131235142014451584126337235119512751224150515291680126437221211781243126314731500164012643722121178124312631377140115171265										
1244332303163764025035236421245349210742809833968992111812463511277948508769689901100124734260621678703825849976Rev from BDR; SAND90-02011248338123476677682808109212503452227638178419429681092125134611177583085094597810901252350621865922940105010721190125334541075081083092795010631254346427758814835922955107012553459127508068259209451060125634021249756058568070583712573374222275110808259751095126337235119512751294130515291680126437221211781243124014451545126337235119512751294150515291680126437221211781240147315001640 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Data from WTSD-TME-020</td></tr<>										Data from WTSD-TME-020
1245349210742809833968992111812463511277948508769689901100124734260621678703825849976Rev from BDR; SAND90-0201124833812347665768280880881784194296810921250345222763810830977950106310721190125334611177583085094597810901072119012543464277588148359229551070119012553459127508068259209451060Rev elev from geophys log1256340212497560585680705837126077808358609509751095sw1/4,sw1/4 converted126137271211551213122513401445154512633723511051275128415001549154212643722121178124312631473150016401264372212117812431263137614021545126636222110251524150515291680154512633726										
12463511277948508769689901100124734260621678703825849976Rev from BDR; SAND90-020112483381234766576828081002124933749460520542645663797125034522276381784194296810921251346111775830850945978109012533454107508108309279501063125534642775881483592295510701255345912750806825920945106012553461124975605856807058371257337422777888358609509751095125833388360430450570587695126077808358609509751095sw1/4,sw1/4 converted12613727121155121312351420144515841263372351195127512841306154512633724121276128413711001640126437221211781243147315001640 <td></td>										
124734260621678703825849976Rev from BDR; SAND90-020112483381234766776828081249337494605205426456337712503452227638178419429681092125134611177583085094597810901253345410075081083092795010631254346427758814835922955107012553459127508068259209451060Rev elev from geophys log1257337427508068259209451080Rev elev from geophys log1257337427508068259209451080sw1/4,sw1/4 converted126077808358609509751095sw1/4,sw1/4 converted126137271211551213123514201445158412633723511951275128415001529168012643770101163121512461377140115171265362221102512841361140214451264377213122612841377140115171264<								<b>990</b>		
1248 12493381 337423476 460657 520682 542688 6631249 12503452 345222763 817841 841942 9681090 10901251 12513461 346411775 830830 820945 9781090 10721252 12533506 345410750 810 830830 927 920955 1063 10721190 10531254 1255 12563464 346427 278758 814 8464835 922 922945 9501063 1063 12571255 1257 1257 1374 1260770 780 835 840430 450 950570 587 687 695695 1595 1055 8w1/4,sw1/4 converted1261 1260 1261 3727 1261 1261 37237 780 1085 1111105 1215 1215 1213 12251235 1420 14451584 15841262 1269 3699 141 1267 1268 1269110 1163 1215 12241225 1284 1368 13921542 1512 1512 1276 1276 1401 14011517 1264 15701269 1270 1272 1301225 1284 13061327 1401 15101517 15171269 13720 107 10701225 1325 1308 1302 1251 1308 13061520 1520 1570 15201680 16831272 1270 1261 1270132 1284 13061300 1510 1532 15321680 16831274 13700 13 1286 1277 127513 1282 1308 13061302 <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>825</td><td>849</td><td>976</td><td>Rev from BDR; SAND90-0201</td></br<>							825	849	976	Rev from BDR; SAND90-0201
1249 $3374$ 94605205426456637971250 $3452$ 22763 $817$ $841$ $942$ $968$ $1092$ 1251 $3461$ 11775 $830$ $850$ $945$ $978$ $1090$ 1252 $3506$ 21 $865$ $922$ $940$ $1050$ $1072$ $1190$ 1253 $3454$ 10750 $810$ $830$ $927$ $950$ $1063$ 1254 $3464$ 27758 $814$ $835$ $922$ $955$ $1070$ 1255 $3459$ 12750 $806$ $825$ $920$ $945$ $1060$ Rev elev from geophys log1256 $3402$ 12 $497$ $560$ $585$ $680$ $705$ $837$ 1257 $3374$ 22 $22$ $448$ $816$ 12607 $780$ $835$ $860$ $950$ $975$ $1095$ $sw1/4,sw1/4$ converted1261 $3727$ 12 $1155$ $1215$ $1333$ $1405$ $1545$ 1263 $3722$ 12 $1178$ $1243$ $1263$ $1473$ $1500$ $1640$ 1264 $3722$ 12 $1178$ $1243$ $1263$ $1473$ $1500$ $1640$ 1264 $3721$ 10 $1255$ $1326$ $1377$ $1401$ $1517$ 1265 $3622$ 21 $1025$ $1284$ $1356$ $1322$ $1570$ $1710$ 1266 $3697$ 11 $1216$ $1$							657	682	808	
$      \begin{array}{ccccccccccccccccccccccccccccccc$				460	520	542	645	663	797	
125134611177583083094597810912523506218659229401050107211901253345410750810830927950106312543464277508068259209451060Rev elev from geophys log12553459127508068259209451060Rev elev from geophys log12573374222975560587695125933928430450570587695126077808358609509751095sw1/4,sw1/4 converted12613727121155121312351420144515841262369911114011951215138314051545126337235119512751294150515291680126437221211781243126314731500164012653662211025108511101517126937201012251345126636971112101262132515321570171012771270372513123513081325153215701727127037251312851300151015321683<			22	763	817	841	942	968	1092	
1252350621865922940105010721190125334541075081083092795010631254346427758814835922955107012553459127508068259209451060Revelev from geophys log12563402124975605856807058371257337422				775	830	850	945	978	1090	
125334541075081083092795010631254346427758814835922955107012553459127508068259209451060Rev elev from geophys log12563402124975605856807058371257337422				865	922	940	1050	1072	1190	
1254346427758814835922955107012553459127508068259209451060Revelv from geophys log12563402124975605856807058371257337422				750	810	830	927	<b>95</b> 0	1063	
12553459127508068259209451060Revelev from geophys log12563402124975605856807058371257337422125833588360430450570587695125933928430495520622648816126077808358609509751095sw1/4,sw1/4 converted1261372712115512131235142014451584126236991111401195122415051529168012643722121178124312631473150016401265362221102510851110121512451266369711121012621285136813921512Grnd elev from topo map126736991412171270129413761402126837011011631215152615771710127037251312351308132515321683127237201012251295131515001525167812743705912151288130615121532168312743705912151286136515121532168012			27	758	814	835	922	<b>955</b>	1070	
1256       3402       12       497       560       585       680       705       837         1257       3374       22			12	750	806	825	920	<del>9</del> 45	1060	Rev elev from geophys log
1257 $3374$ $22$ $1258$ $3358$ $8$ $360$ $430$ $450$ $570$ $587$ $695$ $1259$ $3392$ $8$ $430$ $495$ $520$ $622$ $648$ $816$ $1260$ $7$ $780$ $835$ $860$ $950$ $975$ $1095$ $sw1/4, sw1/4$ converted $1261$ $3727$ $12$ $1155$ $1213$ $1235$ $1445$ $1584$ $1262$ $3699$ $11$ $1140$ $1195$ $1215$ $1383$ $1405$ $1545$ $1263$ $3723$ $5$ $1195$ $1275$ $1294$ $1505$ $1529$ $1680$ $1264$ $3722$ $12$ $1178$ $1243$ $1263$ $1473$ $1500$ $1640$ $1265$ $3622$ $211$ $1025$ $1085$ $1110$ $1215$ $1245$ $1266$ $3697$ $11$ $1210$ $1262$ $1285$ $1368$ $1392$ $1512$ Grnd elev from topo map $1267$ $3699$ $14$ $1217$ $1270$ $1294$ $1376$ $1402$ $1277$ $1268$ $3701$ $10$ $1163$ $1215$ $1240$ $1377$ $1401$ $1517$ $1269$ $3720$ $10$ $1225$ $1294$ $1315$ $1526$ $1557$ $1710$ $1270$ $3725$ $13$ $1235$ $1300$ $1510$ $1532$ $1683$ $1271$ $3700$ $13$ $1208$ $1306$ $1510$ $1525$ $1678$ $1273$ $369$				497	560	585	680	705	837	
1258       3358       8       360       430       450       570       587       695         1259       3392       8       430       495       520       622       648       816         1260       7       780       835       860       950       975       1095       sw1/4,sw1/4 converted         1261       3727       12       1155       1213       1225       1420       1445       1584         1262       3699       11       1140       1195       1275       1294       1505       1529       1680         1264       3722       12       1178       1243       1263       1473       1500       1640         1265       3622       21       1025       1085       1110       1215       1245         1266       3697       11       1210       1262       1285       1368       1392       1512       Grnd elev from topo map         1265       3622       21       1025       1294       1377       1401       1517         1266       3697       11       1210       1262       1357       1710       1271         1268       3701       10										
1259 $3392$ $8$ $430$ $495$ $520$ $622$ $648$ $816$ $1260$ 7780 $835$ $860$ $950$ $975$ $1095$ $sw1/4,sw1/4$ converted $1261$ $3727$ $12$ $1155$ $1213$ $1235$ $1420$ $1445$ $1584$ $1262$ $3699$ $11$ $1140$ $1195$ $1215$ $1383$ $1405$ $1545$ $1263$ $3723$ $5$ $1195$ $1275$ $1294$ $1505$ $1529$ $1680$ $1264$ $3722$ $12$ $1178$ $1243$ $1263$ $1473$ $1500$ $1640$ $1265$ $3622$ $21$ $1025$ $1085$ $1110$ $1215$ $1245$ $1266$ $3697$ $11$ $1210$ $1262$ $1285$ $1368$ $1392$ $1512$ $Grnd$ $1267$ $3699$ $14$ $1217$ $1270$ $1294$ $1376$ $1402$ $1268$ $3701$ $10$ $1163$ $1215$ $1240$ $1377$ $1401$ $1517$ $1269$ $3720$ $10$ $1225$ $1294$ $1315$ $1520$ $1577$ $1710$ $1270$ $3725$ $13$ $1228$ $1300$ $1510$ $1532$ $1683$ $1272$ $3720$ $10$ $1212$ $1282$ $1302$ $1520$ $1643$ $1273$ $3698$ $12$ $1225$ $1250$ $1545$ $1570$ $1710$ $1273$ $3698$ $12$ $1225$ $1282$ $1302$ $1520$ <td< td=""><td></td><td></td><td></td><td>360</td><td>430</td><td>450</td><td><b>570</b></td><td>587</td><td></td><td></td></td<>				360	430	450	<b>570</b>	587		
1260       7       780       835       860       950       975       1095       sw1/4,sw1/4 converted         1261       3727       12       1155       1213       1235       1420       1445       1584         1262       3699       11       1140       1195       1215       1383       1405       1545         1263       3723       5       1195       1275       1294       1505       1640         1264       3722       12       1178       1243       1263       1473       1500       1640         1265       3622       21       1025       1085       1110       1215       1245       1512       Grnd elev from topo map         1267       3699       14       1217       1270       1294       1376       1402       1517         1268       3701       10       1163       1215       1240       1377       1401       1517         1269       3720       10       1225       1294       1315       1526       1557       1710         1270       3725       13       1238       1300       1510       1532       1683         1271       3700		3392		430	495	520		648	816	
1261 $3727$ 12115512131225142014451584126236991111401195121513831405154512633723511951275129415051529168012643722121178124312631473150016401265362221102510851110121512451266369711121012621285136813921512Grnd elev from topo map1267369914121712701294137614021268370110116312151240137714011517126937201012251294131515261557171012703725131235130813251532168312723700131208120015101532168312733698121225129513151500152516781274370591215128813061512153216801275365911122212921312147214931630Ref elev rev from log127536591112261296131214931630Ref elev rev from log127637131212261296131214931630Ref elev rev from log1				780	835	860		975		sw1/4,sw1/4 converted
1262 $3699$ $11$ $1140$ $1195$ $1215$ $1383$ $1405$ $1545$ $1263$ $3723$ $5$ $1195$ $1275$ $1294$ $1505$ $1529$ $1680$ $1264$ $3722$ $12$ $1178$ $1243$ $1263$ $1473$ $1500$ $1640$ $1265$ $3622$ $21$ $1025$ $1085$ $1110$ $1215$ $1245$ $1266$ $3697$ $11$ $1210$ $1262$ $1285$ $1368$ $1392$ $1512$ Grnd elev from topo map $1267$ $3699$ $14$ $1217$ $1270$ $1294$ $1376$ $1402$ $1268$ $3701$ $10$ $1163$ $1215$ $1240$ $1377$ $1401$ $1517$ $1269$ $3720$ $10$ $1225$ $1294$ $1315$ $1526$ $1557$ $1710$ $1270$ $3725$ $13$ $1235$ $1308$ $1325$ $1532$ $1570$ $1727$ $1271$ $3700$ $13$ $1208$ $1300$ $1510$ $1532$ $1683$ $1272$ $3720$ $10$ $1212$ $1225$ $1295$ $1315$ $1500$ $1525$ $1678$ $1273$ $3698$ $12$ $1225$ $1295$ $1315$ $1500$ $1525$ $1678$ $1274$ $3705$ $9$ $1215$ $1288$ $1306$ $1512$ $1532$ $1680$ $1275$ $3659$ $11$ $1222$ $1292$ $1312$ $1472$ $1493$ $1630$ Ref elev rev from log $1275$		3727	12	1155	1213	1235				
1264 $3722$ $12$ $1178$ $1243$ $1263$ $1473$ $1500$ $1640$ $1265$ $3622$ $21$ $1025$ $1085$ $1110$ $1215$ $1245$ $1266$ $3697$ $11$ $1210$ $1262$ $1285$ $1368$ $1392$ $1512$ Grnd elev from topo map $1267$ $3699$ $14$ $1217$ $1270$ $1294$ $1376$ $1402$ $1268$ $3701$ $10$ $1163$ $1215$ $1240$ $1377$ $1401$ $1517$ $1269$ $3720$ $10$ $1225$ $1294$ $1315$ $1526$ $1557$ $1710$ $1270$ $3725$ $13$ $1235$ $1308$ $1325$ $1532$ $1683$ $1272$ $3720$ $10$ $1212$ $1282$ $1300$ $1510$ $1532$ $1683$ $1272$ $3720$ $10$ $1212$ $1282$ $1302$ $1520$ $1544$ $1695$ $1273$ $3698$ $12$ $1225$ $1295$ $1315$ $1500$ $1525$ $1678$ $1274$ $3705$ $9$ $1215$ $1288$ $1306$ $1512$ $1532$ $1680$ $1275$ $3659$ $11$ $1222$ $1292$ $1312$ $1472$ $1493$ $1630$ Ref elev rev from log $1276$ $3713$ $12$ $1225$ $1296$ $1312$ $1496$ $1520$ $1667$ $1277$ $3687$ $0$ $1180$ $1236$ $1258$ $1385$ $1415$ $1535$ $1278$ $3551$		3699	11	1140	1195					
1264 $3722$ 12 $1178$ $1243$ $1263$ $1473$ $1500$ $1640$ 1265 $3622$ 21 $1025$ $1085$ $1110$ $1215$ $1245$ 1266 $3697$ 11 $1210$ $1262$ $1285$ $1368$ $1392$ $1512$ Grnd elev from topo map1267 $3699$ 14 $1217$ $1270$ $1294$ $1376$ $1402$ 1268 $3701$ 10 $1163$ $1215$ $1240$ $1377$ $1401$ $1517$ 1269 $3720$ 10 $1225$ $1294$ $1315$ $1526$ $1557$ $1710$ 1270 $3725$ 13 $1235$ $1308$ $1325$ $1532$ $1683$ 1271 $3700$ 13 $1208$ $1280$ $1300$ $1510$ $1532$ $1683$ 1272 $3720$ 10 $1212$ $1282$ $1302$ $1520$ $1643$ 1273 $3698$ 12 $1225$ $1295$ $1315$ $1500$ $1525$ $1678$ 1274 $3705$ 9 $1215$ $1288$ $1306$ $1512$ $1532$ $1680$ 1275 $3659$ 11 $1222$ $1292$ $1312$ $1472$ $1493$ $1630$ Ref elev rev from log1276 $3713$ 12 $1225$ $1296$ $1312$ $1496$ $1520$ $1667$ 1277 $3687$ 0 $1180$ $1236$ $1258$ $1385$ $1415$ $1535$ 1278 $3551$ $8$ $862$ $923$ $945$ $1050$		3723	5	1195	1275	1294	1505			
1265 $3622$ 21 $1025$ $1085$ $1110$ $1215$ $1245$ 1266 $3697$ 11 $1210$ $1262$ $1285$ $1368$ $1392$ $1512$ Grnd elev from topo map1267 $3699$ 14 $1217$ $1270$ $1294$ $1376$ $1402$ 1268 $3701$ 10 $1163$ $1215$ $1240$ $1377$ $1401$ $1517$ 1269 $3720$ 10 $1225$ $1294$ $1315$ $1526$ $1557$ $1710$ 1270 $3725$ 13 $1235$ $1308$ $1325$ $1532$ $1683$ 1272 $3700$ 13 $1208$ $1280$ $1300$ $1510$ $1532$ $1683$ 1272 $3720$ 10 $1212$ $1282$ $1302$ $1520$ $1544$ $1695$ 1273 $3698$ 12 $1225$ $1295$ $1315$ $1500$ $1525$ $1678$ 1274 $3705$ 9 $1215$ $1288$ $1306$ $1512$ $1532$ $1680$ 1275 $3659$ 11 $1222$ $1292$ $1312$ $1472$ $1493$ $1630$ Ref elev rev from log1276 $3713$ 12 $1225$ $1296$ $1312$ $1496$ $1520$ $1667$ 1277 $3687$ 0 $1180$ $1236$ $1258$ $1385$ $1415$ $1535$ 1278 $3551$ $8$ $862$ $923$ $945$ $1050$ $1078$ $1206$ 1279 $3666$ $8$ $1200$ $1260$ $1285$ <td< td=""><td></td><td>3722</td><td>12</td><td>1178</td><td>1243</td><td>1263</td><td>1473</td><td>1500</td><td>1640</td><td></td></td<>		3722	12	1178	1243	1263	1473	1500	1640	
1266369711121012621285136813921512Grnd elev from topo map1267369914121712701294137614021268370110116312151240137714011517126937201012251294131515261557171012703725131235130813251532157017271271370013120812801300151015321683127237201012121282130215201544169512733698121225129513151500152516781274370591215128813061512153216801275365911122212921312147214931630Ref elev rev from log12763713121225129613121496152016671277368701180123612581385141515351278355188629239451050107812061280362991170123012501365138715081281367111118712601278145314721623Ref elev rev from log128236941212061282129814831506		3622	21	1025	1085	1110	1215	1245		
1268 $3701$ $10$ $1163$ $1215$ $1240$ $1377$ $1401$ $1517$ $1269$ $3720$ $10$ $1225$ $1294$ $1315$ $1526$ $1557$ $1710$ $1270$ $3725$ $13$ $1235$ $1308$ $1325$ $1532$ $1570$ $1727$ $1271$ $3700$ $13$ $1208$ $1280$ $1300$ $1510$ $1532$ $1683$ $1272$ $3720$ $10$ $1212$ $1282$ $1302$ $1520$ $1544$ $1695$ $1273$ $3698$ $12$ $1225$ $1295$ $1315$ $1500$ $1525$ $1678$ $1274$ $3705$ $9$ $1215$ $1288$ $1306$ $1512$ $1532$ $1680$ $1275$ $3659$ $11$ $1222$ $1292$ $1312$ $1472$ $1493$ $1630$ Ref elev rev from log $1276$ $3713$ $12$ $1225$ $1296$ $1312$ $1496$ $1520$ $1667$ $1277$ $3687$ $0$ $1180$ $1236$ $1258$ $1385$ $1415$ $1535$ $1278$ $3551$ $8$ $862$ $923$ $945$ $1050$ $1078$ $1206$ $1279$ $3666$ $8$ $1200$ $1260$ $1285$ $1355$ $1386$ $1520$ $1280$ $3629$ $9$ $1170$ $1230$ $1250$ $1365$ $1387$ $1508$ $1281$ $3671$ $11$ $1187$ $1260$ $1278$ $1453$ $1472$ $1623$ Ref elev rev from log </td <td></td> <td>3697</td> <td>11</td> <td>1210</td> <td>1262</td> <td>1285</td> <td></td> <td></td> <td>1512</td> <td>Grnd elev from topo map</td>		3697	11	1210	1262	1285			1512	Grnd elev from topo map
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1267	3699	14	1217						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1268	3701	10	1163	1215					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1269	3720	10							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1270	3725	13							
12733698121225129513151500152516781274370591215128813061512153216801275365911122212921312147214931630Ref elev rev from log12763713121225129613121496152016671277368701180123612581385141515351278355188629239451050107812061279366681200126012851355138615201280362991170123012501365138715081281367111118712601278145314721623Ref elev rev from log1282369412120612821298148315061657	1271	3700	13	1208						
1274       3705       9       1215       1288       1306       1512       1532       1680         1275       3659       11       1222       1292       1312       1472       1493       1630       Ref elev rev from log         1276       3713       12       1225       1296       1312       1496       1520       1667         1277       3687       0       1180       1236       1258       1385       1415       1535         1278       3551       8       862       923       945       1050       1078       1206         1279       3666       8       1200       1260       1285       1355       1386       1520         1280       3629       9       1170       1230       1250       1365       1387       1508         1281       3671       11       1187       1260       1278       1453       1472       1623       Ref elev rev from log         1282       3694       12       1206       1282       1298       1483       1506       1657	1272									
1275365911122212921312147214931630Ref elev rev from log12763713121225129613121496152016671277368701180123612581385141515351278355188629239451050107812061279366681200126012851355138615201280362991170123012501365138715081281367111118712601278145314721623Ref elev rev from log1282369412120612821298148315061657										
1276       3713       12       1225       1296       1312       1496       1520       1667         1277       3687       0       1180       1236       1258       1385       1415       1535         1278       3551       8       862       923       945       1050       1078       1206         1279       3666       8       1200       1260       1285       1355       1386       1520         1280       3629       9       1170       1230       1250       1365       1387       1508         1281       3671       11       1187       1260       1278       1453       1472       1623       Ref elev rev from log         1282       3694       12       1206       1282       1298       1483       1506       1657	1274	3705								
1277       3687       0       1180       1236       1258       1385       1415       1535         1278       3551       8       862       923       945       1050       1078       1206         1279       3666       8       1200       1260       1285       1355       1386       1520         1280       3629       9       1170       1230       1250       1365       1387       1508         1281       3671       11       1187       1260       1278       1453       1472       1623       Ref elev rev from log         1282       3694       12       1206       1282       1298       1483       1506       1657										Ref elev rev from log
1278355188629239451050107812061279366681200126012851355138615201280362991170123012501365138715081281367111118712601278145314721623Ref elev rev from log1282369412120612821298148315061657										
1279366681200126012851355138615201280362991170123012501365138715081281367111118712601278145314721623Ref elev rev from log1282369412120612821298148315061657										
1280362991170123012501365138715081281367111118712601278145314721623Ref elev rev from log1282369412120612821298148315061657										
1281367111118712601278145314721623Ref elev rev from log1282369412120612821298148315061657										
1282 3694 12 1206 1282 1298 1483 1506 1657										
										Ref elev rev from log
1283 3676 11 1290 1308 1507 1527 1675 Ref elev rev from log				1206						
	1283	3676	11		1290	1308		1527		Ref elev rev from log
1284 3700 8 1215 1281 1302 1475 1495 1635	1284	3700								
1285 3692 12 1205 1275 1293 1475 1498 1653 Ref elev rev from log	1285	3692.								Ref elev rev from log
1286 3663 8 1200 1263 1282 1425 1448 1567	1286	3663	8							
1287 3689 11 1193 1262 1280 1453 1475 1623	1287	3689	11							
1288 3669 11 1210 1282 1300 1490 1512 1655	1288	3669	11	1210	1282	1300	1490	1512	1655	

D	Reference	KB		Depth	(ft) to	top of m	nits		
No.	Elevation	(ft)	<b>49'r</b>	Mag	Tam	Cul	ulm	Sal	Revisions
									=======================================
1289	3630	8	1183	1233	1252	1355	1387	1505	
1290	3695	8	1207	1276	1295	1496	1526 1517	1670 1680	Ref elev rev from log
1291	3689 · 3664	0	1210	1280 1278	1296 1297	1493 1495	1517	1673	
1292 1293	3636	11 11	1206 1160	1278	1260	1495	1517	1675	
1293	3704	10	1260	1340	1355	1600	1622	1772	
1295	3722	10	1200	1350	1367	1588	1612	1757	
1295	3715	12	1268	1350	1367	1590	1615	1773	
1290	3722	11	1230	1310	1328	1545	1568	1710	· .
1298	3726	9	1290	1370	1387	1610	1635	1,10	
1299	3711	13	1230	1310	1327	1550	1571	1732	
1300	3720	13	1233	1310	1330	1550	1573	1735	
1301	3713	13	1222	1296	1313	1530	1553	1710	
1302	3703	11	1225	1303	1320	1541	1568	1720	
1303	3713	25	1285	1364	1385	1610	1634	1790	
1304	3701	12	1280	1358	1376	1597	1620	1785	
1305		11	1252	1333	1349	1577	1600	1760	
1306	3683	8	1268	1343	1360	1582	1606	1770	
1307	3659	Õ	1310	1395	1415	1650	1672	1815	
1308	3533	Õ	988	1066	1084	1310	1330	1469	
1309	3555	19	1095	1182	1200	1425	1455	1605	
1310	3425	14	912	984	1006	,	_	1275	
1311	3490	22	944					1400	
1312	3515	0	1625	1708	1723	1888	1903	2030	
1313	3494	9	1655	1725	1740	1885	1900	2020	·
1314		0	1393	1437	1446	1570	1577	1663	
1315	3468	0		1625	1635	1824	1837	1950	
1316	3459	0	1593	1672	1683				
1317	3324	0	1143	1176	1188	1244	1252	1337	
1318	3383	0	1262					1493	
1319	3317	0	1090	1130	1137	1192	1200	1287	
1320	3317	0	1047	1086	1097	1154	1165	1228	
1321	3282	11	1365	1410	1418	1522	1531	1620	
1322	3320	9	1168	1214	1219	1329	1340	1435	
1323	2968	<b>10</b>							
1324	2984	0					•		
1325		6		•					
1326		0			. •	• •			
1327		4		. •	•				
1328		6							
1329	2969	28		•					·
1330	2941	11	•						· ·
1331	2997	18							
1332	2924	11	450	•				696	
1333	3447 -	12	370	• .		470	493	660	
1334	3179	11				_			
1335	3433	0	400	467	492	589	614	<b>.</b>	
1336	3429	12	473	552	572	650	675	840	
	•		•						

٠

: A-44

D	Reference	KB		Dent	h (ft) to	top of r	inits		
No.	Elevation	(ft)	<b>49'r</b>	Mag	Tam	Cul	ulm	Sal	Revisions
====	========	=====	:2==:	====	====	====	====	====	
1337	3266	5			_				
1338	3502	23	853	912	935	1065	1095	1250	
1339	<b>3500</b> .	9	676	750	762	852	880	1010	
1340	3432	2		578	600	6 <b>96</b>	725	835	
1341	3436	10	485	553	573	688	715	832	
1342	3406	0	465	535	565	665	687	791	
1343	3414	10	453	522	545	648	675	812	
1344	3430	28	455	528	548	658	680	805	
1345	3438	23	478	550	573	700	720	826	
1346	3535	11	600	670	692	790	810	960	
1347	3528	13	768	826	850	986	1010	1130	
1348	3553	13	762	819	843	936	959	1098	
1349	3553	4	665	730	755	850	873	1025	Ref elev calc from log
1350	3514	10	576	645	667	780	795	915	
1351	3530	11	605	670	690	800	820	965	
1352	3490	12	530	597	619	729	750	895	
1353	3535	11	693			792	813	923	
1354	3551	12	695	755	775	872	895	1017	
1355	3502	23	595						
1356	3508	25	628	702	722	828	855	1010	
1357	3620	10	1183	1252	1269	1410	1433	1562	
1358	3623	12				•			
1359	3632	11	1185	1239	1255	1348	1371	1500	
1360	3631	11	1172	1238	1255	1388	1408	1533	
1361	3584	8	888	947	965	1090	1116	1246	
1362	3628	10	1088	1138	1161	1248	1270	1394	
1363	3615	11							
1364		8					•		
1365	3637	14	•						
1366	3637	12							
1367	3637	11	1192	1247	1264	1352	1372	1504	
1368	3640	11	1157	1210	1227	1352	1378	1502	
1369	3606	11	•						Loc rev from geoph log
1370	3600	10	1204	1254	1270				
1371	3605	9	1130	1201	1220	1347	1370	1495	Ref elev rev from log
1372	3586	0	1187	1238	1260	1352	1371	1503	
1373	3599	9							
1374	3628	8	1132	1184	1204	1295	1315	1445	
1375	3588	10	1122	1182	1200	1283	1308	1437	
1376	3591	9	1130	1190	1210	1301	1323	1456	
1377	3624	10	1142	1199	1218	1309	1327	1453	
1378	3606	10	1122	1180	1198	1287	1306	1438	
13 <b>79</b>	3591	10	1110	1158	1180	1275	1298	1428	
1380	3602	12	1025	1083	1102	1191	1208	1340	
1381	3622 -	10	1065	1126	1145	1239	1258	1396	
1382	3608	11	1052	1106	1122	1213	1235	1368	
1383	3605	10	1070	1132	1151	1243	1265	1400	Ref elev rev from log
1384	3618	12	998	1053	1072	1165	1188	1312	
		-							

D	Reference	KB		Depth	(ft) to :	top of u	nits		
No.	Elevation	(ft)	<b>49'r</b>	Mag	Tam	Ċul	ulm	Sal	Revisions
									=======================================
1385	3607	11	1060	1114	1132	1222	1243	1375	
1386	3604	10	1062	1120	1140	1226	1248	1383	
1387	3602	11	1066	1125	1140	1225	1246	1384	
1388	3591	9	1047	1100	1118	1201	1223	1362	
1389	3609	8	1093	1150	1170	1261	1284	1415	
1390	3605	10	1088	1148	1168	1253	1275	1412	
1391	3589	11	1008	1063	1082	1174	1197	1323	
1392	3554	19 10	746	806	829	928	953	1070	
1393	3510	10	830	890	910 060	1002	1025	1145	
1394	3519	11	881	940	960	1052	1075	1190	
1395	3524	12	906	962	980	1070	1090	1239	
1396	3625	19	1278	1367	1382	1600	1632	1806	
1397	3606	8	1187	1255	1272	1452	1475	1635	
1398	3598	8	1174	1246	1265	1445	1467	1612	
1399	3603	10	1204	1257	1276	1440	1465	1595	
1400	3590	11	1184	1257	1273	1452	1475	1635	
1401	36 <b>36</b>	10	1203	1270	1290	1468	1490	1647	
1402	3547	14	1225	1295	1310	1462	1485	1620	
1403	3578	11	1194	1270	1287	1465	1486	1630	
1404	3637	8	1215	1291	1308	1520	1542	1700	
1405	3598	11	1245	1330	1347	1600	1613	1785	
1406	3554	10	1190	1250	1267	1385	1409	1540	
1407	3592	11	1205	1282	1297	1485	1503	1676	
1408	3540	11	1140	1212	1228	1335	1357	1495	
1409	3594	12	1220	1289	1309	1502	1527	1735	
1410	3502	11	1186	1259	1275	1458	1481	1621	
1411	3525	10	1146	1206	1224	1314	1332	1492	
1412	3556	10	1070	1120	1138	1240	1260	1410	
1413	3524	<b>11</b> Š	1063	1122	1141	1228	1250	1392	
1414	•	11	1163	1230	1243	1513	1535	1695	
1 <b>415</b>	3447	10				<b>995</b>	1012	1125	
1416	3567	19	1045	1122	1139	1368	1392	1537	
1417	3619	19	1185	1263	1282	1517	1540	1690	
1418	3630	0	1245	1327	1345	1573	1598	1760	
1 <b>419</b>	3570	18	1134	1215	1230	1455	1 <b>482</b>	1660	
1420	3488	33	835	900	920	1005	1 <b>025</b>	1085	
1421	33 <b>78</b>	19	820	<b>890</b>	905	1040	1062	1186	
1422	3295	9	1155	1197		1311	1320		
1423	3156	0	1202					1482	
1424	2997	19							
1425	2985	2	· .	•		1 <b>47</b>	182	340	
1426	<b>292</b> 1	2		.*		± ,,	~~~	2.10	
1427	2923	9		•					
1427	3118	, 17	670					945	
			0/0	•				<del>71</del> 5	
1429	3041	1	200	÷ .					
1430	3078	16	680 175		•			905 520	
1431	3044	0	175					530	Ref elev rev from log
1432	2990	2	115		ł			414	

.

No.Elevation(ft)49°MagTamCaluhnSalRevisions14332945122260393393143533398169231436327313848915937102910411096143732831288891597760Grad el from topo; ref is +9ft143832209560597760Grad el from topo; ref is +9ft1440320011970107810941255Ref el rom topo; KB not given1441319710678778900100070014423210109701007120312314433317147807788789001050144432101159578690010501444321011595784633841448321771205136613751542145032091140531366137515421451318610775820942100145231921110501208127012814533207111053136613751542145432091288082094210041453320310756820942145433361111651243<	D	Reference	KB		Dept	h (ft) to	top of 1	mits		
14332936123931434294512260393143533398169231436327313848915937102910411096143732831288810141014143832229560597760Grad el from topo; ref is +9ft1439321011970107810941255Ref el rom log: topo differs14403200117457501100Ref el aron topo; KB not given144431971067879980987890010501442321011595786888Ref el from topo; KB not given144432822900820848880Ref el from topo; KB not given144432822900820878900105014463210115957868981075144332071144050254663681444320911105313601375145214513186107257827978869081075145231921110531360137514521453320711105313601375145214533203107568209151476145432091288010101022<	No.	Elevation	<b>(ft</b> )	49°r	-		Cul	ulm		
$      \begin{array}{ccccccccccccccccccccccccccccccc$										
1436       3273       13       848       915       937       1029       1041       1096         1437       3283       12       888       915       937       1029       1041       1096         1438       3222       9       560       577       760       Grad el from topo; ref is +9fi         1443       3197       10       678       915       820       848       800       Ref el from topo; KB not given         1443       3192       0       699       820       848       800       Ref el from topo; KB not given         1444       3282       2       900       1000       1000       1030         1444       3210       11       780       799       809       878       900       1050         1444       3207       11       440       502       524       613       638       829         1448       3207       11       405       522       797       886       908       1075         1453       3207       11       1053       1360       1375       1542         1454       3209       12       880       1075       1544         1453	1434	2945	12	260						
	1435	3333	9					816		
$      \begin{array}{ccccccccccccccccccccccccccccccc$	1436	3273	13	848	915	937	1029	1041		
1439321011970107810941255Ref el from log: topo differs Ref el rev from geoph log; 7DU; Ref el rev from geoph log; 7DU;144131971067879011001442321010970110012351444328229001235Ref el from topo; KB not given1444331714780799809878900144533171478079980987890010501446320711440502524613638584144832071144050252461363858414493217771205120514531366107514523192111050120515421475146132091288011001453320711105012051542147514753203107568209421453320711105012251160137515421475145332071111651243127514533267117514533203107568209429421456318486088209421100145532031075658466112751458325251178119412081270128313	1437	3283	12	888						
1440320011745915Ref el rev from geoph log: ?DU.14413197106787901442321010970110014433192069982084888014443282290012351445331714780799809878900144432001159578614473210115957861448320711440502524613144832071149856058466368614493217710012051451318610725782797861452319211105313601375154214533207111053136013751542145332071110531360137515421454320912880820942145532031075682094214563184860884287010121453335611116512431275146034762171584287010121453335883604274505605886979121221231341461453331991325101010321123 <td>1438</td> <td>3222</td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1438	3222	9							
14411971067879014423210109701100144331920699820848880Ref el from topo; KB not given14443282290012357861445331714780799809878900105014463210115957868987861447321996408987861448320711440502524613638144932177120514513186107257821451318610725782797886908107514523192111050120514471100132514533207111053136013751542145432091288011001325127514583252511781194120812701283145933611116512431275146133482820890915101010321123146233588360427450588697104146331991325162214643466118038638829781104146434601178284586697399611221464	1439						1078	1094		
$      \begin{array}{ccccccccccccccccccccccccccccccc$	1440									Ref el rev from geoph log; ?DUP 1439
144331920699820848880Ref el from topo; KB not given 12351444328229001235144533171478079980987890010501446321011595786144732199640898144832071144050252461363814483207114985605846636868291451318610725782797886908107514523192111050120512051453320711105313601375154214543209128801100137515421454320310756820942145531848608840840145732048675915145831521111651243145933611116512431451334828208909151462335883604274503461107908558751463331991325102146434861180386388214633461107928508751464348611787847868147734	1441									
$      \begin{array}{ccccccccccccccccccccccccccccccc$	1442	3210	10							
144533171478079980987890010501446321011595786144732199640898144832071144050252461363814493217711440502524613638145131861072578279788690810751452319211105012051205145332071110531360137515421454320912880110012051455318486088209421456318486089151458325251178119412081270146333761111651243127514643484282089091510101032146133482820890915101010321463331991325162214643461107908558759831006146534611079285087299914214643486117828458669931122146334721078784786866599311301466346197568208489409671104 </td <td>1443</td> <td>3192</td> <td>0</td> <td></td> <td></td> <td></td> <td>820</td> <td>848</td> <td></td> <td>Ref el from topo; KB not given</td>	1443	3192	0				820	848		Ref el from topo; KB not given
$      \begin{array}{ccccccccccccccccccccccccccccccc$	1444	3282	2	900						
$      \begin{array}{ccccccccccccccccccccccccccccccc$	1445	3317	14	780	799	809	878	900		
1448320711440502524613638144932177 $7$ $7$ $7$ 145032091149856058466368682914513186107257827978869081075145231921110501205145332071110531360145332071110531360137515421454320912880 $-1100$ 10014553203107568209421456318486089151458325251178119412081270128314593336111165124312751460347621715842870101214613348282089091510101032112314633319913251622146434861180386388297810041465346110790855875983106611606rnd el 3451 from topo map14663477975682084894096711401467346011782845865933113014683472107878478689539151468347210787847868<	1446	3210	11	595					786	
14493217714503209114985605846636868291451318610725782797886908107514523192111050120512051453320711105313601375154214543209128801100756820942145631848608942145732031075682094214583252511781194120812701283145933361111651243127514603476217158428701012146133482820890915101010321123146333199132516221622146434861180386388297810041127146534611079085587598310061106146634611079285087299611221468347210787847868965933113014693478107928508729689331127147034801979185387297299911401471347407748338549629671125 <td>1447</td> <td>3219</td> <td>9</td> <td>640</td> <td></td> <td></td> <td></td> <td></td> <td>898</td> <td></td>	1447	3219	9	640					898	
1450320911498560584663686829145131861072578279788690810751452319211105012051453320711105313601375154214543209128801100145532031075682094214563184860884014573204867591514583252511781194120812701283137313601373137314593336111165124312751460347621715842870101214613348282089091510101032112314623358836042745056058869714633319913251022122412741464346110790855875983110611601466346197568208489409671104146734601178284586697399611221468347210787847868953113014693478107928508729729991140147034801979185387	1448	3207	11	440	502	524	613	638		
1451318610725782797886908107514523192111050120514533207111053136013751542145432091288011001455320310756820942145631848608840145732048675915145832525117811941208127012831373137314593336111165124312751460347621715842870101214613348282089091510101032112314623358836042745056058869714633319913251061160Grad el 3451 from topo map1466346197568208489409671104146734601178284586697399611221468347210787847868965993113014693478107928508729781004112514703480197918538729729991401471347797808408629649901125147334540774833<	1449	3217	7							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1450	3209	11	498	560	584	663	686	829	
$      \begin{array}{ccccccccccccccccccccccccccccccc$	1451	31 <b>86</b>	10	725	782	797	886	908	1075	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1452	3192	11	1050					1205	
1455320310756 $820$ $942$ 145631848 $608$ $840$ 145732048 $675$ $915$ 14583252511781194120812701283137314593336111165124312751460347621715 $842$ $870$ 1012146133482820 $890$ 915101010321123146233588 $360$ $427$ $450$ $560$ $588$ $697$ 1463331991325 $1622$ $1622$ 1464348611803 $863$ $882$ $978$ 100411271465346110790 $855$ $875$ $983$ 10061160Grad el 3451 from topo map146634619756 $820$ $848$ $940$ $967$ 11041467 $3460$ 11 $782$ $845$ $866$ $973$ $916$ 11221468 $3472$ 10 $787$ $847$ $868$ $965$ $993$ $1130$ 1469 $3478$ 10 $792$ $853$ $872$ $999$ $1440$ 1471 $3477$ $9$ $780$ $840$ $862$ $967$ $1125$ 1472 $3464$ $90$ $774$ $833$ $854$ $962$ $973$ $118$ 1473 $3454$ 0 $774$ $836$ $865$ $963$ $118$ </td <td>1453</td> <td>3207</td> <td>11</td> <td>1053</td> <td></td> <td></td> <td>1360</td> <td>1375</td> <td>1542</td> <td></td>	1453	3207	11	1053			1360	1375	1542	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1454	3209	12	880			•		1100	
14573204867591514583252511781194120812701283137314593336111165124312751460347621715842870101214613348282089091510101032112314623358836042745056058869714633319913251622146434861180386388297810041127146534611079085587598310061160Grnd el 3451 from topo map14663461975682084894096711041467346011782845866973996112214683472107878478689659931130146934781079285087296891311251470348019791853872972999114014713477978084086296499011251473345407748338549629871123Grnd el 3454 from topo, no KB147434591079486088098210071140Grnd el 3449 from topo map147534551078084	1455	3203	10	756			820		942	
1458       3252       5       1178       1194       1208       1270       1283       1373         1459       3336       11       1165       1243       1275         1460       3476       21       715       842       870       1012         1461       3348       2       820       890       915       1010       1032       1123         1462       3358       8       360       427       450       560       588       697         1463       3319       9       1325       1622       1464       3486       11       803       863       882       978       1004       1127         1465       3461       10       790       855       875       983       1006       1160       Grad el 3451 from topo map         1466       3461       9       756       820       848       940       967       1104         1467       3460       11       782       845       866       973       996       1122         1468       3472       10       787       847       868       965       993       1127         1470       3480       19 <td>1456</td> <td>3184</td> <td>8</td> <td>608</td> <td></td> <td></td> <td></td> <td></td> <td>840</td> <td></td>	1456	3184	8	608					840	
1459       3336       11       1165       1243       1275         1460       3476       21       715       842       870       1012         1461       3348       2       820       890       915       1010       1032       1123         1462       3358       8       360       427       450       560       588       697         1463       3319       9       1325       1622       1464       11       803       863       882       978       1004       1127         1465       3461       10       790       855       875       983       1006       1160       Grnd el 3451 from topo map         1466       3461       9       756       820       848       940       967       1104         1467       3460       11       782       845       866       973       996       1122         1468       3472       10       787       847       868       965       993       1130         1469       3478       10       792       850       872       972       999       1140         1471       3477       9       780	1457	3204	8	675					915	
1460       3476       21       715       842       870       1012         1461       3348       2       820       890       915       1010       1032       1123         1462       3358       8       360       427       450       560       588       697         1463       3319       9       1325       1622         1464       3486       11       803       863       882       978       1004       1127         1465       3461       10       790       855       875       983       1006       1160       Grnd el 3451 from topo map         1466       3461       9       756       820       848       940       967       1104         1467       3460       11       782       845       866       973       996       1122         1468       3472       10       787       847       868       965       993       1130         1469       3478       10       792       850       872       972       999       1140         1471       3477       9       780       840       862       964       990       1125     <	1458	3252	5	1178	1194	1208	1270	1283	1373	
1461       3348       2       820       890       915       1010       1032       1123         1462       3358       8       360       427       450       560       588       697         1463       3319       9       1325       1622       1622         1464       3486       11       803       863       882       978       1004       1127         1465       3461       10       790       855       875       983       1006       1160       Grnd el 3451 from topo map         1466       3460       11       782       845       866       973       996       1122         1468       3472       10       787       847       868       965       993       1130         1469       3478       10       792       850       872       978       9140         1471       3477       9       780       840       862       964       990       1125         1472       3464       9       785       848       868       968       993       1118         1473       3454       0       774       833       854       962	1459	3336	11	1165			1243	1275		
1462       3358       8       360       427       450       560       588       697         1463       3319       9       1325       1622         1464       3486       11       803       863       882       978       1004       1127         1465       3461       10       790       855       875       983       1006       1160       Grnd el 3451 from topo map         1466       3461       9       756       820       848       940       967       1104         1467       3460       11       782       845       866       973       996       1122         1468       3472       10       787       847       868       965       993       1130         1469       3478       10       792       850       872       968       993       1127         1470       3480       19       791       853       872       972       999       1140         1471       3477       9       780       840       862       964       900       1125         1473       3454       0       774       833       854       962 <t< td=""><td>1460</td><td>3476</td><td>21</td><td>715</td><td></td><td></td><td>842</td><td>870</td><td>1012</td><td></td></t<>	1460	3476	21	715			842	870	1012	
14633319913251622146434861180386388297810041127146534611079085587598310061160Grnd el 3451 from topo map146634619756820848940967110414673460117828458669739961122146834721078784786896599311301469347810792850872968993112714703480197918538729729991140147134779780840862964990112514723464978584886896899311181473345407748338549629871123Grnd el 3454 from topo, no KB147434591079486088098210071140Grnd el 3449 from topo map14753455107808458659639881120Grnd el 3445 from topo map147634581079385887898010051147Grnd el 3448 from topo map14773470-117938508729729931140	1461	3348	2	820	890	915	1010	1032	1123	
146434861180386388297810041127146534611079085587598310061160Grnd el 3451 from topo map146634619756820848940967110414673460117828458669739961122146834721078784786896599311301469347810792850872968993112714703480197918538729729991140147134779780840862964990112514723464978584886896899311181473345407748338549629871123Grnd el 3454 from topo, no KB147434591079486088098210071140Grnd el 3449 from topo map14753455107808458659639881120Grnd el 3445 from topo map147634581079385887898010051147Grnd el 3448 from topo map14773470-117938508729729931140	1462	3358	8	360	427	450	560	588	697	
146534611079085587598310061160Grnd el 3451 from topo map146634619756820848940967110414673460117828458669739961122146834721078784786896599311301469347810792850872968993112714703480197918538729729991140147134779780840862964990112514723464978584886896899311181473345407748338549629871123Grnd el 3454 from topo, no KB147434591079486088098210071140Grnd el 3449 from topo map14753455107808458659639881120Grnd el 3445 from topo map147634581079385887898010051147Grnd el 3448 from topo map14773470-117938508729729931140	1463	3319	9	1325					1622	
1466       3461       9       756       820       848       940       967       1104         1467       3460       11       782       845       866       973       996       1122         1468       3472       10       787       847       868       965       993       1130         1469       3478       10       792       850       872       968       993       1127         1470       3480       19       791       853       872       972       999       1140         1471       3477       9       780       840       862       964       990       1125         1472       3464       9       785       848       868       968       993       1118         1473       3454       0       774       833       854       962       987       1123       Grnd el 3454 from topo, no KB         1474       3459       10       794       860       880       982       1007       1140       Grnd el 3449 from topo map         1475       3455       10       780       845       865       963       988       1120       Grnd el 3445 from topo map <td>1464</td> <td>3486</td> <td>11</td> <td>803</td> <td>863</td> <td>882</td> <td>978</td> <td>1004</td> <td>1127</td> <td></td>	1464	3486	11	803	863	882	978	1004	1127	
1466       3461       9       756       820       848       940       967       1104         1467       3460       11       782       845       866       973       996       1122         1468       3472       10       787       847       868       965       993       1130         1469       3478       10       792       850       872       968       993       1127         1470       3480       19       791       853       872       972       999       1140         1471       3477       9       780       840       862       964       990       1125         1472       3464       9       785       848       868       968       993       1118         1473       3454       0       774       833       854       962       987       1123       Grnd el 3454 from topo, no KB         1474       3459       10       794       860       880       982       1007       1140       Grnd el 3445 from topo map         1475       3455       10       780       845       865       963       988       1120       Grnd el 3445 from topo map <td>1465</td> <td>3461</td> <td>10</td> <td>790</td> <td>855</td> <td>875</td> <td>983</td> <td>1006</td> <td>1160</td> <td>Grnd el 3451 from topo map</td>	1465	3461	10	790	855	875	983	1006	1160	Grnd el 3451 from topo map
146834721078784786896599311301469347810792850872968993112714703480197918538729729991140147134779780840862964990112514723464978584886896899311181473345407748338549629871123Grnd el 3454 from topo, no KB147434591079486088098210071140Grnd el 3449 from topo map14753455107808458659639881120Grnd el 3445 from topo map147634581079385887898010051147Grnd el 3448 from topo map14773470-117938508729729931140	1466	3461	9	756	820	848	940	967	1104	•••
1469347810792850872968993112714703480197918538729729991140147134779780840862964990112514723464978584886896899311181473345407748338549629871123Grnd el 3454 from topo, no KB147434591079486088098210071140Grnd el 3449 from topo map14753455107808458659639881120Grnd el 3445 from topo map147634581079385887898010051147Grnd el 3448 from topo map14773470-117938508729729931140	1467	3460	11	782	845	866	973	. 996	1122	
1469347810792850872968993112714703480197918538729729991140147134779780840862964990112514723464978584886896899311181473345407748338549629871123Grnd el 3454 from topo, no KB147434591079486088098210071140Grnd el 3449 from topo map14753455107808458659639881120Grnd el 3445 from topo map147634581079385887898010051147Grnd el 3448 from topo map14773470-117938508729729931140	1468	3472	10	787	847	868	965	993 ⁻	1130	
147134779780840862964990112514723464978584886896899311181473345407748338549629871123Grnd el 3454 from topo, no KB147434591079486088098210071140Grnd el 3449 from topo map14753455107808458659639881120Grnd el 3445 from topo map147634581079385887898010051147Grnd el 3448 from topo map14773470-117938508729729931140	1469	3478	10	792	850	872	968	993	1127	
14723464978584886896899311181473345407748338549629871123Grnd el 3454 from topo, no KB147434591079486088098210071140Grnd el 3449 from topo map14753455107808458659639881120Grnd el 3445 from topo map147634581079385887898010051147Grnd el 3448 from topo map14773470-117938508729729931140	1470	3480	19	791	853	<b>872</b>	972	999	1140	
1473345407748338549629871123Grnd el 3454 from topo, no KB147434591079486088098210071140Grnd el 3449 from topo map14753455107808458659639881120Grnd el 3445 from topo map147634581079385887898010051147Grnd el 3448 from topo map14773470-117938508729729931140	1471	3477	9	780	840	862	964	990	1125	
147434591079486088098210071140Grnd el 3449 from topo map14753455107808458659639881120Grnd el 3445 from topo map147634581079385887898010051147Grnd el 3448 from topo map14773470117938508729729931140	1472	3464	9	785	848	868	968	993	1118	
147434591079486088098210071140Grnd el 3449 from topo map14753455107808458659639881120Grnd el 3445 from topo map147634581079385887898010051147Grnd el 3448 from topo map14773470117938508729729931140	1473	3454	0	774	833	854	962	987	1123	Grnd el 3454 from topo, no KB
14753455107808458659639881120Grnd el 3445 from topo map147634581079385887898010051147Grnd el 3448 from topo map14773470117938508729729931140		3459		794	860	880	982	1007		
147634581079385887898010051147Grnd el 3448 from topo map14773470117938508729729931140										
1477 3470 11 793 850 872 972 993 1140										
										<b>FF</b>
	1478	3410	10	837	899	923	1021	1044	1177	Loc rev from SW1/4, SE1/4
1479 3468 10 808 876 905 991 1013 1140										······································
1480 3445 11 762 825 848 949 972 1103										

D	Reference	KB		Depth	1 (ft) to	top of 1	mits		
No.	Elevation	<b>(ft</b> )	<b>49'r</b>	Mag	Tam	Cul	ulm	Sal	Revisions
==== 1481	======== 3454	==== 11	 787	====: 852	==== 875	= <b>==</b> = 976	==== 998	==== 1132	=======================================
1482	3455	-8	773	840	862	962	982	1132	
1483	3427	10	765	828	848	953	982	1137	
1484	3451	10	787	854	875	985	1003	1158	Grnd el 3441 from topo, +KB
1485	3438	10	782	843	863	968	992	1145	Grnd el 3428 from topo, +KB
1486	3451	11	780	843	865	963	993	1144	
1487	3453	10	780	845	867	966	990	1140	Grnd el 3443 from topo, +KB
1488	3453	10	792	858	878	983	1008	1158	Grnd el 3443 from topo, +KB
1489	3441	11	776	841	862	942	965	1138	· · · · · · · · · · · · · · · · · · ·
1490	3447	10	769	834	855	962	983	1137	
1491	3443	10	787	854	875	982	1003	1165	
1492	3441	10	780	846	867	973	<b>995</b>	1150	Grnd el 3431 from topo; +KB
1493	3421	9	695	758	779	902	927	1095	······································
1494	3444	9	763	827	850	960	983	1140	
1495	3423	10	743	805	823	915	938	1098	
1496	3439	9	769	833	856	955	980	1137	
1497	3437	11	745	810	832	942	960	1120	
1498	3426	12	715	778	800	898	922	1077	
1499	3458	11	766	828	852	962	984	1157	
1500	3411	10	697	765	786	895	918	1075	
1501	3434	11	742	813	835	940	961	1110	
1502	3444	13	760	822	844	952	972	1128	
1503	3434	9	727	<b>79</b> 5	816	936	960	1115	
1504	3433	9	772	833	852	953	976	1125	
1505	3443	8	768	836	855	961	983	1130	Ref el rev from log
1506	3431	20	607	668	692	803	822	940	e e
1507	3438	16	643	705	727	836	857	1015	
1508	3394	13	730	<b>79</b> 0	<b>812</b>	905	932	1086	
1509	3403	11	740	811	834	938	967	1115	Grnd el 3392 from topo, +KB
1510	3398	19	747	800	822	931	958	1117	· •
1511	3396	12		787	810	916	938	1100	
1512		0	726	792	813	927	953	1106	Grnd el 3400 from log, no KB
1513	3414	12	713	784	803	907	934	1097	_
1514	3406	11	737	802	823	943	966	1116	
1515	3413	13	752	815	835	<b>947</b>	975	1125	·
1516	3422	10	738	806	826	941	967	1125	
1517	3404	13	775	842	863	962	985	1148	
1518	3382	13	755	812	835	943	962	1112	
1519	3400	11	756	816	836	952	978	1132	
1520	3404	11	707	770	792	894	917	1073	
1521	3408	9	692	756	776	877	905	1062	
1522	3421	12	720	782	806	918	943	1109	
1523 ·	3428	9	<b>730</b>	804	828	945	970	1130	
1524	3430	11	768	845	865	948	973	1128	
1525	3409	13	746	810	832	930	957	1117	Ref elev rev from log
1526	3419	10	748	812	835	942	966	1130	Grnd el 3409 from topo, +KB
1527	3419	9	738	800	825	933	<b>959</b>	1115	•
1528	3411	10	747	810	832	935	960	111 <b>7</b>	
	•		•						

D	Reference	KB	• .	Dept	h (ft) to	top of	anits		
No.	Elevation	<b>(ft)</b>	<b>49°</b> r	Mag	Tam	Cul	ulm	Sal	Revisions
=== 1529	======== 3421	==== 9	====: 770	==== 825	==== 860	:=≈== 953	====: 977	===== 11 <b>4</b> 2	=======================================
1530	3414	10	750	816	837	950	973	1130	
1531	3429	11	748	808	834	930	955	1085	
1532	3430	10	773	838	861	970	993	1155	
1533	3391	11	755	823	845	960	988	1130	
1534	3392	10	785	856	875	984	1008	1170	
1535	3388	9	738	802	822	930	953	1118	
1536	3375	10	900	958	977	1072	1097		
1537	3398	10	782	850	870	960	985	1140	
1538	3386	9	813	875	895	993	1018	1178	
1539	3382	10	818	875	895	993	1018	1175	
1540	3386	10	768	832	855	960	987	1148	
1541	3414	10	868	930	950	1040	1063	1230	
1542	3370	11	957	1023	1042	1140	1166	1335	
1543	3356	9	923	988	1012	1100	1132	1310	
1544	3366	11	1142	1202	1224	1315	1347	1485	
1545	3311	2	1072	1132	1150	1242	1270	1417	
1546	3307	10	1075	1130	1153	1238	1263	1412	
1547	3349	11	935	995	1020	1128	1155	1297	Ref el rev from log
1548	3332	9	1055	1116	1142	1250	1277	1440	
1549		0	1045	1112	1128	1225	1250	1405	DF 3354 log; grnd el 3346 from topo
1550	3490	10	1200	1255	1268	1506	1530	1673	
1551	3478	11	1106	1168	1186	1258	1292	1433	
1552	3456	11	1065	1120	1140	1259	1285	1428	
1553	3424	11	1138	1195	1213	1372	1395	1550	
1554	3497	8	985 1012	1038	1057	1150	1180	1312	
1555	3431	10	1012	1077	1095	1183	1210	1347	
1556	2202	0	1042	1098	1117	1207	1232	1374	
1557	3392	34	1006	1075	1092	1184	1209	1335	
1558 1559	3353	11 9	1060 1045	1114	1130 1136	1227 1283	1250 1310	1410 1 <b>463</b>	
1559	3358	12	1045	1117 1105	1127	1258	1285	1405	
1560 1561	3342 3332	12	1047	1105	1127	1210	1235	1395	
1562	3320 3320	12	1043	1082	1098	1210	1237	1393	
1563	3353	10	975	1032	1053	1143	1170	1315	
1564	3344	11	1002	1056	1055	1145	1188	1339	
1565	3422	9	995	1050	1083	1171	1196	1385	
1566	3386	12	742	800	824	927	951	1096	
1567	3332	Õ	875	927	945	1042	1067	1192	
1568	3391	13	900	956	971	1070	1096	1224	
1569	3325	7	965	1025	1045	1170	1197	1334	
1570	3346	11	1038	1102	1117	1250	1277	1432	
1571	3346	12	1023	1085	1104	1260	1287	1437	
1572	3339	õ	852	905	925	1083	1119	1265	
1573	3163	10	917			2000		1095	
1574	3143	1	1030					1290	
1575	3123	ō	870	912	920	980	990	1068	
1576	3115	10	873	913	919	979	992	1065	
~~ / ~									

D	Reference	KB		Depth	(ft) to t	op of u	nits		
No.	Elevation	(ft)	<b>49°</b> r	Mag	Tam	Cul	ulm	Sal	Revisions
====		====	====	====	====	====	====	====	
1577	3087	0	<b>79</b> 0	830	838	906	915	973	
1578		0							
15 <b>7</b> 9	3012	4							
1580	2965	10	200				263	375	
1581	2975	11	315			452	477	600	
1582	2978	8	700				858		
1583	2993	8	502	570	594	682	718	<b>79</b> 0	
1584	2953	8					238	388	
1585	2964	14						512	
1586	2912	7					190	330	
1587	2900	12					240	360	
1588	2972	9							
1589	2875	9							
1590	2892	10						414	
1591	3201	1	1260	1320	1347	1440	1462	1545	
1592	3165	10	1304	1375	1402	1502	1530	1632	
1593	31 <b>79</b> [.]	9	1046	1115	1133	1225	1257		Ref el 3179, 3180 from log
1594	3059	8	815			948	978	1162	
1595	3090	10							
1596	3210	10	950	1012	1037	1125	1165	1294	
1597	3059	9							
1598		9	455			688	711	850	
1599	2982	10							
1600	3220	0	1021	1080	1103	1209	1234	1300	topfnr revised 9/27/94
1601		0	1003	1044	1068	1147	1178	1267	•
1602	3238	9	1000	1050	1062	1078	1103	1202	
1603	3225	32							
1604		0	920			1093	1115	1245	
1605	3282	<b>11</b> .	1388	1445	1460	1542	1567	1685	
1606	3177	10	589	650	667	768	798	956	Loc rev from NE1/4, SE1/4
1607	3180	0	1280	1335	1350	1453	1467	1595	
1608	3133	11	583	643	662	770	794	963	
1609	3122	11	625	687	708	828	855	1020	
1610	3113	11	623	684	702	830	847	1006	
1611	3130	11	633	698	717	852	874	1034	
1612	3122	11	600	665	682	805	825	987	
1613	3132	11	587	653	672	792	<b>8</b> 13	967	Ref el rev from log
1614	3124	11	590	648	664	780	802	967	· · · · · · · · · · · · · · · · · · ·
1615	3134	12	593	656	676	798	816	975	Grnd el 3122 from topo, +KB
1616	3130	19	623	690	708	824	848	1005	
1617	3131	9	595	670	687	807	828	994	1
1618	3113	11	540	600	620	745	765	930	
1618	3264	10	740	808	826	930	956	1095	
1620	3122	11	659	727	746	876	897	1055	
1620	3414 ·	10	856	915	926°	1052	1084	1235	
	3392	11	744	810	830	943	972	1115	
1622		0	635	6 <b>99</b>	714	833	862	1005	
1623	3332			1102	1117	1152	1168	1203	•
1624		9	1054	1102	111/	1176	1100	1203	

D	Reference	KB		Depti	1 (ft) to	top of u	nits		
No.	Elevation	<b>(f</b> t)	<b>49'r</b>	Mag	Tam	Cul	ulm	Sal	Revisions
====	=========			====	====	****	==2=	=====	
1625		0	983	1034	1045	1145	1156	1265	
1626	3013	0	932	972	<b>98</b> 1			1163	
1627	3032	0	970			1082	1102	1194	
1628	3853	17	1905	1983	2002	2202	2217	2331	
1629	3741	26	1422	1503	1523	1716	1 <b>737</b>	1878	
1630	3480	0	692	748	773	859	885		
1631	3659	9	1164	1225	1248	1467	1490	1638	
1632	3572	22	1155	1210	1230	1340	1362	1467	
1633	3645	11	922	<b>986</b>	1008	1112	1137	1227	
1634	3094	12	266					594	
1635	3612	24	1322	1403	1422	1648	1673	1840	
1636	3506	20	1170	1226	1242	1392	1416	1550	
1637	2968	8						240	
1638	3456	11							
1639	3726	12	1212	1288	1308	1533	1558	1708	
1640		2	400	520	545	722	753	1105	
1641	3410	0	532	590	616	703	724	842	Data from BDR SAND89-0203
1642	3384	0	509	564	591	706	731		Data from BDR SAND89-0204
1643	3413	0	506	571	594	689	713	821	Data from BDR SAND89-0204

All drillholes within the Rustler data base were included, even if parts or all of the Rustler were uninterpretable. Drillhole location, names, and other data are presented in tables of Rustler location data and can be cross-indexed with the identification number.

#### APPENDIX A-4 TABLE OF DATA FOR DEPTHS TO DEWEY LAKE AND SANTA ROSA FORMATIONS

# Table of Data for Depth to Dewey Lake and Santa Rosa Formations

Borehole ID no.	Reference Elevation	Rustler Fm ======	DEPTH (in Dewey Lake	Santa Rosa	op of: "Chinle" ====================================
1072		480	130	0	0
1072	3448	828	520	355	0
1075		1121	625	400	
 1076	3510	883	450	230	
1077		1163	730	520	
10 <b>78</b>		1372	905	690	
1079	3524	1103	635	415	100
1080	3509	1076	610	370	
1090	3412	187	90		
1091	3471	200	70		
1092	3472	255	40		
1093	3468	445	50	510	10
1094	3487	830	620 60	510	10
1095 1096	3309	312 146	30		
1090	3177	140	50 79		
1102	3347	152	17		
1102	3427	449	0		
1103	3540	538	72	17	
1105	3748	1505	1035	805	310
1106	3792	1550	1065	830	345
1107	3793	1568	1050	820	455
1108	3740	1 <b>530</b>	1040	750	400
1109	3668	1345	840	565	
1110	· · · · · ·	1162	625	440	a.co
1111	3800	1450	855	615	360
1112	3862	1565	985	825	
1113	3861	1515	1030	800	
1114	3834	1555	1055	<b>79</b> 0	
1115	3679 3662	1056 670	580 115		
1118 1119	5002	778	250		
1120	3802	1760	1275	1015	355
1120	3023	1700	1215	1015	
1138	2977				
1141	3221	275	40		
1142	3323	401	44		
1143	3212	232	17		
1144	3358	387	42		
1145	3376	462	8		
1147 -	3152 .	12			
1148		395	20		
1149	3418	641	120	<b>10</b>	
1150	3439	676	174	42	
1151	3433	657	154	11	

	Borehole ID no.	Reference Elevation	Rustler Fm	DEPTH (in Dewey Lake	feet) to Top of: Santa "Chinle" Rosa ====================================
	1152	3249	639	141	15
	1153	3541	668	177	35
	1154	3553	780	261	6
	1155	3508	732	224	8
	1156	3510	734	225	8
	1158	3405	517	80 168	20
	1159	3484	641	168	30 12
	1160	3472 3345	623 426	146 38	12
	1161 1162	3349	420	30	
	1162	3382	468	41	
	1165	3457	614	41 1 <b>40</b>	8 .
	1165	3426	574	80	0
	1165	3417	559	73	40
	1167	3433	590	<i>9</i> 6	14
	1168	3420	550	63	54
	1169	3506	746	224	9
	1170	3546	759	232	8
	1172	3479	626	87	Q
	1173	3508	686	151	9 8
	1174	3441	610	99	8
	1175	3473	668	133	46
	1176	3478	690	164	38
	1177	3398	020	101	
	1178	3345	357	35	
	1179	3377	457	32	
	1180	2205	509		
	1181	3345 3354 3310	359	40	
	1182	3354	358	18	
	1183	3310	232	32	
	1184	3409	557	162	36
	1185	3409	562	66	11
	1186	3644	860	394	
	1187	3731	950	450	90
	1188	3701	885	530	
	1189	3696	900	<b>395</b>	
	11 <b>90</b>	3620	760	240	10
	1191	3640	835	330	
	11 <b>92</b>	3487	870	330	37
•	11 <b>93</b>	3789	1048	513	
	11 <b>94</b>	3756	1145	625	
	1230	3163	87	57	
	1237	3426	310	110	
	1238 ·	·	623	62	
	1239	3339	382	46	
	1240	3336	391	38	

Borehole ID no. ======	Reference Elevation ========	Rustler Fm ======	Dewey Lake	a feet) to Top of: Santa "Chinle" Rosa ====================================
<b>ID no.</b> <b>=====</b> 1241 1242 1244 1245 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285	Elevation 3335 3332 3323 3425 3374 3461 3506 3454 3464 3458 3402 3727 3699 3723 3722 3622 3696 3699 3723 3722 3622 3696 3699 3701 3720 3725 3700 3720 3725 3700 3720 3688 3713 3687 3551 3666 3699 3675 3700 3691	Fm ======== 315 312 316 742 621 476 460 763 775 865 750 758 750 497 430 780 1155 1140 1195 1178 1025 1210 1217 1163 1225 1210 1217 1163 1225 1218 1225 1218 1225 1215 1225 1208 1212 1225 1215 1225 1208 1215 1200 1170 1187 1206 1215 1205	Dewey Lake ======== 45 32 190 70 64 44 215 210 620 190 630 120 140 50 215 542 582 655 637 480 665 670 615 693 700 655 660 673 665 670 630 330 640 630 330 640 635 640 590 655 655 655 655	Santa "Chinle" Rosa 25 135 400 370 390 370 275 445 465 405 450 535 480 360 455 448 420 445 446 408 420 445
1286 1287	3663 3689 3669 3630 3694 3689	1200 1200 1193 1210 1183 1207 1210	655 625 652 640 660 727	430 395 430 460 440
1 <b>2 2</b> 1				

.

Borehole ID no. =====	Reference Elevation ========	Rustler Fm	Dewey Lake	n feet) to Top of: Santa "Chinle" Rosa ====================================
1292	3664	1206	650	420
1292	3636	1160	637	365
1294	3704	1260	790 740	496
1295	3722	1270	740	504
1296	3715	1268	730	506
1297	3722	1230	700	475
1298	3726	1290	745	525
1299	3711	1230	695	455
1300	3720	1233	695	470
1301	3713	1222	<b>69</b> 0	440
1302	3703	1225	<b>69</b> 0	445
1303	3713	1285	700	
1304	3701	1280	705	500
1305		1252	705	480
1306	3686	1268	715	490
1307	3659	1310	735	540
1332	2924	450	20	• • •
1333		370	205	
1335	3433	400	155	65
1338	3502	853	290	
1341	3436	485	30	
1341	3406	465	50	
1342	3414	453	70	
1343	3430	455	70 70	
1344	3438	478	145	
1345	3535		145	
	2222	600 769	133	•
1347		768 762	210	
1348	0550	762	250	
1349	3553	665	235	
1350	3514	576	120	
1351	3530	605	95	~ <b>~</b>
1352	3490	530	165	85
1353	3535	693	145	
1354	3551	695	165	
1355	3502	595	150	
1356	3508	628	270	
1357	3620	1183	635	455
1359	3632	1185	615	435
1360	3631	1172	555	380
1361	3584	888	-350	140
1362	3628	1088	580	405
1367	3637	1192	635	425
1368	3640	1157	595	380
1370	3600	1204	635	410
1371		1130	590	350
1372	3586	1130	605	390
1374	3628	1132	520	375
1374	3688	1132	510	305
T) I )	5000	1144	210	505

Borehole ID no. =====	Reference Elevation ========	Rustler Fm ======	DEPTH (in Dewey Lake	Santa Rosa	p of: "Chinle" ===================
1376	3591	1130	510	295	
1377	3624	1142	585	370	
1378	3606	1122	585	315	
1379	3591	1110	500	260	
1380	3602	1025	475	240	
1381	3622	1065	495	265	
1382	3608	1052	490	315	
1383	3604	1070	505	305 225	
1384	3618	998 1060	450		
1385	3607	1060	485	300 305	
1386	3604	1062	490 495	280	
1387	3602	1066	495	270	
1388	3591	1047 1093	473 520	340	
1389	3609 3605	1093	505	295	
1390 1391	2002	1008	440	275	
1391		746	360		
1392	3510	830	295		
1394	3619	881	425	305	
1395	5017	906	405	5.00	
1396	3625	1278	820	650	•
1397	3606	1187	630	410	
1398	3598	1174	635	405	
1403	3578	1194	620	390	
1404	3637	1215	635	410	
1405	3598	1245	670	445	
1406	3554	11 <b>90</b>	605	395	
1407	3592	1205	620	385	
1408	3540	1140	555	315	
1410	3502	1186	585	355	
1411	3525	1 <b>146</b>	570	345	
1412	3556	1070	475	265	
1413	3524	1063	495	265	
1414		1163	665	340	1.
1436	3273	848	570		
1437	3283	888	485		
1440	3199	745	405		
1441	3197	678	350		
1443	3190	6 <b>99</b>	365	200	
1444	3282	900 780	400	200	
1445	3317	780	360 360	220 195	
1446	3210	595 640		195	
1 <b>447</b> 1 <b>448</b>	3219	640 440	280 230		
1448	·	440 498	230	•	
1450 1451	3186	498 725	470	380	
1451 1452	3180 3192	1050	705	200	
		1050	105		· ·
1453	3207	1022			

.

	Borehole ID no. ======	Reference Elevation	Rustler Fm ======	Dewey Lake	feet) to Top of: Santa "Chinle" Rosa	=====
	1454	3209	880	330		
	1455	5205	756	300	190	
	1456	3184	608	265	190	
	1457	3204	675	375	205	
	1458	3252	1178	595	305	
-	1459	2176	1165	245		
	1460	3476	715	345		
	1461	3348	820	285	200	
	1463	3319	1325	660	390	
	1464	3486	803	280		
	1465	2461	790	250		
	1466	3461	756	225		
	1468	3472	787	260		
	1471	3477	780	255		
	1472	3464	785	255	•	
	1473		774	240		
	1474	0.450	794	250		
	1477	3470	793	260		
	1478	3410	837	300		
	1479	3468	808	270		
	1480	3445	762	210		
	1481	3454	787	230		
	1482	3455	773	215		
	1486	3451	780	235		
	1487		780	240		
	1488		792	210		
	1491	3443	787	240	· ·	
	1492	3423	780	225		
	1495	3423	743	210		
	1 <b>496</b>	3439	769	220		
	1 <b>499</b>	3458	766	185		
	1 <b>500</b>	3411	697	<b>2</b> 15		
	1 <b>50</b> 1	3434	742	1 <b>90</b>		
	1502	3444	760	215	·.	
	1503	3434	727	210		
	1506	3431	607	1 <b>90</b>		
	1 <b>507</b>	3438	643	225	•	
	1 <b>508</b>	3394	730	220		
	1 <b>509</b>		740	145		
•	1512	,		215		
	1513	3414	713	220		
	1514	3406	737	170		
	1515	3413	752	1 <b>90</b>		
	1 <b>517</b> ·	3404	775	195		
	1522	3421	720	165		
	1524	3430	768	210		
	1526		748	160		
	1527	3419	738	160		· .

	Borehole ID no. ======	Reference Elevation = = = = = = = = = = = = = = = = = = =	Rustler Fm ======	Dewey Lake	feet) to Top of: Santa "Chinle" Rosa ====================================
	1500	3411	747	185	
	1528	3421	770	200	
	1529	J421	770	140	
	1530	3429	748	190	
	1531	3430	740	175	
	1532	3391	755	235	
	1533	3392	785	215	
	1534	3388	738	175	
	1535	3375	900	225	
	1536	3398	782	215	
	1537	3386	813	255	
	1538 1539	3382	813	255	
	1539	3386	768	205	
	1540 1541	3414	868	315	
	1541 1542	3370	957	385	125
	1542	3356	923	410	360
	1544	3366	1142	560	200
	1545	3311	1072	565	330
	1546	3307	1075	585	380
	1547	3348	935	350	
	1548	3332	1055	700	· · · · ·
	1549	3354	1045	450	
	1550	3490	1200	580	320
	1551	3478	1106	525	270
	1552	3456	1065	460	255
	1553	3424	1138	530	270
	1554	3497	985	425	165
	1555	3431	1012	410	165
	1556	1	1042	430	200
	1557	3392	1006	385	180
	1558	3353	1060	465	230
	1 <b>559</b>	3358	1045	445	205
	1560	3342	1047	455	255
	1561	3332	1045	410	200
	1562	3320	1023	520	225
	1563	3353	975	382	190
	1564	3344	1002	410	180
	1565	3422		390	200
	1566	3386	742	150	
	1567	3332		285	160
		3391	900	360	160
	1569	3325		360	165
	1570	3346		445	220
	1580 -			20	
	1581			130 220	
	1582	• • • •	1260	815	695
	1591 1592			815 845	755
-	1.J74	•	1004	J	

	Borehole ID no.	Reference Elevation	Rustler Fm	DEPTH (in Dewey Lake	feet) to To Santa Rosa	op of: "Chinle"
	1593	0050	1048	530		
	1594 1596	3059	815 950	135 700	530	150
	1598		930 605	455	220	150
	1600		1021	450	275	
_	1601		1003	605	445	
	1 <b>602</b>		1000			
	1604		920	575	385	
	1605	3282	1388	815	550	
	1606	3177	589 1280	50 860	685	
	1607 1608	3180 3133	583	80	080	
	1609	3122	625	85		
	1611	3130	633	80	r	
	1 <b>612</b>	3122	600	95		
	1 <b>613</b>	3131	587	75		
	1614	3124	590	95		
	1615	2120	593	85		
	1616 1617	3130 3131	623 595	100 80		
	1618	3113	540	95		
	1619	3264	740	125		
	1620	3122	659	75		
	1 <b>628</b>		1905	1415	1160	190
	1629		1422	895	670	
	1630		693	170	90	
	1631 1632	20 20	11 <b>64</b> 1155	636 560		
	1632		922	460		
	1634		266	55		
	1635	¢	1322	750	520	80
	1 <b>636</b>		1170	670		
	1639		1212	670		
	1640	2410	400	245	150	07
	1641 1642	3410 3384	532 509	52 55		37
	1642	3413	509 506	20		22 8
	1040	JTT .	500	<i></i>		

Drillhole locations, names, and other data are presented in tables of Rustler location data and can be cross-indexed with the identification number.

### APPENDIX B RUSTLER FORMATION STRATIGRAPHIC DATA FROM RICHEY (1989)

#### APPENDIX B RUSTLER FORMATION STRATIGRAPHIC DATA FROM RICHEY (1989)

Appendix B repeats Rustler Formation stratigraphic data available from Richey (1989) in a form comparable to Rustler information in Appendix A. Appendix B-1 reports the location and drillhole name as used by Richey. Drillhole formats differ from Appendix A, although boreholes common to each database (Appendix C) have names somewhat similar.

Richey assigned a unique numeric identifier for each drillhole and designated this number the FFG #. Those numbers range between 1 and 817, although not all consecutive numbers have been assigned (or have been deleted).

The depths to Rustler beds are reported by Richey in metric units, and we repeat the metric values (Appendix B-2). The original data would have been in English units, standard for geophysical logs in the United States. For use in our maps, we converted metric to English units.

We accept the data in Richey (1989) as substantially correct. A few typographical or other errors have been corrected and are noted. The tabular material has been carefully checked to try to avoid introducing new errors. Data from boreholes common to the Richey data set and the Holt and Powers data set were compared (Appendix C) to uncover any systematic errors.

## APPENDIX B-1 DRILLHOLE NAME AND LOCATION DATA FROM RICHEY (1989)

## Drillhole Name and Location Data from Richey (1989)

Location Data				Drillhole Name	Revision				
FFG									
No.	T.	R.	Sec.	section					
001	20	33	3	660s	660w	Fed. Trigg #1			
002	20		3	658n	660e	Fed. "Lea" #2-3			
004	20		7	660s	1980e	Brooks 7 Fed. #3			
005	20	33	10	330s	330e	Anderson Pritchard Fed. #1			
006	20	33	11	660s	660w	#1 Fed. 11			
007	20	33	14	2310n	990w	Fed. #4			
008	20	33	14	990s	2310w	Fed. C-1			
009	20	33	14	1980n	1650w	Fed. #3			
010	20	33	14	2310s	1980w	Fed. #1B			
011	20	- 33	14	660n	660w	Fed. #1A			
012	20	33	15	660n	660e	Fed. #1			
013	20	33	16	660n	1980e	St. Lea (886) #2			
014	20	33	18	1980n	660w	Welsh-St. #2			
015	20	33	19	2005n	1880w	Bass Fed. No. 1			
01 <b>6</b>	20	33	22	1980s	660e	"Wills" Fed. TA #1			
017	20	33	23	330n	1980e	Fed. Lindsey #1			
018	20	33	24	330s	330e	Dinnin #2			
019	20	33	26	660s	660w	Hudson Fed. #1			
020	20	33	30	1980n	1980w	#1 Bass Fed.			
021	20	33	30	660s	1300e	Bass Fed. #2			
022	20	33	31	660s	1980e	St. of New Mexico CM No. 1			
023	20	33	33	1980s	660w	#1 Aztec Fed.			
024	20	33	34	660s	1980e	Fed. "34" - #1			
025	20	33	35	660n	1980e	Shell Fed. #1			
026	20	33	35	660n	1980w	Shell Fed. #1			
027	20	33	35	1650n	990w	R.R. Morrison C & E Fed. #	1		
028	19	35	5	<b>1980n</b>	1980w	Jackson #1			
029	19	35	12	1980s	1980w	W.M. Snyder #1			
030	19	35	15	330s	660e	Cabot St. #2			
031	19	35	17	1980s	1980e	Gulf Roberts #1			
032	19	35	19	990s	660w	Superior-Alves Trustee #1			
033	19	35	21	660s	1980e	McIntosh D #3			
034	19	35	24	1650n	660w	Texaco-Hamon St. A-1			
035	19	35	25	1980n	668e	Record No. 2			
036	19	35	29	2310n	990w	St. "PK" #1			
037	19	35	. 34	660n	660w	St. W.M.A. #1			
038	19	35	<b>36</b>	1980n	1980w	St. "PJ" #1			
039	20	32	10	330n	990w	Perry Fed. #1			
040	20	32	13	660s	1980w	Hanson St. #1			
041	20	32	15 ·	1980s	1980w	Plata Deep Unit #1			
042	<b>20</b> ·	32	16	2310n	2310w	St. Little Eddy Unit #16			
043	20	32	21	1980s	660w	Big Eddy Unit #1-21			
044	20	32	23	1980s	1980w	Bactz *23" #1			
045	20	32	25	660s	660e	Audie Richards #1			
		•		•					

B-3

.

FFG		Loc	ation I		- <b>f</b> actor	Drillhole Name	Revision
FrG No.	T.	R.	Sec.	Distanc section			
	 ====		====	:====			
046	20	32	36	<b>1976n</b>	660e	St. of New Mexico "CH" No. 1	
047	20	34	14	660s	1980e	Fed. Hanson B No. 1	
048	20	34	18	<b>1980s</b>	1980e	Fed. #1	
049	20	34	21	660s	660e	Muse No. 2	
050	20	34	26	330s	330w	Cruces No. 1	
051	20	34	27	3 <b>30s</b>	1650e	Fed. Keohone "A" No. 1	
052	20	34	27	330s	330e	Fletcher No. 2	
053	20	34	34	1650n	2310w	Lynch No. "A"-9	
054	20	34	34	660s	1980e	B.V. Lynch "A" No. 5	
055	20	34	34	1650s	660e	B.V. Lynch "A" No. 8	
056	20	34	34	1980n	1980e	Lynch "A" No. 11	
057	20	34	34	660n	1980w	B.V. Lynch "A" No. 10	· · ·
058	20	34	35	1650s	990w	Lynch A-7	
059	20	34	35	1650s	2310e	Neal No. 1	
060	20	34	35	<b>990n</b>	1650w	Fed. #4	
061	20	34	35	990n	990w	Fletcher No. 1	
062	20	35	3	670n	1980w	Linam 1	
063	20	35	5	<b>1980s</b>	330e	#8 Fed. Saunders	
064	20	35	6	660n	660e	Featherstone Fed. No. 1	
065	20	35	12	660n	660e	Leonard St. #1	
066	20	35	13	660n	660w	St. 13 #1	
067	20	35	17	<b>1980s</b>	660e	Hudson Fed. #1	
068	20	35	23	660n	660w	U.S.A. West Monument #1	
069	20	35	28	660s	660w	Phillips St. #1	
070	20	35	30			Sunray St. No. 1	
071	19	32	6	1980n	1980e	W.H. Peckham No. 1	
072	19	32	13	990s	990c	W.E. Bondurant #3	
073	19	32	13	2310n	330e	W.E. Bondurant #2	
074	19	32	13	2310s	330e	W.E. Bondurant #1	
075	19	32	15	<b>1980n</b>	660e	#8 Plains Unit	
076	19	32	16	660s	660w	Humble St. #1	
077	19	32	18	<b>1980n</b>	990e	Middleton Fed. "A" #1	
078	19	32	19	1980n	2310e	Southern Calif. Pet. Corp. No.	1 .
079	19	32	21	1650s	990w	Atlantic No. 1	
080	19	32	33	660n	660w	Boellner Fed. No. 2	
081	19	32	25	330n	330e	Fed. Big Circle #1	
082	19	32	34	<b>1980s</b>	660e	FedBoellner #1	
083	19	33	8	<b>1980s</b>	660w	USA Culbertson Irwin #1	
084	19	33	. 18	<b>1980s</b>	2035w	Fed. 18 No. 5	
085	19	33	18	2130n	689w	Fed. 18 No. 1	
086	19	33	18	2310s	330w	Fed. 18 No. 7	
087	19	33	21	660n	1980w	Bright Fed. No. 1	·
088	19	33	22	<b>1980s</b>	495e	Miller-Fed. #1	
089	<b>19</b> .	33	24	800s	330w	Donohue #1	
090	19	33	26	660s	1980w	Bates Fed. #1	
091	19	33	29	330s	1980e	Fed. No. 1	
_			· · ·	• •			

: **B–4** 

		Lo	cation 1			Drillhole Name	Revision
FFG				Distanc		· .	
No.	Т.	R.	Sec.	section	line		
=====	===;	= ~ =	:===:	=====	=====:		=======================================
		20	•	<i>((</i> )-	(())	Fod Condon #1	
092	19	33	29	660n	660w	Fed. Carder #1	
093	19	33	30	660n	1980e	Signal Ross #1	
094	19	33	30	1980n	2004w	Signal Ross Fed. #2	
095	19	33	3	2082n	1980w	Buffalo Unit #1	
096	19	34	5	330n	660w	Fed. Littlefield "EA" #1	
097	19	34	7	1980n	1980e	Mescalero Unit #1	
098	19	34	12	660n	660w	U.S. Smelting St. #1	
099	19	34	13	2310s	330w	Atlantic Richfield #1	
100	19	34	15	330s	330w	Gulf Fed. #1	
101	19	34	25	1980s	660w	Superior Fed. #4	
102	19	34	28	990s	2310w	Fed. #1	
103	19	34	30	2310s	330w	Drlg. & Exploration Gillespi	e No. 1-"B"
104	19	34	36	660s	330e	Pure St. #1	
105	21	30	25	1098s	969w	Wills-Crosby #1	
106	21	30	26	983n	1361w	Wills-Crosby #2	
107	21	30	26	660s	1980w	James "D" #1	
108	21	31	31	264n	471w	Wills #7	
109	21	31	32	300n	2540w	FC-63 (Kerr McGee)	
110	21	31	32	141s	141e	FC-68 (Kerr McGee)	
111	21	31	34	250n	2207e	FC-52 (Kerr McGee)	
112	21	31	34	100s	100w	FC-65 (Kerr McGee)	
113	21	31	34	141n	160w	FC-69 (Kerr McGee)	
114	22	30	1	990s	1980w	Cabana #1	rev'd 974s, 1976w w/log data
115	22	30	2	660s	2011e	James "A" #1	
116	22	30	3	693n	977e	Duval #96	
117	22	30	3	1320s	300e	USB&C #168	
118	22	30	4	50n	650e	Gypsy Oil Co. #3	
119	22	30	9	315s	291w	USPC #97A	
120	22	30	9	1320n	2600w	USB&C #163	
120	22	30	.9	2406n	578w	IMC #322	
121	22	30	9	1485s	650w	IMC #343	
122	22	30	10	1883n	2574e	Duval #82	
123	22	30	11	1976n	1981e	James "E" #1	
124	22	30	11	1247s	1301w	D-121	
	22	30 30	13	1247s 1574n	1566w	D-121 D-120	
126	22	30 30	13		2178e	D-120 D-48	
127		30		136s		Duval #33	
128	22		21	109s	81e		
129	22	30	21	1320n	2640e	IMC #111	
130	22	30	21	1320s	1320w	IMC #112	
132	22	30	27	2664s	2625e	Duval #181	
133	22	30	27	38s	2643w	Duval #198	
134	22	30	27	500s	20w	Duval #200	
135	22	30	27	2370s	224e	Duval #231	
136	22.	30	36	2463s	1124w	D-160	
137	22	30	36	660s	2006e	James Ranch #1	
138	22	31	6	1173s	11 <b>47</b> w	U-134 (Miss. Chem. Corp.)	

TRO		Location Data Distance from				Drillhole Name Revision
FFG No.	Т.	R. Sec. section line				
				=====		
139	22	31	6	1978n	660w	Campana #1
140	22	31	8	143s	249e	FC-92 (Kerr McGee)
141	22	31	8	15 <b>4s</b>	37w	FC-82 (Kerr McGee)
1 <b>42</b>	22	31	9	107n	91e	NF-1 (Kerr McGee)
1 <b>43</b>	22	31	34	2022s	1978w	Fed. Cotton Baby #1
144	23	29	1	2763s	2964e	Duval #29
145	23	29	1	<b>528s</b>	528w	IMC I-184
146	23	29	1	1320n	1320e	IMC 1-263
147	23	29	4	1255n	1374e	Arco #9
148	23	29	12	2600n	700e	Shell Oil Co. #17 (Dogtown # )
149	23	29	13	2100n	300e	Shell Oil Co. #21 (Dogtown #15)
150	23	29	15	202n	2524e	Duval #8
151	23	29	15	1160n	3276e	Duval #14
152	23	29	17	660s	1980w	Teledyne "17" #1
153	23	29	24	300n	300e	Shell Oil Co. #19 (Dogtown #13)
154	23	29	25	200n	2500e	Shell Oil Co. #22 (Dogtown #16)
155	23	29	27	660s	1980w	Laguna Grande #2
156	23	29	28	1380s	990e	#1 Laguna Grande Unit
157	23	29	35	1900s	100e	A-29
158	23	29	36	1800s	1200e	A-31
159	23	30	1	1834n	1978w	Hudson Fed. #1
160	23	30	1	1973s	164 <b>8e</b>	James Ranch Unit #3
161	23	30	2	101s	1169w	Duval #1
162	23	30	2	143n	112w	Duval D-31
163	23	30	2	2655n	2655e	Duval D-179
164	23	30	17	<b>2505n</b>	317w	Shell Oil Co. #6 (Dogtown #1)
165	23	30	19	2244n	2096e	Duval #10
166	23	30	24	1980n	660w	Sandy Unit #1
167	23	<b>30</b> [°]	26			USGS #22
168	23	30	28	175s	232w	Duval #4
1 <b>69</b>	23	30	29	261n	261e	Shell Oil Co. #7 (Dogtown #2)
170	23	30	30	<b>215n</b>	2300w	Shell Oil Co. #20 (Dogtown #14)
1 <b>7</b> 1	23	30	31	2640n	1750e	Arco #24
172	23	30	32	1 <b>411n</b>	2510e	Shell Oil Co. #23 (Dogtown #17)
173	23	30	36	2150n	3090w	Leonard ?????? #1-S
174	24	28	2	1980s	660w	Malaga "A" #1
1 <b>7</b> 5	24	29	3	2030n	2310w	Weiner & McDonald Kerr #1
1 <b>76</b>	24	29	4	1 <b>327s</b>	1321e	Arco core test #13
177	24	29	19	480n	.330w	Bun #1
178	24	29	27	660s	660w ~	Mobil Fed. *27" #1
179	24	29	29	1980s	660w	Ellis Fed. 1-X
180	24	30	2	200s	200w	Shell Oil Co. #16 (Dogtown #11)
181	24	30	5	1147n	406e	Shell Oil Co. $\#11$ (Dogtown $\#6$ )
182	24.	30	6	1990n	2185w	Arco #8
183	24	30	9	2001n	2001e	Shell Oil Co. #8 (Dogtown #3)
184	24	30	11	316s	390w	Shell Oil Co. #12 (Dogtown # )
_~ .	<u> </u>					

	'n	Lo	cation I		_	Drillhole Name	Revision
FFG	-	-	<u>^</u>	Distanc			
No.	T.	R.	Sec.	section			
2222	===;	* = 2	:==::		=====		
185	24	30	15	200n	200w	Shell Oil Co. #13 (Dogtown #	έ \
186	24 24	30	16	200n 150n	2590e	Shell Oil Co. #24 (Dogtown #	
180	24	30	18	460n	660e	Poker Lake Unit #45	10)
188	24	30	20	100n	1320w	Southern Production Co. core	test #6
189	24	30	23	1606n	2294e	Shell Oil Co. #9 (Dogtown #4	
190	24	30	23	660s	660w	Shugart Fed. 23 #1	·)
191	24	30	25	660s	660w	Bass Fed. #1-25	
192	24	30	27	336n	270e	Shell Oil Co. #10 (Dogtown #	+) · · ·
193	24	30	29	660s	660e	Fed. Nettles (?) #1	
194	24	31	2	1980n	1980w	#1-2 Todd Fed.	rev'd 1945w to 1980w w/log data
195	24	31	3	660s	660e	Jennings Fed. #1	-
196	24	31	4	660n	660e	Stewart Fed. #1	
197	24	31	4	1659n	2310w	Bestly (?) Fed. #1	
198	24	31	5	330n	330e	USGS potash core test #13	
199	24	31	6	1098n	2193e	Shell Oil Co. #15	
200	24	31	6	1980n	1980w	Dunes (?) Unit Fed. #1	
201	24	31	7	660s	660e	Fed. <b>"Y"</b> #1	
202	24	31	11	2531n	178e	Shell Oil Co. #4 (Fed. G-NM	#4)
203	24	31	11	660n	1980e	Fed. Littlefield "CT" #1	
204	24	31	13	<b>1980s</b>	1980e	1-13 Fed.	
205	24	31	17	660n	660e	Continental Fed. #1	rev'd 740e to 660e w/log data
206	24	31	18	660s	660e	Ritchie Fed. #1	
207	24	31	20	660n	660e	Jennings Fed. #1	
208	24	31	20	660s	<b>1980</b> w	Poker Lake #40	
209	24	31	21	660n	660e	Carper Fed. #1-21	
210	24	31	21	660s	660w	Poker Lake Unit #43	
211	24	31	28	660s	660e	Poker Lake #36	
212	24	31	24	660s	1980e	Heflin Fed. #1	
213	24	31	33	2310n	2313e	Ramley (?) #1	
214	24	31	35	1980s	660w	Cotton Draw Unit #67	
215	25	30	1	660n	660e	Poker Lake Unit #2	
216	25	30	4	1980n	1980w	R&B Fed. #1	
217	25	31	2	100n	1500w	Dog Town #2	
218	25	31	2	1980n	1980e	Cotton Draw Unit #65	FFG 602 eliminated as duplicate
219	25	31	10	1980n	1980e	Pauley & Harrison #2	
220	25	31	12	660n	660w	Pauley & Harrison #1	
221	25	31	15	780n	1230w	Pauley & Harrison PH-1	
222	25	31	28	660n	660w	Poker Lake Unit #7-A-3	
223	25	31	35	660s	660w	Del Basin #1	
224	21	32	1	330n	1380e	Sheperd #1	
225	21 21	32	1	3255n	1972e	ETZ Fed. #1	
226	21 21	32 32	1	660s	1980w	Fed. #1 #1 Hat Mesa *A*	
227	21 21		2	660s	1980e	#1 Hat Mesa "A" Pubco Fed. #1	
228	21 ·	32	2	3300n	660w 1980e	Pubco Fed. #1 #1 TSS Fed. Comm.	
229	21	32 32	3	660s			
230	21	32	3	3300s	1980w	New Mexico Fed. "B" #1	

-		Loc	ation ]			Drillhole Name	Revision
FFG	<b>m</b>	-	<b>6</b>	Distanc			
No.	<b>T.</b>	<b>R.</b>	Sec.	section ]	une 		
===:	====:						
231	21	32	4	1 <b>980n</b>	1980e	New Mexico Fed. "A" #2	
232	21	32	4	3300s	1980e	New Mexico Fed. "D" #1	
232	21	32	4	1683n	1650w	New Mexico Fed. #1	
234	21	32	5	4650s	1980w	New Mexico Fed. "F" #1	
235	21	32	5	3300s	660e	New Mexico Fed. "E" #1	
236	21	32	6	3371n	2072w	Aid Fed. #1	
237	21	32	9	1980n	1980e	Halfway Fed. #1	
238	21	32	10	1980n	1980e	Government "H" Com. #1	
239	21	32	11	660s	660e	Fed. 1	
240	21	32	11	1980n	1980e	Hat Mesa #1	
241	21	32	12	<b>1980</b> s	660w	Fed. HM "12" #1	
242	21	32	21	660n	660w	Salt Lake South Unit #1	
243	21	32	26	1980n	660e	San Simon #1	
244	21	32	35	<b>1980n</b>	1980w	Chaney Fed. #1	
245	21	33	9	1980n	660e	South Lynch #1	
246	21	33	11	660n	640w	Mobil St. #2	
247	21	33	13	660s	1880e	New Mexico St. #1	
248	21	33	13	<b>1980s</b>	1980e	Berry St. #1	
249	21	33	15	<b>1980s</b>	1980e	Stock Unit #1	
250	21	33	18	660s	1980e	Eaves Unit #1	
251	21	33	24	660s	660e	St. SLA #1	
252	21	33	32	<b>1980s</b>	1980w	St. "LT" #1	
253	21	33	33	1980n	660e	#1 R.F. Legget	
254	21	33	34	1980n	660w	R.F. Legget "A" No. 1	·
255	21	33	35	660n	660w	No. 1 Amarada St.	
256	21	34	2	<b>1980s</b>	1980e	"F" St. #1	
257	21	34	5	1980s	660w	Berry "5" St. Com. No. 1	
258	21	34	13	660n	660e	Shell St. No. 10	
259	21	<b>34</b> '	16	660s	990e	Shell St. "A" No. 2	
260	21	34	24	2310n	1650w	St. "P" No. 5	
261	21	34	24	990s	2310e	St. #33	
262	21	34	31	660s	750w	Mascho Unit Well #1	
263	21	34	32	660s	1980e	Shamrock St. #1	
264	23	32	9	660s	1980e	Continental Fed. #1-9	
265	23	32	15	1980n	1980e	Fed. Continental 1-15	
266	23	32	24	660s	660e	Fields Fed. No. 1	
267	23	33	32	660n	1980e	Humble St. #1-32	
268	23	33	35	660s	660w	St. 1-35	
269	23	34	30	660s	3300e		
270	23	34	27	660s	1980w	` <b>1</b>	Ridge Unit)
271	23	34	26	660s	1980w	St. "FO" #1	
272	22	32	31	660n	1980e	Perry Fed. #1-31	
273	23	32	7	510n	660e	Fed. "WL" #5-7	
274	22	. 32	14	660s	1980w	#2 Red Tank Unit	
275	22	32	15	1980s	1980e	#1 Connally Fed.	
276	22	32	17	<b>1980s</b>	1980e	Fed. 1-17	

		Lo	ation D		_	Drillhole Name	Revision
FFG	_	_	-	Distance from			
No.	Т.	R.	Sec.	section			***********
=====	==:		:====	:====:			
277	<b></b>	32	18	660s	660e	Fed. Jennings #1-18	
277 278	22 22	32 32	10	660s	660e	Bass Fed. #1	
278	22	32	20	1980n	1980e	#1 Fed.	
27 <del>9</del> 280	22	32	22	1980n	660w	Fed. Red Tank Unit #1-22	
281	22	32	25	660n	1980w	Covington "A" Fed. #1	
282	22	32	36	330n	1980w	Shell et al Bootleg Ridge Unit	#1
283	22	33	1	660n	1980e	Cotter Fed. No. 1	
284	22	33	4	2310s	800w	Reed Fed. #1	
285	22	33	5	660s	330e	Richardson-Bass St. No. 1	
286	22	33	7	660s	660w	St. "K" #1	
287	22	33	7	1980s	1980e	S.S.T. St. #7-1	
288	22	33	9	660n	660w	Hudson Fed. No. 1	
289	22	33	15	1980s	1980e	Getty Fed. "15" No. 1	
290	22	33	20	1980n	660w	Conoco Fed. #1	
291	22	33	32	660s	660w	Shell St. #1-B	
292	22	33	33	660n	660e	Phillips St. #1"	
293	22	33	34	660s	1980e	#1 Humble St.	
294	22	34	1	1980s	660w	St. "AR" #1	
295	22	34	2	660s	1980w	New Mexico St. BU #1	
296	22	34	3	1650n	660w	#1 St. GRA	
297	22	34	4	2310n	2310w	#4 Fed. "GR"	
298	22	34	7	660s	<b>660</b> w	Bell Lake Unit #8	
299	22	34	8	660s	1980e	New Mexico St. "AE" No. 1	
300	22	34	22	330n	330e	Jacquie Ann #1	
301	22	34	26	1980s	660e	Merchant "B" #1	
302	22	35	1	660s	660w	Jalmat Deep #1	
303	22	35	3	660n	660w	Donegan St. No. 1	
304	22	35	9	1980s	1980w	Humble St. #1	
305	22	35	14	660n	1700w	Jalmat Water Supply #2	
306	22	35	16	<b>1980n</b>	1980e	North Rock Lake Unit #1	
307	22	35	17	660n	660e	Shell St. #1	
308	22	35	20	1980n	660e	Carper Aztec No. 1	
309	22	35	23	660s	1980w	St. Nix #1-23	
310	22	35	25	1980n	660w	Cone Jalmat Yates Pool Unit	Iract 8 - #5
311	22	35	28	1980s	660w	Rock Lake Unit #1	
312	22	35	35	660s	660w	Gulf St. 1-A	
313	22	32	6	1980n	660e	Fed. "CK" Com. #1	
314	22	32	13	660s	660e	B & H Fed. #1 (Texico-Weave	
315	23	32	.3	1980n	660e	Fed. #1	rev'd 1969n to 1980n w/log data
316	23	32	11	1980n	1980e	Matthews "11" #1	
317	23	32	18	1980n	660e	Fed. Sand 18-1	
318	23	32	20	660s	1980e	Fed. Estill AF-1	
319	23	32	21	660n	1980w	Gulf-Fed. "A-A" #1	
320	23 .		25	990n	2310w	Wehrli-Fed. #1	
321	23	32	25	990s	330w	Fields No. 2	and (600 to 2200 - 1
322	23	32	26	330s	330e	Fed. "WL" #3-26	rev'd 660e to 330e w/log data
			-				

		Loc	ation I	)ata		Drillhole Name Revision
FFG				Distance	e from	
No.	Т.	R.	Sec.	section ]	-	
====	====	===	====		:=====	=======================================
323	23	32	26	660s	1980w	Fed. Field #1
324	23	32	28	660n	<b>1980w</b>	Continental Fed. No. 1
325	23	32	31	660s	660w	Hankamer No. 1 Continental Fed.
326	23	32	33	1980n	660e	Holder Fed. #1
327	23	32	34	<b>1980s</b>	330e	Fed. "K" No. 1
	23	32	35	1650n	2310e	
329	23	32	36	1980n	660w	Gulf St. #1
330	23	32	36	<b>1980s</b>	1980e	Brinninstool Deep Unit #1
331	23	33	4	660s	660e	Continental Fed. #1-P
332	23	33	6	330s	330e	Shell Fed. #1-6
333	23	33	7	660s	660w	Fed. 7 Well #1
334	23	33	17	660s	660w	Texaco St. No. 1
335	23	33	18	660s	660w	#1 "A" Shell St.
336	23	33	19	1980s	1910w	Marshall #19-2
337	23	33	20	660s	660e	Levick Fed. #1
338	23	33	31	660n	660e	Lea St. #1
339	23	33	35	1980n	660e	8104 JVP Hat No. 1
340	23	33	36	1980s	660e	Bell Lake Unit 1 #18
341	23	34	1	660s	660w	Allan Hargrave #1 St.
342	23	34	6	660s	1980e	Bell Lake Unit #6
343	23	34	10	1560n	1830w	#1Y Fed. "AA"
344	23	34	15	330s	330e	No. 1 Hall/Hall-Fed. #1
345	23	34	18	1980s	1980w	Bell Lake #9
346	23	34	19	1980n	1980w	Bell Lake Unit #10
347	23	34	22	<b>1980n</b>	1980e	North Antelope Ridge Unit #1
348	23	34	23	660s	1980w	St. 23 Comm #1
349	23	34	25	660s	1980w	SL R #1
350	23	34	26	660n	1980w	St. "EO" #1
351	23	34	31	330s	2970e	Bell Lake Unit-1-A St.
352	23	34	31	660s	3300e	Bell Lake Unit #1
353	23	34	32	<b>1980s</b>	1650w	Bell Lake Unit #17
354	23	34	35	<b>990n</b>	1980w	St. AR #1
355	20	27	1	2310n	2310w	Mary Jane No. 1
356	20	27	13	<b>1980n</b>	1980w	Donahue No. 1
357	<b>20</b>	28	5	1980s	660w	Wright Fed. No. 1
358	20	28	15	<b>1980n</b>	660e	#1 Trigg Fed.
359	20	28	26	2310s	330w	Connally #1
360	20	28	30	1980n	660w	No. 1 Sun St.
361	20	29	1	660n	1980e	Superior Fed. #2
362	20	29	3	1980n	660e	Lambie Fed. #1
363	20	29	4	660n	1980w	#1-X Fed.
364	20	29	7	330s	330e	Yates Fed. #2
365	20	29	9	1980n	660e	Lambie Fed. No. 1
366	20		10	990n	990e	Jennings Fed. No. 1
367	20	29	11	2310s	2310w	#1 McKee
368	20	29	12	330s	990w	McKee Fed. No. 1
			- <u>-</u> -			

.

FFGDistance from section line3692029131470n1170wTexaco Fed. No. 2370202913660n1980w#1 Texaco Fed.371202913660n2310e#1 Union3722029142310s2310eTexaco No. 1373202916660n1980wFed. "X" #1-16374202917660s660e#1 Yates Fed.375202918660n1980eYates Fed. #1376202925330n330wNicholas #13772029281650s1650ePauline Trigg Fed. No. 13782029301980n90eStebbins Fed. Deep #1379202931330n2310eYates Petroleum Corp. No. 13802029361980s660w#1 Zachary3822029362080s1880eGolden Lane "36" Fed. #138320301660s1980e#1-1 Fed. "PA"384203051980n1980wContinental Fed. #1	
369       20       29       13       1470n       1170w       Texaco Fed. No. 2         370       20       29       13       660n       1980w       #1 Texaco Fed.         371       20       29       13       660n       2310e       #1 Union         372       20       29       14       2310s       2310e       Texaco No. 1         373       20       29       16       660n       1980w       Fed. "X" #1-16         374       20       29       17       660s       660e       #1 Yates Fed.         375       20       29       18       660n       1980e       Yates Fed. #1         376       20       29       25       330n       330w       Nicholas #1         377       20       29       28       1650s       1650e       Pauline Trigg Fed. No. 1         378       20       29       30       1980n       990e       Stebbins Fed. Deep #1         379       20       29       31       330n       2310e       Yates Petroleum Corp. No. 1         380       20       29       36       1980s       660w       #1 Zachary         382       20       29 <th></th>	
370       20       29       13       660n       1980w       #1 Texaco Fed.         371       20       29       13       660n       2310e       #1 Union         372       20       29       14       2310s       2310e       Texaco No. 1         373       20       29       14       2310s       2310e       Texaco No. 1         373       20       29       16       660n       1980w       Fed. "X" #1-16         374       20       29       17       660s       660e       #1 Yates Fed.         375       20       29       18       660n       1980e       Yates Fed. #1         376       20       29       25       330n       330w       Nicholas #1         377       20       29       28       1650s       1650e       Pauline Trigg Fed. No. 1         378       20       29       30       1980n       990e       Stebbins Fed. Deep #1         379       20       29       31       330n       2310e       Yates Petroleum Corp. No. 1         380       20       29       36       1980s       660w       #1 Zachary         381       20       29	=
370       20       29       13       660n       1980w       #1 Texaco Fed.         371       20       29       13       660n       2310e       #1 Union         372       20       29       14       2310s       2310e       Texaco No. 1         373       20       29       14       2310s       2310e       Texaco No. 1         373       20       29       16       660n       1980w       Fed. "X" #1-16         374       20       29       17       660s       660e       #1 Yates Fed.         375       20       29       18       660n       1980e       Yates Fed. #1         376       20       29       25       330n       330w       Nicholas #1         377       20       29       28       1650s       1650e       Pauline Trigg Fed. No. 1         378       20       29       30       1980n       990e       Stebbins Fed. Deep #1         379       20       29       31       330n       2310e       Yates Petroleum Corp. No. 1         380       20       29       36       1980s       660w       #1 Zachary         381       20       29	
371 $20$ $29$ $13$ $660n$ $2310e$ #1 Union $372$ $20$ $29$ $14$ $2310s$ $2310e$ Texaco No. 1 $373$ $20$ $29$ $16$ $660n$ $1980w$ Fed. "X" #1-16 $374$ $20$ $29$ $17$ $660s$ $660e$ #1 Yates Fed. $375$ $20$ $29$ $18$ $660n$ $1980e$ Yates Fed. #1 $376$ $20$ $29$ $25$ $330n$ $330w$ Nicholas #1 $377$ $20$ $29$ $28$ $1650s$ $1650e$ Pauline Trigg Fed. No. 1 $378$ $20$ $29$ $30$ $1980n$ $990e$ Stebbins Fed. Deep #1 $379$ $20$ $29$ $31$ $330n$ $2310e$ Yates Petroleum Corp. No. 1 $380$ $20$ $29$ $36$ $1980s$ $660w$ #1 Zachary $382$ $20$ $29$ $36$ $2080s$ $1880e$ Golden Lane "36" Fed. #1 $383$ $20$ $30$ $1$ $660s$ $1980e$ #1-1 Fed. "PA"	
372 $20$ $29$ $14$ $2310s$ $2310e$ Texaco No. 1 $373$ $20$ $29$ $16$ $660n$ $1980w$ Fed. "X" #1-16 $374$ $20$ $29$ $17$ $660s$ $660e$ #1 Yates Fed. $375$ $20$ $29$ $18$ $660n$ $1980e$ Yates Fed. #1 $376$ $20$ $29$ $25$ $330n$ $330w$ Nicholas #1 $377$ $20$ $29$ $28$ $1650s$ $1650e$ Pauline Trigg Fed. No. 1 $378$ $20$ $29$ $30$ $1980n$ $990e$ Stebbins Fed. Deep #1 $379$ $20$ $29$ $31$ $330n$ $2310e$ Yates Petroleum Corp. No. 1 $380$ $20$ $29$ $36$ $1980s$ $660w$ #1 Zachary $382$ $20$ $29$ $36$ $2080s$ $1880e$ Golden Lane "36" Fed. #1 $383$ $20$ $30$ $1$ $660s$ $1980e$ #1-1 Fed. "PA"	
373 $20$ $29$ $16$ $660n$ $1980w$ Fed. "X" #1-16 $374$ $20$ $29$ $17$ $660s$ $660e$ #1 Yates Fed. $375$ $20$ $29$ $18$ $660n$ $1980e$ Yates Fed. #1 $376$ $20$ $29$ $25$ $330n$ $330w$ Nicholas #1 $377$ $20$ $29$ $28$ $1650s$ $1650e$ Pauline Trigg Fed. No. 1 $378$ $20$ $29$ $30$ $1980n$ $990e$ Stebbins Fed. Deep #1 $379$ $20$ $29$ $31$ $330n$ $2310e$ Yates Petroleum Corp. No. 1 $380$ $20$ $29$ $36$ $1980s$ $660w$ #1 Zachary $382$ $20$ $29$ $36$ $2080s$ $1880e$ Golden Lane "36" Fed. #1 $383$ $20$ $30$ $1$ $660s$ $1980e$ #1-1 Fed. "PA"	
374       20       29       17       660s       660e       #1 Yates Fed.         375       20       29       18       660n       1980e       Yates Fed. #1         376       20       29       25       330n       330w       Nicholas #1         377       20       29       28       1650s       1650e       Pauline Trigg Fed. No. 1         378       20       29       30       1980n       990e       Stebbins Fed. Deep #1         379       20       29       31       330n       2310e       Yates Petroleum Corp. No. 1         380       20       29       36       1980s       660w       #1 Zachary         381       20       29       36       1980s       660w       #1 Zachary         382       20       29       36       2080s       1880e       Golden Lane "36" Fed. #1         383       20       30       1       660s       1980e       #1-1 Fed. "PA"	
375       20       29       18       660n       1980e       Yates Fed. #1         376       20       29       25       330n       330w       Nicholas #1         377       20       29       28       1650s       1650e       Pauline Trigg Fed. No. 1         378       20       29       30       1980n       990e       Stebbins Fed. Deep #1         379       20       29       31       330n       2310e       Yates Petroleum Corp. No. 1         380       20       29       32       660s       660e       No. 1 Yates Fed.         381       20       29       36       1980s       660w       #1 Zachary         382       20       29       36       2080s       1880e       Golden Lane "36" Fed. #1         383       20       30       1       660s       1980e       #1-1 Fed. "PA"	
376       20       29       25       330n       330w       Nicholas #1         377       20       29       28       1650s       1650e       Pauline Trigg Fed. No. 1         378       20       29       30       1980n       990e       Stebbins Fed. Deep #1         379       20       29       31       330n       2310e       Yates Petroleum Corp. No. 1         380       20       29       32       660s       660e       No. 1 Yates Fed.         381       20       29       36       1980s       660w       #1 Zachary         382       20       29       36       2080s       1880e       Golden Lane "36" Fed. #1         383       20       30       1       660s       1980e       #1-1 Fed. "PA"	
3772029281650s1650ePauline Trigg Fed. No. 13782029301980n990eStebbins Fed. Deep #1379202931330n2310eYates Petroleum Corp. No. 1380202932660s660eNo. 1 Yates Fed.3812029361980s660w#1 Zachary3822029362080s1880eGolden Lane "36" Fed. #138320301660s1980e#1-1 Fed. "PA"	
378       20       29       30       1980n       990e       Stebbins Fed. Deep #1         379       20       29       31       330n       2310e       Yates Petroleum Corp. No. 1         380       20       29       32       660s       660e       No. 1 Yates Fed.         381       20       29       36       1980s       660w       #1 Zachary         382       20       29       36       2080s       1880e       Golden Lane "36" Fed. #1         383       20       30       1       660s       1980e       #1-1 Fed. "PA"	
379       20       29       31       330n       2310e       Yates Petroleum Corp. No. 1         380       20       29       32       660s       660e       No. 1 Yates Fed.         381       20       29       36       1980s       660w       #1 Zachary         382       20       29       36       2080s       1880e       Golden Lane "36" Fed. #1         383       20       30       1       660s       1980e       #1-1 Fed. "PA"	
380       20       29       32       660s       660e       No. 1 Yates Fed.         381       20       29       36       1980s       660w       #1 Zachary         382       20       29       36       2080s       1880e       Golden Lane "36" Fed. #1         383       20       30       1       660s       1980e       #1-1 Fed. "PA"	
381       20       29       36       1980s       660w       #1 Zachary         382       20       29       36       2080s       1880e       Golden Lane "36" Fed. #1         383       20       30       1       660s       1980e       #1-1 Fed. "PA"	
382       20       29       36       2080s       1880e       Golden Lane "36" Fed. #1         383       20       30       1       660s       1980e       #1-1 Fed. "PA"	
383 20 30 1 660s 1980e #1-1 Fed. "PA"	
385 20 30 22 1980s 1980e #1 Fed. 386 22 28 2 1650n 1650w Ford No. 2	
387 20 30 28 330s 1980w Fed. No. 7	
388 20 30 28 1980n 1980w USA Emperor Oil Co. #1	
389 20 30 31 1980n 760e Lowe Fed. #1	
390 20 30 32 660n 330e Eddy St. "BD" No. 1	
391 20 30 32 1980n 330e Eddy St. "BD" No. 2	
392 20 30 33 1650n 990e Gulf Fed. #1	
393 20 31 4 660s 660e Big Eddy Unit 33	
394 20 31 6 660s 660e #3 Big Eddy Unit	
395 20 31 7 1650s 660e Big Eddy Unit #11	
396 20 31 30 330s 330e Big Eddy Unit #1-30	
397 21 28 1 4620s 1980e #1 Cowan	
398 21 28 2 3300s 660w St. #1	
399 21 28 3 3630s 2310e #1 Cowan	
400 21 28 5 1565n 1985w Blg Eddy Unit #13	
401 21 28 7 660n 660w #1 Richardson & Bass	
402 21 28 12 1980s 660e Big Eddy Unit No. 36	
403 21 28 15 660s 660w Big Eddy Unit #32	
404 21 28 20 1980s 1980e Big Eddy Unit No. 60	
405 21 28 27 660s 660e Fed. "GN" #1	
406 21 28 29 1180s 1980w Big Eddy Unit #54	
407 21 28 29 1980n 1980e Big Eddy No. 39	
408 21 28 30 1750s 1750e #2 Nix & Yates Fed.	
409 21 28 30 1650n 1650w #1 Nix-Yates Fed.	
410 21 28 31 535s 660w Big Eddy Unit #31	
411 21 28 33 560s 660w Richardson Bass Fed. No. 1	
412 21 28 35 990n 1650w Big Eddy #59	
413 21 28 35 1980n 1980w Big Eddy #47	
414 21 28 35 330s 2310w Big Eddy Unit #62	

		Loc	ation I			Drillhole Name	Revision
FFG	_	_	_	Distanc			
No.	T.	R.	Sec.	section			
====	:===:	===			======		
415	21	28	35	1650s	330w	Big Eddy Unit #49	
415	21	28 28	35	1980n	2310e	Big Eddy Unit #56	
417	21	28	35	2310s	1650w	Big Eddy #58	
418	21	29	3	1980n	1980w	Big Eddy Unit #18	
419	21	29	4	4620s	1980w	Cowden Fed. #1	
420	21	29	4	838n	1650w	#1 Hudson Fed.	
421	21	29	5	630n	1980e	#1 Trigg Fed. "AA"	
422	21	29	5	1980n	660e	#1 Harris Bell	·
423	21	29	5	2825n	2310w	#1 Harris Fed.	
424	21	29	6	3147n	660e	Harris "6" #1	
425	21	29	18	1980s	1980e	Big Eddy Unit #16	
426	21	29	19	660s	660e	Big Eddy Unit #55	
427	21	29	21	660s	660e	#1 Nix-Hall	· .
428	21	<b>29</b>	22	1980n	1980e	Big Eddy Unit No. 40	
429	21	29	34	660n	1980w	Big Eddy Unit No. 38	
430	21	30	16	1908n	751e	Big Eddy 45-Y	
432	21	30	35	1980s	660w	James "C" #1	
433	22	28	2	330n	2310w	Ford St. No. 1	
434	22	28	7	330s	794w	Old Indian Draw Unit #16	
435	22	28	7	330s	1650w	Old Indian Draw Unit #14	
436	22	28	7	2324n	2330e	Old Indian Draw Unit #33	
437	22	28	18	2310n	2150w	Old Indian Draw No. 7	
438	22	31	1	530s	330w	SCL Fed. #1	
439	22	28	18	2002s	1721 <u>w</u>	Old Indian Draw No. 6	
440	22	28	18	660s	1980e	Old Indian Draw #2	
441	22	28	18	1980s	1980e	#1 Old Indian Draw Unit	
442	22	28	19	660n	<b>1973w</b>	Old Indian Draw Unit #17	
443	22	28	21	1980n	1980e	Pecos Irrigation #1	
444	22	28	22	1980n	1980w	Big Chief #1	
445	22	28	25	<b>1980s</b>	1980e	Big Eddy Unit #43	
446	22	28	27	1980n	<b>1980w</b>	Little Squaw #1	
447	22	28	29	660s	990w	C.R. Lopez "A" #1	
448	22	28	29	2210s	1980w	City of Carlsbad #1	
<b>449</b> .	22	28	30	<b>990s</b>	330w	Nichols "HV" #1	
450	22	28	30	2310n	990e	Harroun #1	
451	22	28	31	900n	1650e	Eastland Brantley #1	
452	22	28	31	990n	330e	Gourley Fed. #3	
453	23	31	2	660n	660e	SL AA 2 #1	
454	23	31	. 6	1957n	1973e	James Ranch Unit #7	
455	23	31	<b>11</b> .	660s	660e	Bauerdorf-Fed. #1	rev'd 330e to 660e w/log data
456	23	31	14	<b>1980s</b>	1980w	Todd Fed. "14" No. 1	
457	23	31	16	<b>1980s</b>	1980w	Arco St. #1-16	
458	23	31	21	660s	660e	Muse-Fed. #1	
459	23·	31	25	1980n	1970w	#1-Z Todd "25" Fed.	
460	23	31	26	1 <b>980n</b>	1650e	Todd "26" Fed. #2	
461	23	31	26	<b>1980n</b>	1980e	Todd Fed. "26" No. 1	
	x ²						•

		Lo	cation		_	Drillhole Name Revision
FFG		_	_	Distanc		
No.	Т.	R.	Sec.	section		
====	===	===	====	=====	*=2==	
				1000-	((0)	TTT-LA TAJ #4
462	23	31	27	1980s	660w	Wright-Fed. #1
463	23	31	32	660n	660w	Continental St. No. 1
464	23	31	33	660n	1980e	Wright-Fed. #3
465	23	31	33	1980n	660w	Wright-Fed. #2
466	23	31	36	660s	660w	Pauley Harrison St. #1
467	23	35	8	2310n	330w	Fed. SR #1-8
468	23	35	9	1980s	1980e	Sand Well Unit #1
469	23	35	12	1980n	1980w	#1 Fed. "F"
470	23	35	14	660n	1983e	Ann Davis #1
471	23	35	17	660n	660e	St. Henry #1-17
472	23	35	28	660n	1980w	North Custer Mountain Unit #1
473	23	35	36	660n	660w	St. "D" #1
474	24	32	1	1980s	660w	Continental Fed. #1-L
475	24	32	2	1980n	660e	Ohio St. No. 1
476	24	32	6	660n	1980e	Bondurant Fed. No. 1
477	24	32	10	<b>1980s</b>	1980e	Fed. Hanagan D #1
478	24	32	11	<b>1980s</b>	1980e	Fed. Hanagan D #2
479	24	32	11	1980n	1980w	Fed. Hanagan D-4
480	24	32	12	1980n	660w	Hanagan Fed. No. 3
481	24	32	13	660s	660e	Woolley #1
482	24	32	14	660n	1980w	#1 USA Jennings
483	24	32	15	660s	1980w	Hicks-Fed. #1
484	24	32	22	<b>1980n</b>	990e	Bradley #2
485	24	32	22	1980s	1980e	Bradley #1
486	24	32	23	1980n	660w	Ernest Fed. #1
487	24	32	23	1650n	330w	Exxon A Fed. No. 2
488	24	32	24	330n	330w	Bon Durant Fed. No. 1
489	24	32	25	1980n	1980w	Fed. "BM" #1
490	24	32	29	1980n	660w	#1 Payne
491	24	32	30	1980n	1980e	Paduca Fed. #1
492	24	32	33	660s	660e	Cotton Draw Unit Well #72
493	24	32	34	1980s	1980w	#69 Cotton Draw Unit
494	24	32	34	660s	1980w	Cotton Draw Unit #74
495	24	32	35	660s	660w	Fed. Del Basin #1
496	24	33	1	1980n	1980e	#5 Bell Lake Unit
490 497	24	33	7	1900 <u>1</u> 660s	660e	St. #1-7
498	24	33	8	660n	660w	New Mexico St. A.G. 1
498 499	24	33	13	1980n	660e	Holland #1
499 500	24 24	33	17	660n	1980e	Holly-St. #1
500 501	24 24	33 33	20	660s	1980e 1980w	St. "BB" 20 No. 1
501 502		33	-	1980n	1980w 660w	SL #1
	24 24	<i>33</i>	22 27			
503	24		27	1980s	1980w	Sunray St. #1
504 505	24	33	29	660s	1980e	St. "AP" #1
505	24·	33	30	330n	330w	Continental St. #1
506	24	33	31	1980s	660e	Continental St. #1
507	24	33	36	660n	660e	#1 Lea St. "GX"

<b>FRO</b>		Location Data Distance from				Drillhole Name Revision
FFG No.	T.	R.	Sec.	section	<b>.</b>	
=====	_				4me = = = = = = = = =	
508	24	34	2	1980s	1980w	St. "2" #2
509	24	34	3	1980n	1980e	Antelope Ridge #6
510	24	34	4	660n	1650e	Fed. "BE" #1
511	24	34	6	660n	3300e	Bell Lake Unit No. 3
512	24	34	10	<b>1980n</b>	1980e	Alexander #1
513	24	34	11	660n	1980w	Madera Comm. #1
514	24	34	13	660s	660w	Fed. Johnson #1
515	24	34	17	1980s	1980e	Government M #1
516	24	34	21	660n	1980e	Shell-Fed. "B" #1
517	24	35	5	<b>1980n</b>	<b>1980w</b>	Wilson Fed. Com. #1
518	24	35	8	1980s	1980e	Fed. "CR 8" #1
519	24	35	9	1980s	1980w	Custer Mountain Unit Fed. #1
520	24	35	10	660n	660w	Lea St. "GB" #2
521	24	35	10	1980n	1650w	Cinta Roja "10" No. 1
522	24	35	12	<b>1980n</b>	1980w	Fields #1
523	24	35	13	1 <b>980s</b>	660e	Peggy M. Baetz No. 1
524	24	35	15	1980n	1980e	Lea St. "GB" #1
525	24	35	13	660n	1980e	Luzon Fed. #1
526	19	30	5	1980n	330 <del>w</del>	#3 Perkins "AD"
527	19	30	13	660s	1980e	C & I Fed. #1
528	19	30	14	2310n	330e	#1 Southern California Petroleum
529	19	30	16	2310n	990e	St. No. 1
530	19	30	20	660s	1980w	#1 Kelly Fed.
531	19	30	23	2310n	990e	Union Fed. #3
532	19	30	24	1980s	330w	Fed. Holder #1
533	19	30	24	1705s	1650w	Fed. "CR" No. 4
534	19	30	24	1650s	2310e	C.R. Holder #5
535	19	30	24	2310n	660w	Fed. Holder "CR" No. 3
536	19	30	24	940s	1725w	Fed. Holder "CR" No. 6
537	19	30	24	990s	330w	Fed. Holder "CR" No. 2
538	19	30	24	990s	2310e	Fed. Holder "CR" #7
<b>539</b>	19	30	25	1980n	1650e	Lebow Fed. No. 7
540	19	30	25	660n	660e	Lebow Fed. No. 5
541	19	30	25	990s	660e	Lebow Fed. No. 10
542	19	30	25	660s	660w	Lebow Fed. No. 12
543	19	30	28	<b>990s</b>	330w	Yates Fed. "A" No. 1
544	19	30	29	<b>990s</b>	990e	Lane #1
545	19	30	30	660s	1980e	Fed. Yates #1
546	19	30	.31	660s	660w	Fed. "B" #1
547	19	30	32	330n	2310w	Lowe St. #1
548	19	30	36	1650s	1650e	Aikman Stanolind St. #1
549	25	29	3	660n	660e	Superior Fed. #1-3
550	25	29	8	660s	660e	Superior Fed. #1
552	25.	29	15	660s	660w	Superior Fed. 15 No. 1
556	25	29	27	660s	660w	Superior Fed. #1-27
559	25	29	31	1980s	660e	#1 Slater
			- <del>-</del>		· · · ·	

		Lo	cation	Data		Drillhole Name	Revision
FFG				Distan	ce from	,	
No.	T.	R.	Sec.	section	line		
====	===	===	====	*===	=====		************
	• •				4000	11 Deat Dear 101	
561	26		1	660s	1980e	#1 Ruth Ross "O"	
562	26		9	660s	660w	Buckles Fed. No. 1	
563	26	31	11	1980s	660e	Baverdorf #1	
564	26	31	15	660s	660w	Fed. No. 1-15	
565	26	31	17	1980s	660e	Phantom Banks Unit Fed. 17 #	^{#1} top Rustler 302.5, not 332.5
566	26	31	20	660s	660w	Hanson Fed. No. 1	
568	26	31	25	330s	330w	Hanson #1	
569	26	31	25	1650s	330w	Hanson #3	
570	26	31	34	330n	330e	Hanson #2	
572	25	30	4	660s	660w	#1 Hopp Fed.	
575	25	30	7	660n	660w	Carper Hanson Superior St. No	0.1
577	25	30	8	1980s	660w	Poker Lake St. #3	
580	25	30	8	1980n	660e	Superior St. #1	
582	25	30	9	660s	660w	Richardson & Bass Fed. #1	
583	25	30	10	660s	645w	Poker Lake Unit #5X-1A	
584	25	30	10	2030n	2180e	Poker Lake #44	
585	25	30	12	1980n	1980w	Shugart Fed. No. 1	
586	25	30	14	1980n	660w	Poker Lake Unit #10A-6	
589	25	30	17	660s	660w	Poker Lake Unit #11A-7	
593	25	30	20	1980s	660w	Continental Fed. #2	
594	25	30	21	660n	660w	Poker Lake #6-2A	
595	25	30	21	1980s	660e	Poker Lake Unit #4	
596	25	30	22	1980s	660w	#3 Poker Lake Unit	
599	25	30	30	660s	660w	#1-30 Superior Fed.	x
600	25	30	35	1980n	660e	Marshall Fed. #1	
601	25	30	35	660s	660w	Richardson & Bass Fed. No. 1	
602	25	31	2	1980n	1980e		Data dropped; Same as FFG218
606	25	31	35	660n	1980e	Big Sinks Fed. Unit #1	
607	25	35	5	660s	660w	Fed. Mounsey "B" #1	
608	25	35	6	460n	660w	Mounsey Fed. #1	
609	25	35	7	660n	660w	Mounsey "A" Fed. #1	
610	25	35	18	660s	660w	McCormick #1	
611	25	35	20	1980n	660w	Fed. Mounsey "C" #1	
612	25	35	22	660s	660w	Elliott Fed. #1	
613	25	35	26	660s	660e	Harper Fed. #1	
614	26	29	1	660s	1980e	Continental Fed. #1	
615	26	29	2	660n	660e	St. #1	
617	26	29	6	660s	660w	Ashland Fed. #1	
618	26		11	660s	660e	Hanson "A" #1	
<b>62</b> 0	26	29	13	1980s	1980w		
621	26	29	13	1980s	660w	Gulf Fed. "B" #5	
624	26	29	14	660n	660w	Booth Fed. #1	·
627	26	29	19	300n	20 <b>96e</b>	Baker Fed. No. 1	
628	26 -	29	22	1980s	1980w	Ashland Fed. #1	
6 <b>29</b>	26	29	23	660s	660w	Fed. Boothe E #1	
630	26	29	24	660n	1980e	Gulf-FedBeatty #2	
				• •	•		

Location			ation I	Data		Drillhole Name Revision
FFG				Distance	e from	
No.	Т.	R.	Sec.	section l	ine	
====	===:	===	====	======	.=====	=======================================
631	26	29	24	660n	660w	Gulf-Beatty No. 1
637	26	29	34	949n	1660e	Fed. Littlefield "BO" #1 ?= #1590 (F34) in Appendix A
638	26	30	2	660s	660w	Sinclair St. No. 1-2
639	26	30	3	660s	660w	Scott Fed. #1
640	26	30	4	660n	660w	Fed. K.W. No. 1
642	26	30	6	660s	660w	No. 1 Brunson Fed.
643	26	30	12	660s	660e	Monteray Blaydes #1
644	26	30	16	660s	660e	St. #1
645	26	30	18	660s	660w	#1 AT Fed.
647	26	30	20	2310n	330w	U.S.A. #1
648	26	30	24	1980n	1980w	#1-24 Strat Test
652	19	31	2	330n	2310e	St. No. 2
653	19	31	3	2310s	1980e	Hanson Fed. No. 2
654	19	31	4	660n	990e	Carper Fed. No. 1-A
655	19	~-	- 4	760n	<b>1980w</b>	South Shugart Deep Fed. Unit #1
656	<b>19</b> [°]	31	4	1650n	2310e	Carper Welch #2
657	19	31	5	330n	330w	Pan American Fed. #1
658	19	31	5	2310n	2310e	Pan American Fed. #1-X
659	19	31	6	990s	330e	Hodges Fed. #1
660	19	31	6	330n	330w	Featherstone Fed. No. 1-B
661	19	31	9	<b>1980s</b>	1980e	Continental Fed. No. 1
662	19	31	11	660s	1980w	General Energy Corp. Fed. #1
663	19	31	11	<b>1980n</b>	1980w	Gulf Oil Corp. #1 Holder "CI" Fed.
664	19	31	13	1980s	2310w	H.J. "13" Fed. Comm. #1
665	19	31	15	<b>1980n</b>	660w	Robert A. Dean & Jack McCellan #1 Fed. #15
666	19	31	16	660s	1980w	Gulf St. #1
667	19	31	17	660n	660e	Ross-Fed. #1
668	19	31	18	660s	660w	Holt Fed. #1
669	19	31	19	<b>1980s</b>	1980e	Tidewater "FE" #2
670	19	31	20	990s	2310w	Sun Fed. #1
671	19	31	20	660n	<b>1980w</b>	English Fed. #2
672	19	31	20	330s	1980e	English Fed. #1
673	19	31	20	<b>1980s</b>	990w	Sun-Fed. #2
674	19	31	21	330s	330w	Tenneco #2-21
675	19	31	23	<b>1980n</b>	660e	Jones Fed. #1
676	19	31	23	<b>1980n</b>	<b>1980w</b>	Jones Fed. No. 2
6 <b>77</b>	19	31	28	330n	330w	Tenneco-Fed. #1
6 <b>78</b>	19	31	29	2310s	2310w	Barbera Fed. #1
<b>679</b>	19	31	. 29	660n	1980e	CEM Oil Co. Fed. #1
680	19	31	<b>30</b> .	<b>1980n</b>	330w	Southern Fed. No. 6
681	19	31	30	990s	330w	Southern Fed. No. 7
682	19	31	30	1980n	667e	#2-Y Southern Union
683	19	31	31	330n	330w	Brook & Adams Fed. No. 1
684	1 <del>9</del>	31	32	330n	660e	Machris St. #1
685	22	29	6	660s	660e	#1 Eddy Fed.
689	25	32	3	1650s	1980e	Cotton Draw Unit No. 49
			• .	• .		

. B-16

	Location Data			Drillhole Name**	Revision		
FFG				Distan	ce from	,	
No.	Т.	R.	Sec.	section	line		
====	5 <b>5</b> 5	* = =	*===	22222	=====;	=======================================	=======================================
690	25	32	9	1650s	330e	Cotton Draw Unit No. 52	
690 691	25	32	9 10	2145n	2310e	Cotton Draw Unit No. 60	
692	25	32	11	660s	1980e	Continental Fed. #1	
	25	32	14	2310n	330w	Ora Hall Fed. 14 #1	
693 604	25	32	15	660s	1980w	G.E. Jordan Fed. No. 4	
694 695	25	32	15	660n	1980w	G.L. Jordan #3	
695	25	32	15	455n	1980w	Cotton Draw Unit No. 75	
696 697	25	32	16	455n 1980n	1980w	St. Z 16 #1	
697 (08		32 32	18	198011 660n	1650w	Cotton Draw Unit #64	
698	25	32 32	20	1650s	330e	Cotton Draw Unit #42	
699 699	25				330e	Perry Fed. #43	
700	25	32	20	330s		Cotton Draw Unit #57	
701	25	32	21	990s	990e	Cotton Draw Unit No. 48	
702	25	32	22	2310s	330w		
703	25	32	23	660n	1980e	Fed. "P" #1	
704	25	32	27	330n	330w	Cotton Draw Unit No. 61	
705	25	32	28	2310s	990w	J.D. Sena Jr.	
706	25	32	28	2310s	1650w	J.D. Sena U.S.A. No. 1	
707	25	32	29	1980n	330e	Cotton Draw Unit No. 58	
708	25	32	29	330n	330e	Cotton Draw Unit No. 55	
709	25	32	31	1980n	660w	Ray Smith #1	``
710	25	32	32	1980n	1980w	Conoco St. No. 1	
711	25	32	33	660s	660w	Hall-Fed. "33" #1	. •
712	25	32	33	1980s	560e	Jennings #1	
713	25	32	33	660s	1980e	Jennings #3	
714	25	32	34	660n	660w	Fed. Sunshine Royalty #1	
715	25	32	34	660n	660e	Sunshine Royalties #1	
716	25	33	1	660n	660w	FedMuse #1	
717	25	33	5	660n	660e	Bass Fed. #1	
718	25	33	8	<b>1980s</b>	660e	Annie Bass Fed. #1	
719	25	33	11	660n -	660w	Muse Fed. #1	
720	25	33	13	<b>980s</b>	660e	Fed. "BK" #1	
721	25	33	15	1980n	1980e	Ochoa Fed. No. 1	
722	25	33	18	660n	660w	#1 Bass Fed.	tops Tamarisk, Mag wrong
723	25	33	19	1980s	660w	Fed. #1-19	
724	25	33	20	660n	1980e	Fed. Bass #1	
725	25	33	21	660n	660e	Fed. Marshall No. 1	
726	25	33	23	660s	660w	Muse-Fed. 23 #1	
727	25	33	24	660s	660w	Perry Fed. #1	
728	25	33	25	660s	660e	Fed. No. 1-25	
729	25	33	27	660s	660e ···	Harry Dickson #1	
730	25	33	28	660s	660e	Annie R. Bass Fed. #1	
731	25	33	28	660n	660e	Conley Fed. #1	
732	25	33	29	1980n	660w	W.H. Jennings Inc. U.S.A. No. 1	l
733	25.	33	31	660s	660w	Richardson & Bass USA #1	
734	25	33	32	1980s	660e	Continental St. No. 1	
735	25	33	36	660n	660w	St. #1-36	
· • • •							

			Loc	ation D	ata		Drillhole Name	Revision
FFG					Distance	from		
No.	T	•	R.	Sec.	section li	ine		
==:	====	==	==		=====	=====	=======================================	
736	2	5	34	2	660s	1980w	Southeast Bell Unit #1	
737	2		34 34	5	660n	1900w	Bass Fed. #1	
			34 34	8		660e	FedMuse #1	
738	2 2		.54 34	8 10	660s	660w	Mildred Smith #1	
739			34 34	14	660s	1980e	Mildred Smith #1	
740	2		34 34	14	990s 660s		No. 1-19 Fed.	
	2 2		34 34	21	1980s	1980e 1980w	Ethel Nolen Fed. #1	
742			34 34	21 27	1980s 1980n	1980w 660e	Conoco Fed. #1	•
743	2		34 34	31	1980n 660n	660e	Continental Fed. No. 1	
744	2			35			Olson Fed. No. 1	
745	2		34		1980s	1980e		
746	2		34	36	660n	1980w	New Mexico St. #1	
747	2		32	1	1980s	660e	8105 JV-P Mesa #1	
748	2		32	1	660s	660w	Richardson-Fed. #1	
749	2		32	4	1980n	2310w	Sun Fed. "4" #1	
750	2		32	5	330s	2310e	Sun Fed. No. 1	
751	2		32	5	660n	1980w	Conoco Bradley #1	
753	2		32	7	990n	660e	N.C. Higgins Fed. #2	
754	2		32	7	660s	1980w	Continental Fed. #1	
755	2		32	8	1980s	660w	#1 N.C. Higgins Fed.	1
756	2		32	15	1980s	660e	Ben Fed. #1	
757	2		32	16	<b>1980</b> s	1980w	Ohio St. No. 1	
759	2		32	18	1980n	660e	Thompson Fed. 18 No. 5	
760	2	6	32	18	1650s	1980w	#4-18 Thompson Fed.	
761	2	6	32	21	660s	660e	Fed. Payne No. 1	,
762	2	6	32	24	330s	1650e	FedLittlefield DR #1	
763	2	6	32	25	990n	990w	Wilder #23	
764	2	6	32	25	660s	1980w	Wilder 25-2	
765	2	6	32	26	1980n	1980e	Wilder #25	
766	2	6	32	30	660s	1980e	Russell Fed. 30 #1	
767	2	6	32	31	760n	2002w	Russell #1	
768	2	6	32	35	490s	330e	E. Payne 35 Fed. #1	
769	2	6	32	35	660n	660w	Bradley 35 #2	
770	2	6	33	1	660n	660e	Continental Fed. #1	
771		6	33	2	660n	1980w	Texaco St. "2" #1	
772	2		33	4	660s	660e	G.W. Miller Fed. NCT-1 No.	1
773		6	33	6	1750s	1750e	Jones Fed. #1	-
774		6	33	8	660s	660e	Miller-Fed. #1	
775		6	33	10	1980s	1980w	Goedeke Fed. No. 1	
776		6	33	10	2310n	2310w	Malcom R. Madera No. B-1	
777		6	33	13	660s	660e ···	Bradley 13 #1	
778		6	33	15	660n	1710e	Conoco Fed. #2	
		6	33	15	660n	1980w	Fed. No. 1	
779 790								#1
780		6	33	17	660s	660w	Fed. Littlefield DP Optional	#1
781		6. (	33	19	660s	660w	Fed. Littlefield "DO" #1	
782		6	33	21	1980s	660w	Continental Fed. #1	
783	2	6	33	22	660n	660w	Madera Fed. #1	
								•

		-		<b>-</b> .		D. William BR
		1.0	cation ]			Drillhole Name Revision
FFG	-	n	~	Distanc	🛎	
No.	Т.	R.	Sec.	section		· · · · · · · · · · · · · · · · · · ·
****	*=*	===	===:	=====	=====:	z = z = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =
784	26	33	23	660s	1980w	Humble Madera #1
785	26	33	25	660n	1980w	Elliott Fed. #1
786	26	33	26	660s	1980e	Fed. Hall #1
787	26	33	27	1980s	660w	Dixon 27 #1
788	26	33	29	1880n	660e	Gulf Fed. Littlefield #1
789	26	33	30	1980s	660w	Payne #3
790	26	33	31	660n	660w	Payne #7
791	26	34	2	330s	330e	Lea St. "JV" #1
792	26	34	3	660n	1980w	Gulf Yates Fed. #1
793	26	34	4	660s	660w	Yates Fed. #1-4
794	26	34	6	1980s	660w	Fed. K #1
795	26	34	9	660s	660e	Yates Fed. No. 1
796	26	34	18	660n	660e	Continental-Fed. #1
797	26	34	18	1980s	1996w	Pogo No. 1 Fed. 18
798	26	34	19	660n	660w	Bradley 19 #1
799	26	34	20	660n	660e	Leonard Fed. No. 1
800	26	34	22	660n	1980e	Fed. *CH* #1
801	26	34	26	660n	660e	Kirklin Drilling Hondo Fed. #1
802	26	34	33	660s	660e	Elliott-Fed. #1
803	26	35	1	1650s	660w	#1 Sinclair Fed. "A"
804	26	35	2	660s	1980w	Talco Unit #2
805	26	35	6	<b>1980s</b>	1980e	Perro Grande Unit #1
806	26	35	10	330n	660w	Sinclair et al "A" #1
807	26	35	10	300n	300e	Sinclair Fed. "B" #1
808	26	35	11	660s	660w	De Mooy Fed. No. 1
809	26	35	11	330n	330e	Sinclair et al Fed. "B" #1
810	26	35	11	1980n	660e	Talco Unit #1
811	26	35	13	660n	660e	Fed. #1
812	26	35	21	1980n	1980w	New Mexico Fed. "P" #1
813	26	35	22	1980s	1980w	Byers Fed. No. 1
814	26	35	25	1980n	1980w	Sinclair et al "C" #1
815	26	35	27	660n	660e	Fed. Boothe "BD" #1
817	26	32	3	660n	660w	Fed. Boothe "BD" #1

The distances for the borehole locations are measured in feet from north, south, west, or east for the section (square mile) as noted by n, s, w, or e.

* Some consistent abbreviations have been used to shorten names.

The location data for this table was taken from Table 2 of Richey (1989). The FFG number is used to cross-refer to other data tables based on the work of Richey.

# APPENDIX B-2 TABLE OF RUSTLER FORMATION DATA FROM RICHEY (1989)

# Table of Rustler Formation Data From Richey (1989)

	Depths (meters) to Top of Units										
FFG	Reference	Forty	Mag-	Tama-	Cul-	_	Salado	Revisions			
No.	Elevation	niner	enta	risk	ebra	ulm	salt				
= = =	*******		:===:	222543	*****	=====		**********			
001	1083.0	396.8					507.5				
002	1090.3	404.2	422.8	429.8	465.5	472.2	511.5				
002	1068.3	329.2	350.5	357.5	401.7	408.4	440.4				
005	1089.7	395.9	414.8	421.8	461.2	467.6	507.8				
005	1091.5	402.6	421.5	430.1	474.9	483.4	•••••				
007	1093.9	415.7	438.0	444.1	491.9	500.2	534.9				
008	1099.1	424.3	-12010		499.9	506.9	540.1				
009	10994.8	416.7	437.4	444.7	490.7	498.3	519.7				
010	1096.4	418.5	45714		493.2	500.8	536.4				
010	1090.4	408.1	428.5	435.6	482.8	489.2	522.4				
012	1092.1	405.1	424.3	432.5	478.2	485.9	520.0				
012	1092.1	383.4	405.4	412.4	434.0	445.9	497.7				
	1068.6	326.7	347.5	355.1	400.8	409.7	445.6				
014	1082.0	342.6	363.6	370.3	-00.0		40.0				
015	1082.0	432.8	454.8	462.1	511.8	520.3	554.7				
016	11099.7	431.3	452.6	460.2	506.0	513.6	545.6				
017		444.1	454.2	470.6	517.9	525.8	558.1				
018	1116.5	444.7	404.2 466.3	470.0	522.4	530.7	562.1	•			
019	1111.0			473.4 379.2	429.5	436.2	469.1				
020	1091.5	350.8	373.1		427.J	430.2	489.1 481.9				
021	1096.4	361.5	385.3	392.6							
022	1106.7	384.6	412.0	419.6	517 C	500.1	495.2				
023	1109.8	431.3	455.7	462.4	513.6	522.1	556.3 ⁻				
024	1124.6	462.6	485.8	492.5	545.5	552.8	585.4				
025	1117.6	443.5	465.4	471.5	519.1		557.2 562 A				
026	1116.0	445.2	466.5	472.6	523.5 521 0	530.5	563.4				
027	1117.4	453.2	474.3	481.0	531.9	538.9	571.8				
028	1183.9	554.1	571.2	576.4	605.3	611.4	634.3				
029	1145.4	529.4	546.2	551.4	581.9	587.3	607.5				
030	1154.3	537.7	556.0	561.4	591.3	<b>597.1</b>	621.5				
031	1168.3	558.7	578.2	584.3	613.9	620.9	645.9				
032	1158.5	546.6	566.4	572.5	609.1	612.4	639.5				
033	1143.6	536.4	555.3	560.8	594.4	601.4	624.8				
034	1139.3	538.0	556.9	561.4	590.7	596.8	621.5				
035	1121.1	530.8	548.5	554.6	· 587.2	590.2	616.2				
036	1147.6	545.0	565.4	570.9	606.2	612.0	637.3				
037	1129.3	536.4	557.5	562.4	595.3	600.5	626.4				
038	1118.3	538.9	558.7	564.2	594.7	600.8	626.4				
039	1046.1	247.5	267.3	274.0	314.2	320.6	351.7				
040	1077.2	336.5	356.3	363.6	421.8	431.9	452.3				
041	1065.3	264.3	<b>284.7</b>	291.7	331.6	338.9	373.4				
042	1069.5	264.0	284.1	291.7	328.9	339.5	374.3				
043	1067.1	257.1	279.0	285.1	331.4	338.4	370.1				
044	1080.5	318.2	339.5	346.9	391.4	399.6	434.9				
045	1091.8	344.4	367.3	374.9		432.2	466.3				
046	1094.2	340.2	•				464.2				
047	1112.8	479.4	498.9	505.3	551.7	556.8	5 <b>86.7</b>				

FFG	Reference	Forty	Mag-	(meters) t Tama-	Cul-		Salado	Revisions
No.	Elevation	niner	enta	risk	ebra	ulm	salt	
====					=====	=====	=======	=================
048	1106.1	452.9	475.2	482.8	525.8	532.8	578.5	
049	1119 <b>.2</b>	477.3	498.3	504.4	551.7	559.6	592.5	
050	1132.5	484.5	504.9	511.0	550.0	557.6	595.1	
051	1131.1	482.2	503.8	509.0	557.2	564.8	600.2	
052	1132.0	480.4	501.7	507.8	536.8	542.2	566.3	
053	1137.5	494.7	514.2	522.1	574.5	581.9	627.0	
054	1150.2	508.3	529.6	536.9	587.5	593.6	631.4	
055	1145.1	503.5	524.0	532.5	579.4	587.3	623.9	
056	1136.6	492.3	514.8	521.2	572.1	579.7	615.7	
057	1134.8	489.2	509.6	517.2	570.0	576.7	610.2	
058	1147.7	506.7	524.1	532.6	578.4	586.9	621.0	
059	1156.1	512.7	532.5	538.6	586.4	591.3	626.4	
060	1138.4	492.9	511.1	520.3	569.1	575.2	605.6	
061	1137.5	491.6	511.5	517.6	566.9	572.4	605.0	
062	1122.6	548.3	569.4	575.5	608.7	615.4	643.4	
063	1118.1	583.4	604.4	609.6	647.4	652.3	679.7	
064	1127.2	567.5	588.6	595.3	629.7	638.3	666.0	
065	1110.7	567.8	590.1	595.3	638.9	646.2	<b>661.1</b>	
066	1113.7	616.9	639.8	644.3	679.4	684.6	712.0	
067	1127.5	590.4	611.1	616.3	657.5	663.5	691.6	
068	1125.0	628.5	643.1	649.2	694.9	701.0	728.5	
069	1130.2	605.9	627.8	633.9	682.7	688.8	722.3	
070	1130.8	577.0	598.6	604.7	646.2	651.7	688.8	
071	1115.3	304.2	324.6	331.0	360.3	367.0	415.1	
072	1105.2	365.5	384.1	390.2	424.0	431.0	459.4	
073	1107.4	389.6	407.9	416.8	448.1	455.2	484.1	
074	1107.0	383.3	403.7	408.6	440.6	446.7	476.3	
075	1108.3	335.0	352.3	359.1	390.4	396.2	424.9	
076	1097.3	260.9	279.2	286.8	319.7	325.8	355.4	
077	1095.8						323.7	
078	1087.2	212.8	232.0	240.2	272.5	279.5	310.3	
079	1091.2	243.2	261.5	267.6	304.2	310.3	340.8	
080	1082.3	254.8	274.0	281.9	316.7	324.0	354.8	
081	1097.0	350.2	369.1	376.1	413.9	422.1	452.6	
082	1084.8	305.7	325.5	331.6	373.7	379.5	411.8	
083	1115.6	422_6	<b>440.9</b>	447.0	477.5	483.6	511.0	
084	1107.6	386.5	405.4	413.0	446.2	452.9	481.6	
085	1108.9	394.7	413.3	421.5	453.5	459.9	488.0	
086	1107.3	384.7	401.7	410.0	442.3	449.9	477.0	
087	1107.3	409.3	427.3	435.9	470.6	477.3	506.0	
088	1108.9	414.5	434.3	441.7	482.8	486.2	513.6	
089	1108.6	432.8	452.6	459.0	<b>494.7</b>	502.0	531.9	
090	1094.5	394.7	•				494.1	
091	1091.2	371.2	390.8	398.4	438.9	447.4	477.0	
092	1097.6	362.7	381.0	391.1	426.7	435.3	463.9	
093	1097.9	360.6	379.8	387.7	424.3	429.8	460.2	
094	1095.1	354.5	374.9	381.9	420.9	428.5	458.1	.*
095	1138.7	432.2	449.9	457.2	487.1	493.5	520.0	
096	1174.4	484.9	503.2	509.3	538.9	545.0	569.4	
097	1149.4	478.2	497.7	504.4	534.6	541.0	568.8	
-		,						

	Depths (meters) to Top of Units										
FFG	Reference	Forty	Mag-	` Tama-			Salado	Revisions			
No.	Elevation	niner	enta	risk	ebra	ulm	salt				
===	========	======		======	:==;;;	=====	:======	=22222222222			
098	1208.2	562.7	582.8	588.3	620.3	626.4	652.3				
098	1205.8	564.2	584.9	590.4	623.3	631.2	655.6				
100	1153.1	528.2	549.2	555.0	588.3	594.4	622.7				
101	1142.7	549.6	567.8	573.3	609.0	615.4	642.5				
102	1127.2	513.3	533.7	539.8	578.2	584.3	614.8				
103	1108.6	434.0	453.2	456.6	499.3	506.9					
104	1127.5	555.0	576.4	5825	619.4	625.4	653.2				
105	<b>995.2</b>	68.3	85.6	93.9	127.7	133.8	182.3				
106	981.5	26.8	41.8	49.7	78.9	86.9	140.8				
107	987.6	42.4	64.6	70.7	<b>99.7</b>	108.8	151.5				
108	1015.9	82.3	97.5	103.6	137.2	146.3	179.8				
109	1039.1	121.9	140.2	146.3	176.8	182.9	207.3				
110	1045.5	158.5	179.8	185.9	213.4	221.0	246.9				
111	1062.2	165.5	190.5	195.1	225.6	231.6	256.0				
112	1056.1	176.8	195.1	201.2	231.6	239.3	271.3				
113	1054.9	161.5	179.8	185.9	216.4	224.0	252.7				
114	1014.7	90.5	109.1	116.4	144.2	151.5	185.9				
115	970.5	56.7	75.0	81.1	113.1	122.2	167.0 176.8				
116	972.0	42.7	61.0 54.0	67.1 64.0	100.6 97.5	106.7 109.7	176.8 155.4				
117	966.2	30.5	54.9	04.0	91.0	109.7	124.1	`			
118	968.7 950.1	12.2			79.2	85.3	124.1				
119 120	956.5	12.2	33.5	42.7	82.3	80.5 91.4	137.2				
120	958.6	12.2	30.5	36.6	76.2	85.3	137.2 1 <b>28.</b> 0				
121	958.0 954.0	9.1	27.4	33.5	77.7	85.3	140.2				
123	961.6	33.5	61.0	67.1	94.5	100.6	146.3				
124	977.2	76.8	111.9	119.5	139.3	146.3	191.7				
125	976.2	64.0	85.3	93.0	125.0	134.1					
126	1014.2	109.7	128.0	134.1	161.5	167.6	201.2				
127	1019.2	109.7	128.0	134.1	158.5	167.6	195.1				
128	994.3	46.3	67.7	76.8	107.3	116.7	141.7				
1 <b>29</b>	961.9	38.1	62.5	68.6	103.6	109.7	146.3				
130	979.9	25.9	50.3	59.4	82.3	91.4	125.0				
132	1002.2	45.7	67.1	73.2	103.6	111.3	149.4				
133	993.0	33.5	54.9	61.0	91.4	97.5	155.4				
134	988.2	24.4	44.2	52.7	83.8	91.4	126.5				
135	1002.5	65.2	<b>85.0</b>	91.7	121.6	127.4	158.5				
136	1007.5	73.2	88.4	96.0	125.0	131.1	163.1				
1 <b>37</b>	1007.4	60.6	79.5	88.1	114.6	122.8	154.2				
138	1023.9	126.5	143.3	149.4	179.8	189.0	225.6				
139	1023.5	115.8	133.8	141.1	167.9	175.6	213.4				
140	1042.6	193.5	213.4	219.5	249.9	257.6	292.6				
141	1030.4	157.3	176.2	184.7	210.3	217.9	247.5				
142	1042.8	193.5	213.4	221.0	246.9	254.5	285.0				
143	1052.7	196.9	213.4	221.0	248.7	255.4	70.0				
144	905.0	1.5			10.7	21.3	79.9 74 7				
145	905.3	0.0			12.2	18.3	74.7	•			
146	912.9	0.0	10.4	146	6.1 25.6	15.2	86.9				
147	908.3	10.4	10.4	14.6	25.6	32.9	92.0 75.6				
148	907.7	0.0			7.6	12.8	75.6				

			Depths	(meters) (	to Top of l	Units		
FFG	Reference	Forty	Mag-	Tama-	Cul-	_	Salado	Revisions
No.	Elevation	niner	enta	risk	ebra	ulm	salt	
===;			=====	*****	=====		======	22222222222
149	916.5	4.3			5.8	13.4	74.4	
150	903.7	1.5			5.0	1014	79.2	
151	901.6	10.7			12.2	21.3	79.2	
152	905.3	12.2				210	68.6	
153	917.1	0.0				15.2	88.4	
154	933.3	8.2					95.7	
155	918.1	4.0	4.0	12.5	16.8	24.1	87.2	
156	908.3	1.8			1.8	12.8	70.7	
157	926.0	10.7	10.7	18.9	21.9	27.4		
158	941.8	4.6	4.6	10.7	13.7	23.8	85.0	
159	1001.3	45.1	64.6	72.5	102.7	109.7	141.7	
160	1002.5	52.4	72.8	78.3	107.3	116.4	146.9	
161	987.9	30.5	51.8	57.9	86.9	93.0	131.1	
162	988.8	32.9	55.5	63.4	96.9	104.2	131.1	
163	988.8	33.5	54.9	61.0	91.4	100.6	132.6	
164	955.9	0.0	0 112	VIII	18.3	27.4	101.2	
165	935.7	0.0			22.9	33.5	96.9	
166	993.0	38.7	57.0	64.6	93.0	101.2	134.7	
167	1019.6	82.9	97.5	105.2	132.6	141.7	182.9	
168	1001.0	33.5	56.4	67.1	94.5	102.1	157.9	
169	986.0	5.8	28.7	36.9	66.8	76.8	124.7	
170	934.8	1.2	11.9	18.0	31.1	41.8	95.7	
171	956.8	25.3	25.3	32.6	34.7	47.5	108.8	
172	986.0	48.8	48.8	53.0	70.7	79.9	134.1	
173	1022.6	87.8	108.5	116.1	145.7	154.8	191.1	
174	908.6	2.1						
175	937.0	116.4			•		175.3	
176	927.5	59.4					135.0	
177	913.2	24.1			24.1	33.2	100.6	
178	888.2	170.1			170.1	176.8	349.0	
179	896.4	9.8			9.8	21.3	79.6	
180	1062.2	118.3	141.7	147.2	179.2	187.5	237.1	
181	1016.5	65.2	65.2	69.8	86.0	93.6	147.5	
182	986.0	129.5	138.4	143.6	173.4	181.7	228.9	
183	1020.5	81.4	100.4	14010	116.1	127.1	183.2	
184	1047.9	120.1	120.1	123.1	156.7	164.3	196.3	
185	1022.6	<b>88.</b> 1	<b>88.</b> 1	92.7	123.1	130.8	182.6	
186	1013.5	149.7	149.7	155.8	185.6	194.2	247.2	
187	965.6	147.7	142.7	155.0	100.0	174.2	275.5	
188	979.0	104.9	104.9	110.0	133.2	141.4	197.8	
189	1046.1	123.4	143.9	151.8	178.3	186.5	241.1	
190	1037.8	136.2	155.4	163.1	194.2	202.7	244.4	
190	1037.8	140.2	163.4	171.0	196.0	202.1	261.5	
192	1041.5	196.9	216.1	224.9	256.9	267.0	323.4	
			210.1	44.7	230.9 247.8	267.0	323.4 324.6	
193 194	994.0 1075.4	247,8 235.7	253.3	259.8	286.9	202.1 294.8	324.0 336.6	
	1075.4		225.2	230.4	255.7	294.8 266.4	305.7	
195		203.9						
196	1042.4	144.8		172.5	205.4	214.9	249.9	
197	1034.5	135.0	156.4	163.7	193.5	203.3	244.4	
198	1031.4	133.2	153.9	160.0	190.5	199.6	247.5	

FFG	Reference	Forty	Mag-	Tama-	Cul-		Salado	Revisions
No.	Elevation	niner	enta	risk	ebra	ulm	salt	
===	~~~~~	=====:	=====;	*====	=====		======	2322222222222
199	1038.8	150.0	171.3	178.9	211.8	220.1	258.2	
200	1040.9	138.4	160.0	167.9	202.7	212.8	255.7	
201	1074.1	179.5	200.9	208.5	235.9	244.1	295.4	
202	1075.6	241.4	259.1	267.3	301.8	312.4	352.0	
203	1071.4	230.1	248.4	255.7		303.9	343.8	
	1096.4	231.6	249.9	258.5	282.9	291.1	329.2	
205	1082.0	201.4	221.5	228.8	256.9	265.4	313.5	
206	1067.7	171.9	193.2	200.3	230.7	239.6	288.3	
207	1072.6	180.4	200.3	207.6	239.0	246.6	296.9	
208	1060.1	157.3	178.0	185.9	217.0	225.6	279.8	
209	1074.1	200.9	200.9	207.9	235.9	244.4	286.8	
210	1066.2	180.4	200.3	207.3	238.7	247.5	300.2	
211	1060.4	174.3					283.5	
212	1078.4	207.9	225.6	233.2	260.9	269.4	310.0	
213	10 <b>51.6</b>	148.1	177.1	183.2	213.7	222.8	256.3	
214	10 <b>61.6</b>	183.8	206.7	213.4	243.2	253.0	303.9	
215	1041.8	189.3	210.6	218.2	248.7	256.9	307.2	
216	993.6	256.6	276.8	283.2	304.8	310.9	473.0	
217	1057.7	184.1	206.3	214.0	242.9	252.1	301.4	
218	1053.1	189.6	209.1	217.3	249.6	258.8	309.1	dup FFG 602; deleted 602
219	103 <b>6.3</b>	125.9	146.6	156.4	187.5	196.0	253.0	
220	1051.0	191.1	214.3	218.8	252.4	261.5	308.8	
221	1027.8	213.4	231.6	240.8	271.3	283.5	342.9	
222	1019.9	249.3	270.1	278.3	306.6	314.9	415.4	
223	1008.9						491.0	
224	1133.6	456.6	477.9	485.5	535 <b>.8</b>	543.5	575 <b>.5</b>	
225	1138.3	454.6	475.9	482.0	534.8	540.3	572.0	
226	1150.3	467.1	489.3	496.3	548.5	555.5	588.4	
227	1149.4	471.2					598.9	
228	1133.6	459.9	481.9	490.4	545.3	552.9	584.3	
229	1146.0	444.4	466.6	474.0	531.3	538.9	573.9	
230	1134.5	445.9	469.4	476.4	533.4	539.5	576.1	
231	1120.1	416.1	438.3	445.9	500.2	506.3	541.9	
232	1124.1	406.3	428.5	435.9	492.6	498.3	5 <b>38.</b> 0	
233	1114.7	405.4	428.9	435.9	490.7	496.8	532.8	
234	1112.8	367.0	390.1	397.8	452.6	459.3	496.5	
235	1117.1	394.7	418.5	425.8	481.6	488.6	521.2	
236	1101.2	332.8	354.8	362.7	418.5	424.0	459.3	
237	1137.8	402.5	425.7	433.0	491.6	503.4	537.0	
238	1152.8	436.2	461.8	467.3	524.3	531.3	568.5	
239	1177.1	474.0	498.0	503.8	556.6	563.6	606.6	
240	1162.2	467.0	491.0	497.7	552.3	559.6	593.4	
241	1165.3	476.4	499.0	506.3	560.2	567.2	602.6	
242	1115.0	315.2	331.9	338.3	382.8	390.8	433.7	
243	1153.7	389.9	410.6	418.2	485.3	494.4	538.6	
244	1120.0	321.6	339.2	346.9	398.7	404.8	430.7	
245	1170.7	573.6	597.7	603.8	659.9	667.2	700.1	
246	1161.9	560.2	583.4	588.9	645.9	653.8	688.8	
247	1145.4	556.3	581.6	587.4	644.1	651.7	685.3	
247	1150.0	555.3	578.8	584.0	643.4	651.7	685.5	
2-10	1150.0	JJJJJ	270.0	JU-1.U	0-10-14	w1./	000.0	

FFG	Reference	Forty	Mag-	(meters) t Tama-	Cul-		Salado	Revisions
No.	Elevation	niner	enta	risk	ebra	ulm	salt	101010
===;		======			=====	*****		
<b>.</b>	11/00	586 F	500 F	60E 0	<i></i>			
249	1169.2	575.5	599 <b>.</b> 5	605.0	663.9	670.9	705.0	
250	1159.8	485.7	508.3	515.3	572.3	579.3	614.3	
251	1139.0	570.3	594.1	600.5	661.7	669.0	706.8	
252	1134.1	425.5 448.1	450.2	456.3	514.5	521.5	566.6	
253 	1108.6 1111.6	446.1 460.6	469.4	476.1 487.7	541.9 549.6	547.1	586.7	
255	1122.6	400.0 512.7	481.6 534.9	487.7 542.5	608.1	556.9	593.8	
255 256	1122.0	578.2	600.8	606.2	658.1	616.3 665.1	655.3	
257 257	1130.0	536.8	557.8	563.6	613.9	620.0	697.1	
	1137.2	505.4	525.5	532.8	574.2		653.2	·
258	1120.4	554.7			636.4	584.0	622.7	
259 260		489.2	578.5 507.2	586.1		644.7 562 1	682.8 505 0	
260	1111.0	489.2 495.9	507.2	513.6	554.7 563 0	562.1	595.9	
261	1106.1	493.9	513.3	519.7	563.9	568.8	603.5	
262	1109.5	562.2	500.0	504 5	623.9	632.5	669.0 709.9	
263	1115.6	562.2 343.5	589.0	594.5 267 0	659.1	667.1	708.8	
264	1121.1	343.5 355.4	360.6	367.9	417.3	424.9	467.6	
265	1130.8		374.9	381.0	444.7	453.5	496.2	
266	1131.4 1120.4	372.5 384.0	394.7	400.5	466.0	474.6	521.8	
267		399.9	406.9	412.1	479.1	<b>487.7</b>	537.7	
268	1115.9 1105.8	376.6	425.2	431.3	502.3 478.1	509.6	552.6	
269	1057.0	265.2	403.4	408.9 287.7	476.1 326.7	488.2	537.5	
270	1037.0	205.2	282.5 234.4	287.7		335.9	367.6	
271	1049.4	215.5 226.9	254.4 251.0	240.3 257.1	275.5 321.7	281.6	316.1	
272 273	1073.3	262.3	231.0 281.8	237.1 289.1	321.7 326.0	329.6	376.3	
273	1137.2	286.2	201.8 303.0	310.0	328.0 344.1	333.9	377.5	
274	1137.2	200.2	295.4	301.4	335.0	351.4 341.1	389.8 368.5	
275	1125.9	264.3	293.4 280.7	288.3	323.1	330.1	359.7	
278	1123.2	269.7	286.5	200.5 294.1	323.1 327.7	334.1	369.7 369.7	
278	1098.2	209.7 229.8	252.4	25 <del>4</del> .1 259.7	321.6	332.8	375.8	
279	1107.9	24 <b>7.</b> 8	267.0	274.6	331.0	332.8 340.2	372.2	
280	1120.3	261.7	283.0	289.4	331.5	340.2	382.1	
280 281	1147.3	311.5	333.1	339.9	384.7	392.9	438.0	
282	1146.4	349.3	JJJ.1	559.9	304.7	374.7	436.0	
283	1090.9	506.3	527.0	532.8	594.7	601.7	401.5 640.4	
284	1117.1	386.8	405.1	411.2	469.1	475.8	520.9	
285	1112.5	352.3	371.2	377.6	442.9	475.8	496.5	
286	1101.5	264.0	281.3	287.4	327.7	335.5	372.8	
280 287	1094.6	282.6	301.5	308.5	356.4	361.3	401.5	
287	1110.4	282.0 344.7	365.5	371.6	441.7	301.3 447.8	401.5	
288 289	1081.9	345.6	362.0	368.1	401.3			
						408.0	442.8	
290	1103.4	277.7	296.9	303.9	332.5	342.6	370.0	
291	1132.0	365.8	389.5	395.3	463.3	471.2	516.9	
292	1090.6	316.4	332.2	338.3	365.8	372.8	403.9	
293	1085.1	319.1	334.4	340.5	367.0	374.6	412.7	
294	1095.5	500.2	. 522.7	528.5	591.0	598.0	637.3	Υ.
295	1087.5	504.7	527.3	532.8	598.0	607.5	648.6	.*
296	1106.4	513.9		<b>6</b> 70 4		(10 =	<b>661.7</b>	
297	1104.9	537.4	565.7	572.4	635.8	649.5	684.6	
298	1070.0	500.8	517.6	523.3	541.9	549.6	580.0	

	Depths (meters) to Top of Units											
FFG	Reference	Forty	Mag-	Tama-		_	Salado	Revisions				
No.	Elevation	niner	enta	risk	ebra	ulm	salt					
===	=======	=====	=====:	=====	*====	*****	======	8222222222222				
	1078.4	484.0	509.3	514.2	580.6	588.6	637.0					
299 300	1078.4	404.0 518.5	541.6	546.8	581.6	589.2	645.3					
300 301	1062.2	531.6	555.3	560.8	610.5	616.0	<b>687.</b> 0					
302	1092.7	550.2	574.2	578.5	649.2	655.9	672.4					
302	1099.3	563.4	588.1	594.2	650.3	657.3	694.5					
	1088.1	547.7	570.6	575.2	642.2	649.2	688.8					
305	1093.9	559.3	584.6	590.7	650.7	659.3	694.3					
306	1075.9	583.7	606.6	610.8	662.9	670.6	714.5					
307	1078.7	560.8	585.2	590.7	646.5	654.4	694.9					
308	1075.9	584.6	610.2	615.4	699.8	708.1	752.9					
309	1093.6	558.4	585.5	590.4	659.0	665.7	705.0					
310	1087.5	523.3	548.3	552.9	612_3	618.4	657.5					
311	1085.4	586.7	598.9	604.4	656.8	665.1	698.0					
312	1076.9	539.5	566.3	572.4	647.1	652.9	692.8					
313	1106.1	171.8	191.0	198.0	235.8	244.1	273.9					
314	1121.1	258.8	278.0	285.0	332.2	339.5	386.2					
315	1131.1	348.2	366.8	372.6	429.6	436.9	480.2					
316	1133.2	361.8	385.3	391.1	454.8	463.0	509.0					
317	1097.6	305.4	320.6	324.9	365.2	372.5	404.5					
318	1123.5	365.5	381.3	388.9	413.3	420.9	457.5					
319	1120.7	351.4	369.1	374.9	416.1	424.3	458.7	•				
320	1129.6	367.3	388.3	394.1	460.2	467.6	513.6					
321	1124.7	364.2	386.8	392.6	456.3	463.0	511.8					
322	1124.7	369.6	391.5	397.3	454.9	462.5	507.9					
323	1120.4	369.3	390.9	397.0	445.2	452.5	493.6					
324	1122.0	360.3	376.7	384.0	422.5	429.8	468.8					
325	1079.9	260.3	279.5	286.5	<b>317.6</b>	326.7	366.4					
326	1117.7	363.3	381.6	388.6	411.2	419.7	460.2					
327	1102.2	353.9	373.1	378.6	412.4	420.3	456.9					
328	1121.4	364.4	386.9	392.7	447.6	456.7	500.9					
32 <b>9</b>	1120.4	364.8	386.5	392.0	451.4	459.0	507.2					
330	1115.6	360.7	382.4	387.6	446.1	454.6	504.0					
331	1103.7	350.2	375.2	381.0	450.8	456.9	501.1					
332	1124.7	380.7	405.4	410.9	485.2	<b>491.9</b>	537.7					
333	1130.5	384.2	407.7	413.2	479.9	487.5	531.7					
334	11 <b>25.9</b>	382 <b>.8</b>	407.8	413.3	<b>481.0</b>	488.9	536.8					
335	1129.6	372.5	395.9	404.8	466.3	474.6	521.8					
336	1124.1	369.7	3 <b>93.5</b>	399.0	466.0	473.7	520.9					
337	1124.4	385.9	410.6	416.4	482.5	490.1	<b>539.8</b>					
338	1123.5	378.7	402.8	408.3	476.6	484.5	533.9					
339	110 <b>7.9</b>	396.8	423.1	427.6	496.2	503.8	<b>554.</b> 1					
340	1107.0	385.6	413.0	418.2	489.2	497.7	547.1	*				
341	1025.0	523.3					623.3					
342	1056.1	308.5	329.2	335.9	373.4	379.8	404.5					
343	1032.1	732.1										
344	1040.6	327.2	347.9	355.5	381.5	389.7	418.0					
345	1073.2	297.7	321.1	326.6	394.6	401.9	444.6					
346	1076.9	328.1	354.6	360.1			482.0					
347	1039.7	273.7	295.0	303.0	340.2	346.9	384.4					
348	1035.7	244.8	262.4	267 <b>.6</b>	297.2	302.7	349.6					

			Depths	Depths (meters) to Top of Units							
FFG	Reference	Forty	Mag-	Tama-	Cul-		Salado	Revisions			
No.	Elevation	niner	enta	risk	ebra	ulm	salt				
====	==========	=====		*****	=====	=====	======				
349	1034.8	270.6	292.6	296.8	320.3	325.5	356.0				
350	1041.5	232.6	252.4	258.5	296.3	301.8	329.2				
351	1102.8	370.6	397.2	401.7	473.4	481.6	531.3				
352	1103.1	371.6	397.5	403.6	473.7	481.3	530.0				
353	1095.8	344.1	369.1	374.6	444.7	451.7	497.4				
.354	1051.0	233.2	250.2	255.7	289.0	295.0	328.6				
355	1027.2	32.3									
356	1008.9	45.1					120.4				
357	1011.9	54.3									
358	988.6	25.1									
359	985.4	41.1					144.8				
360	1008.9										
361	1012.5	1.5	25.6	29.9	57.3	64.0	106.7				
362	1010.7	54.3			91.4	<b>99.7</b>	169.2				
363	1009.5	36.6			62.5	71.6	128.0				
364	993.6	50.9			75.3	83.8					
365	1003.4	60.0				*					
366	1010.4	50.0	69.8	76.5	98.8	106.4	146.6				
367	1006.4	30.5	51.8	57.9	74.7	83.8	129.5				
368	1012.5	-0.3									
369	1012.1										
370	1012.9	0.0			44.2	50.3	93.6				
371	1012.9	0.0	15.2	18.3	47.2	54.3	93.0				
372	1006.4			•	57.3	64.9					
373	998.1	53.1			89.1	96.1					
374	995.2	48.8	54.3	65 <i>.5</i>	86.9	93.0	140.2				
375	994.3	76.2									
376	1010.4	25.6			62.8	70.7	114.0				
377	996.7	118.0					225.2				
378	986.6	72.2	• •								
379	986.0	89.0									
380	989.4	80.6	, ,		40 <i>4</i> <b>B</b>		210.8				
381	1021.4	0.0	•		106.7	112.8	146.3				
382	1034.8	60.7	105.0	1110	105.0	1 40 0	1.50				
383	1046.1	90.8	107.3	114.9	137.8	143.9	178.9				
384	976.0	<i>(</i> <b>)</b> <i>(</i>	30.2	38.1	54.9	63.7	4044				
385	990.6	68.6			· 74.7	83.8	134.1	к. Г			
386	961.9	58.2	<b>8</b> 0 c	05 7	100.0	110.0	153.3				
387	1019.9	53.3	79.6	85.3	108.8	118.3	157.9				
388	1019.6	60.4	82.9	90.2	118.9	125.9					
389	1008.0	31.4	<u> </u>		83.2	90.5	150 4				
390	1022.6	48.2	68.6	77.1	103.0	109.1	159.1				
391	1025.3	51.8	73.8	80.8	106.1	112.2	157.0				
392	1019.6	51.8	71.0	77.7	109.1	115.2	156.4				
3 <b>93</b>	1061.6	226.0	245.5	251.0	276.0	280.6	308.9				
394 205	1050.3	124.4	141.7	147.2	167.9 184 7	173.1	203.6				
395 206	1059.2	140.8	157.6	163.4	184.7 226 2	191.7 242.0	217.0				
396	1090.0	188.4	205.7	212.8	236.2	242.9 258 1	302.7				
397 209	1036.9	254.8	285.0 206.0	290.2	338.3	358.1					
398	1011.6	185.9	206.0	213.1	239.9	244.4					

	Depths (meters) to Top of Units							
FFG	Reference	Forty	Mag-	Tama-		-	Salado	Revisions
No.	Elevation	niner	enta	risk	ebra	njm	salt	
===	=======	=====	=====	=====	=====	=====	=====	.22222222222222
399	1001.6	163.1			216.4	221.0		
400	980.5	74.1			210.4	<i>Lu</i> 1.0		
401	972.3	97.5			132.6	138.7		
402	1023.1	20.6	43.7	51.1	76.0	86.4		
403	995.2	32.2	53.8	59.9	80.6	91.9	148.3	
404	976.6	50.9	75.0	79.2	103.3	109.4		
405	970.2	62.2					144.5	
406	968.4	0.0						
407	969.9	11.6	29.9	37.5	61.9	71.0		
408	965.0	51.8	51.8	56.4	57.9	64.0	137.2	
409	970.5		·		27.4	38.1		
410	950.7	94.0					223.6	
411	957.7	70.4			70.4	83.8	168.6	
412	970.2	14.9					125.3	
413	968.7	53.6			53.6	62.5	133.5	
414	965.8	47.7					157.4	
415	964.4	32.6					114.9	
416	971.1	40.8					130.8	
417	966.7	46.6					128.6	
418	1033.9	50.6			103.6	110.9		
419	1052.5	55.5	75.9	<b>83</b> .5	109.7	115.8	·	
420	1045.1	52.4	71.6	80.8	108.2	117.3		
421	1047.0	63.4	86.9	92.0	123.7	133.2	167.6	
422	1054.3	77.7	96.0	108.2	131.1	138.7		
423	1057.0	196.9					299.3	
424	1057.7	247.8						
425	1003.7	40.2					158.2	
426	996.1	34.1			69.2	76.8	139.6	
427	1042.7	94.5					166.1	
428	1048.5	110.9					205.7	
429	1044.2	63.1					160.6	
430	1007.7	44.5					198.4	
432	978.4	46.6	54.3	60.4	93.9	101.5	141.1	Surf el, top Rust wrong?
433	968.0	47.5			70.4	75.6	151.2	
434	944.6	41.1				•	118.2	
435	943.7	0.0					94.5	
436	943.4	42.2	•				120.3	
437	937.9	27.9					118.7	
438	1082.2	189.6	207.6	215.5	246.6	252.4	284.7	
439	941.2	23.8		94 1				
440	938.5	51.5	•				120.1	_
441	938.8	32.3					120.7	
442	937.0						110 -	
443	934.2	22.0					113.7	
444	943.4	32.8			40.5	40 1	118.2	
445	960.7	40.5	•		40.5	49.1	133.5	
446	937.0	19.8					107.6	
447	922.3	25.0	•				98.8	
448	924.2	6.4					108.8	
449	931.8	, · ·					112.5	

			Depths	(meters) t	o Top of I	Units		
FFG	Reference	Forty	Mag-	Tama-	Cul-		Salado	Revisions
No.	Elevation	niner	enta	risk	ebra	ulm	salt	
===:	==========	**=*==	******	====	====	****	========	================
450	925.7	• -					106.4	
451	929.3	9.1					106.7	
452	934.2						126.8	
453	1049.5	187.3		1	267.2	276.6	323.0	
454	1011.8	87.2		1			184.7	
455	1061.3	223.7	243.8	250.9	291.1	299.9	337.4	
456	1063.4	234.4	250.9	258.2	286.8	293.5	332.5	
457	1023.5	138.4	155.4	162.2	192.3	200.9	239.0	
458	1025.8	137.6	153.2	163.5	192.5	200.7	240.3	
459	1070.5	253.9	271.0	278.6	309.1	318.2	353.3	
460	1049.7	225.6					321.0	
461	1047.6	222.2					31 <b>7.9</b>	
462	1032.1	148.0	166.3	174.6	203.5	211.4	250.8	
463	1021.1	107.6	128.0	134.7	166.7	177.4	209.7	
464	1035.4	135.0	155.4	163.1	192.0	201.8	247.8	
465	1031.4	128.6	148.4	156.1	186.5	196.3	247.5	
466	1070.5	235.6					331.6	
467	1025.7	519.5	537.5	542.4	594.8	602.7	645.4	
468	1 <b>064.7</b>	571.2	599.2	604.7	687.0	691.6	742.5	
469	1046.4	612.3					688.5	
470	1067.1	557.5	582.2	587.0	659.0	664.5	707.1	
471	1036.6	510.8	536.1	541.6	610.5	616.0	664.2	
472	1032.4	468.2	494.1	499.6	530.7	536.8	593.1	
473	1060.7	569.1	592.5	597.1	670.3	677.0	721.2	
474	1100.6	349.9	371.2	377.3	423.1	428.9	465.7	
475	1103.7	354.0	374.8	379.9	417.4	426.0	465.9	
476	1090.1	268.3	285.1	292.7	<b>329.9</b> (	338.4	378.7	
477	1102.8	328.3	342.0	351.1	376.1	384.0	423.1	·
478	1104.8	349.2	365.1	371.2	402_2	410.8	449.5	
479	1106.4	353.9	370.0	376.4	399.6	407.5	445.3	
480	1096.1	341.7	363.6	369.7	408.1	414.8	454.5	
481	1090.9	359.1	375.2	<b>381.9</b>	409.3	416.4	455.7	
482	1103.4	342.0	359.1	364.8	391.7	399.6	438.0	
483	1094.2	309.1	326.4	332.8	353.0	361.5	403.3	
484	1095.6	323.4	342.0	347.5	369.7	374.9	423.4	
485	1096.5	317.1	333.9	339.7	366.2	373.5	413.7	
486	1097.6	331.3	348.1	354.2	381.6	389.2	428.9	
487	1097.0	333.1	350.5	356.6	381.6	390.1	427.6	
488	1088.6	340.6	357.4	362.0	390.3	396.1	439.7	
489	1086.6	322.0	338.2	344.3	369.3	377.8	423.5	
490	1072.6	217.0	233.8	239.9	265.8	271.3	306.9	
491	1077.5	221.6	241.1	247.2	277.7	284.4	324.9	
492	1067.4	249.9	268.8	274.9	301.8	310.3	346.9	
493	1069.2	265.6	283.9	289.4	316.8	326.0	359.5	
494	1069.5	258.2	277.4	283.5	315.5	322.5	356.3	
495	1072.3	272.9	289.3	295.1	322.5	329.2	375.9	
496	1108.3	392.9		424.0	492.3	504.1	552.9	,
497	1090.6	369.1	389.5	395.0	440.7	448.4	488.9	
498	1104.9	367.9	390.8	396.5	459.3	467.3	515.7	
499	1091.5	376.1	402.0	406.9	479.1	488.3	541.6	
777	1071-2	310.1	7040	700.7	7/21	700.0	J-110	

Depths (meters) to Top of Units									
FFG	Reference	Forty	Mag-	Tama-	Cul-		Salado	Revisions	
No.	Elevation	niner	enta	risk	ebra	ulm	salt		
===	:=========	*****	.2222	=====	=====	======	******		
500	1091.5	365.5	386.8	392.9	448.1	456.3	508.7		
501	1075.6	344.1	365.5	371.6	402.6	410.0	450.2		
502	1092.4	367.6	389.5	395.0	454.2	461.5	525.2		
503	1064.1	358.7	380.1 364.5	384.7 370.6	440.1 396.2	447.8 402.9	490.4 451.7		
504	1070.5	346.9	304.5 338.3	343.5	375.5	402.9 381.6	431.7 427.3		
	1077.8 1069.8	323.1 320.6	338.9	343.3 344.4	369.7	379.2	427.3		
506 507	1059.8	339.1	359.5	363.5	444.9	452.5	502.8		
508	1051.9	288.6	307.8	313.3	363.0	371.2	423.1		
509	1066.5	298.7	321.3	327.4	398.4	404.2	450.2		
510	1080.5	313.2	335.7	341.8	410.4	421.7	465.3		
511	1102.8	374.6	400.5	406.3	473.7	483.4	532.2		
512	1073.5	325.2	352.7	358.7	429.8	438.9	496.8		
512	1061.0	298.0	320.3	326.1	394.0	401.7	455.0		
515	1060.1	305.4	328.9	334.1	414.2	423.1	482.8		
515	1082.3	359.7	384.4	389.5	465.1	471.5	5 <b>26.1</b>		
516	1075.0	359.1	383.7	389.5	462.4	473.4	529.1		
517	1053.1	243.8	264.3	269.4	297.8	302.4	320.6		
518	1036.3	238.4	258.2	264.3	294.1	300.5	316.1		
519	1033.9	268.2	290.2	293.8	329.8	337.4	374.0		
520	1030.8	377.8	395.4	399.1	439.9	445.4	488.1	·	
521	1028.7	355.4	373.7	378.3	395.6	400.5	424.0		
522	1055.2	523 <i>.</i> 5	550.9	555.5	621.0	627.7	672.8		
523	1041.8	500.5	524.9	532.5	592.5	598.6	652.9	i	
524	1024.1	331.0	349.0	353.3	408.1	416.7	462.4		
525	1047.0	503.7	533.3	538.5	603.1	610.4	658.6		
5 <b>26</b>	1033.9	<b>60.4</b>			83.2	90.8	122.8		
527	1031.7	72.8	93.0	98.1	137.5	143.6	160.6		
528	1023.5	71.9	89.3	97.5	127.4	132.0	159.4		
529	1022.3	36.3							
530	1016.5	16.2			50.6	58.8	86.3		
531	998.2	78.9			103.3	109.4	143.0		
532	990.3	74.7		83.2	110.6	117.3	151.8		
533	994.3	65.5					138.7		
534	1021.1	74.7	-		128.3	137.8			
535	995.9	56.2	<b>76.</b> 0	83.1	113.8	120.2	145.5		
536	996.1	67.7		. •	103.6	111.6	142.6		
537 528	985.4	80.8		•	105.5	112.8	144.8		
538 520	1017.1	73.2					107 6		
539 540	1019.6 1028.1	86.0 79.6					182.6 178.9		
540 541	1028.1	103.3					178.9		
542	1011.9	103.5					204.5		
542 543	997.9	27.0	,		65.7	71.2	2070		
545 544	999.7	27.0 19.7			00.7	1 2.40	101.3		
544 545	1013.8	19.7					1019		
545 546	1013.8	30.2	33.2	37.8	59.1	66.8			
540 547	1013.5	27.4	JJ.4	57.0	59.1	0.0	118.9	·	
547 548	1000.0	27.4 116.7	133.2	139.6	164.0	170.1	110.7		
540 549	909.8	37.5	133.4	1.02.0	104.0	55.8	110.0		
545	<i>&gt;</i> <b>\/\</b>	J					110.0		

		-	_	Depths (meters) to Top of Units						
FFG No.	Reference Elevation	Forty niner	Mag- enta	Tama- risk	Cul- ebra	ulm	Salado salt	Revisions		
	========				=====	====	=====	2233222222222		
550	889.1	35.4		•	· · ·		<b>99.</b> 1			
552	922.9	190.2			190.2	200.9				
556	908.9	60.4			60.4	75.6	•			
559	902.3	0.0			102.7	108.8	171.3			
561	1002.2									
562	981.5	310.9	329.2	336.2	359.7	367.0				
563	969.9	387.4	405.1	412.4	432.5	441.7				
564	969.3	306.3					411.5			
565	984.2	302.5	317.3	321.3	337.4	341.1	389.2	Rustler 302.5, not 332.5		
566	971.3	277.4	292.0	317.0	336.8	342.9	393.2			
568	957.1	322.5			325.2	331.3				
569	952.2	263.0	281.6	289.0	319.4	328.0				
570	945.8	387.7				415.1				
572	995.2	252.4			252.4		320.0			
575	966.2	333.1								
577	972.9	203.1								
580	979.6	164.9				•	244.1			
582	981.8	271.6					356.9			
583	998.2	275.2					377.3			
584	1006.8	233.6	239.1	242.5	264.1	270.2	315.9			
585	1025.0	294.1			338.3	346.6	381.6			
586	1020.2	376.7					465.7			
589	975.4	192.5					280.3			
593	968.0	181.9		•			261.4			
594	989.7	253.0				×				
595	999.1	328.6								
596	1004.9	352.1								
<b>599</b>	942.4	247.7					298.9			
600	1003.4	274.3	275.8	281.3	303.3	310.9				
601	983.9	338.3	360.9	368.2	403.9	411.2				
602								Data dropped; Same as FFG2		
606	1012.9	<b>289.9</b>	309.4	317.0	339.2	345.3	409.7			
607	1001.3	258.2	278.0	282.9	320.0	329.5	377.0			
608	1018.6	264.0	286.8	292.0	355.4	363.9	424.9			
609	1025.3	267.0	286.5	292.6	368.8	378.6	439.2			
610	1023.2	276.5	300.8	310.0	374.0	383.1	434.9			
611	1009.2	277.4	301.8	306.0	365.2	373.7	429.8			
612	977.1	243.7	261.4	264.4	298.0	307.4	352.2			
613	945.9	217.4	232.4	240.0	268.0	277.2	324.1			
614	919.0	242.3		~*						
615	926.9	200.3	•				281.0			
617	881.2	18.3	•							
618	897.0	195.1		·	210.3	217.9				
620	909.9	150.1	171.4	178.7						
621	905.9	210.9		÷						
624	907.1					71.2				
627	870.5	·. ·	•			69.5				
628	881.5	13.3	•							
629	881.8	51.2					128.6			
630	912.6	56.7								

		•	Denthe	(meters)	to Ton of			
FFG	Reference	Forty	Mag-	Tama-	Cul-	CIII CO	Salado	Revisions
rrg No.	Elevation	niner	enta	risk	ebra	ulm	salt	
								***********
631	903.1	44.7						
637	878.4 ·							Location in question
638	975.4	383.7	402.3	408.1	438.6	445.3		
639	961.5	395.2	417.7	424.1	453.4	463.1		
640	966.2	317.1	335.4	343.1	368.4	379.6	446.7	
642	929.9			246.0			358.7	
643	975.4	286.5	305.7	313.0	333.1	338.3	399.3	
644	936.7	213.2	230.3	235.5	259.5	266.2		
645	929.6	165.7			,			
647	931.5	158.5	410.4	1016	1 A 77 A	460.0		
648	960.7	402.3	419.4	424.6	447.4	460.2	220.0	
652	1106.4	227.7	246.6	252.7	283.5	290.5	320.0	
653	1096.1	216.1	236.2	242.0	273.4	280.4	307.5 286.2	
654	1098.5	199.0	218.5	223.7	252.7 245.7	259.4	280.2 280.1	
655	1093.0	195.7	214.9	219.8	243.7 246.6	252.7 253.3	280.1	
656	1091.8	197.5	214.9 193.5	221.0	240.0 220.4	23.3 227.1	253.3	
657	1083.3	177.1	206.3	199.6 213.7	238.7	245.4	233.5 271.9	
658	1088.1	189.9 170.7	200.5 186.5	192.9	215.8	243.4 224.0	251.5	
659	1072.6	151.9	169.6	192.9	197.7	204.7	226.0	
660 661	1071.1 1082.0	131.9	109.0	1/4.2	127.7	215.8	243.2	•
662	1082.0	191.1	209.4	214.9	242.3	248.4	275.5	
663	1083.7	209.4	207.7	214.7	2120	27071	294.1	
664	1093.5	196.3	216.1	222.5	248.1	253.6	289.6	
665	1075.3	157.0	210.1		21012		237.4	
666	1063.1	125.0	142.6	148.7	173.1	179.2	203.0	
667	1059.2	135.9	153.6	159.7	183.5	189.9	213.4	
668	1043.3	95.6			117.2	123.9	138.2	
669	1036.3	102.1			123.4	130.5	145.7	
670	1049.1	103.0	122.2	129.8	151.8	160.0	173.1	
671	1044.9	127.2			144.9	153.7	171.4	
672	1058.0	114.3	132.3	138.1	160.9	168.2	189.9	
673	1037.2	122.5			143.0	149.7	166.7	
674	1064.7	127.7	143.0	149.7	171.3	179.2	204.5	
675	1078.4	182.4	200.7	206.8	226.9	234.2	259.2	
676	1084.5	179.5	192.6	200.3	222.2	229.8	252.7	
677	1064.4	132.0	146.6	153.9	174.7	181.1	207.3	
678	1062.8	127.1					197.8	
6 <b>79</b>	1060.7	125.9	143.6	150.3	169.5	176.8	199.6	
680	1043.6	86.3					162.5	
681	1041.2	<b>93.9</b>	•				168.6	
682	1059.2	92.4					168.6	
<b>683</b>	1032.7	140.5						
684	1061.9	152.7			<b>.</b> .	<b>.</b>	231.3	
685	1003.5	85.4			85.4	92.4	177.8	
689	1059.2	242.0	259.7	265.5	294.7	302.4	341.1	
6 <b>90</b>	1052.2	227.4	247.2	253.3	283.5	291.4	334.1	
691	1052.5	236.2	256.3	262.1	291.7	299.6	341.1	
692	1057.7	251.5	271.3	277.4	307.8	316.1		
693	1050.6	232.9	253.6	259.7	290.2	296.9	338.0	

				(meters) t		J <b>nits</b>		
FFG No.	Reference Elevation	Forty niner	Mag- enta	Tama- risk	Cul- ebra		Salado salt	Revisions
						ulm =====		================
694	1042.4	232.3	253.0	259.1	292.0	299.3	362.1	
695	1048.5	234.4	253.6	259.7	292.0	299.3	345.9	
696	1050.6	234.7	253.6	260.0	292.3	299.0	347.5	
697	1045.8	227.7	246.6	252.1	285.6	291.7	345.9	
698	1039.7	178.3	1 <b>98.</b> 1	204.2	237.7	244.4	304.8	
699	1029.6	218.5	236.8	242.9	274.0	280.1	338.6	
700	1027.1	225.7	244.6	250.1	277.8	282.7	344.9	
701	1032.1	221.5	243.5	250.2	282.5	291.3	345.6	
702	1036.6	224.9	243.8	249.9	281.0	289.6	342.9	
703	1047.0	229.8	248.1	255.4	285.3	293.2	330.1	
704	1032.7	226.5	247.2	253.3	287.1	295.4	346.3	
705	1023.8	288.3	308.2	314.2	344.1	352.0	413.0	
706	1025.7	270.7	289.6	295.0	323.4	331.3	388.6	
707	1019.3	278.3	<b>299.0</b>	305.1	332.5	342.3	402.6	
708	1026.6	235.0	253.3	259.4	289.9	297.8	356.9	
709	1008.6	327.1	344.1	349.9	375.8	382.8		
710	1007.4	324.9	342.0	348.1	375.8	382.2	428.2	
711	1012.9	318.5	337.7	344.7	378.3	386.8	442.3	
712	1018.0	282.4	<b>299.2</b>	307.1	339.7	348.5		
713	1011.3	338.8	355.5	363.2	390.6	397.6		
714	1024.1	233.8	253.9	262.2	292.6	<b>299.</b> 0		
715	1025.3	225.6	242.3	250.5	283.5	290.2	·	
716	1060.6	362.7	379.8	384.0	455.7	463.3	507.5	
717	1056.1	333.6	352.8	358.0	383.9	390.9	434.2	
718	1044.9	321.4	338.2	344.0	380.2	388.8	432.1	
719	1040.4	343.7	361.0	366.2	414.4	421.7	469.2	
720	1019.9	320.3	340.8	348.4	394.1	405.4	449.3	
721	1026.9	328.9	347.8	353.3	380.7	387.4	432.5	
722	1063.4	<b>297.8</b>	345.0	350.5	<b>348.</b> 1	357.2	396.8	Top Tamarisk, Magenta wron
723	1054.3	246.1	262.6	269.0	291.5	299.2	341.8	1 2
724	1044.2	305.3	325.1	330.6	357.7	366.2	410.4	
725	1029.6	317.3	334.7	<u>339,9</u>	376.7	383.1	419.1	
726	1018.6	319.7	335.9	341.1	370.0	377.6	429.5	
727	1020.8	317.9	340.8	345.9	381.6	390.1	445.3	
728	1012.2	315.8	334.4	338.9	365.5	374.0	421.8	
729	1014.4	307.8	325.5	330.7	365.5	373.4	418.5	•
730	101 <b>8.9</b>	294.1	313.3	317.6	345.3	353.6	396.2	
731	1022.3	301.6	319.3	324.5	351.9	359.5	404.6	
732	<b>1040.3</b>	300.8	319.7	327.1	353.9	362.1		
733	1028.4	221.9	240.8	247.2	278.6	286.5	330.1	
734	1029.0	270.4	287.1	292.0	321.6	329.8	374.9	
735	1016.5	312.4	331.9	337.4	377.6	386.2	432.5	
736	1025.6	266.9	286.5	293.2	349.2	357 <b>.8</b>	410.2	
737	1040.5	337.9	357.7	361.7	420.2	428.7	481.2	
738	1018.3	304.5	321.3	325.8	356.3	363.9	408.1	
739	1015.1	261.2	280.7	285.3	320.3	331.3	386.5	
740	1015.6	260.9	278.9	285.0	353.0	362.4	406.6	.•
741	1014.7	293.5	311.8	317.0	356.0	363.6	412.4	
742	1023.8	249.3	270.1	275.2	323.1	333.1	377.3	
743	1013.2	256.0	272.8	278.0	327.1	338.0	382.5	

Depths (meters) to Top of Units										
FFG	Reference	Forty	Mag-	Tama-	Cul-	_	Salado	Revisions		
No.	Elevation	niner	enta	risk	ebra	ulm	salt			
====	========	=====	=====	:====;	:=====	=====	*******			
	1010 5	070.0	200 6	294.7	335.3	341.7	382.5			
744	1012.5	272.8	289.6 297.5	294.7 300.5	333.3 348.7	356.0	408.1			
745	1006.4	276.1	297.3 308.4	314.5	362.0	370.3	425.7			
746	1007.5	287.7 234.1	253.0	259.1	290.2	297.2	42~.1			
747	1016.2	234.1 207.9	233.0 224.6	231.6	259.7	267.9	315.5			
748	999.7 1000.7	362.1	224.0 380.4	386.5	412.7	419.1	474.0			
749	996.4	298.7	315.8	323.7	351.1	359.7	4/4.0			
750 751	997.0	419.7	436.8	441.7	466.6	475.2	510.2			
753	991.5	329.1	354.1	359.5	389.4	397.3	010.2			
755 754	983.6	272.2	292.3	299.0	327.4	335.9	382.8			
755	980.8	342.6	357.2	364.8	375.5	383.1	552.3			
755 756	965.3	176.8	195.1	201.2	222.8	230.7	294.7			
750 757	966.8	173.7	192.6	197.2	226.2	234.7	292.6			
	900.8 975.4	1/5./	17200	177.2	220.0	2011	384.7			
759 760	973.4 983.0	386.0	402.5	408.0	433.9	443.0	480.2			
761	953.4	178.9	402.0	-00.0	455.2		282.2			
762	955.4 956.5	192.5	214.1	219.9	252.8	261.4	317.8			
762	950.5 951.6	174.0	192.3	198.7	239.3	246.9	297.5			
764	931.0 945.8	167.0	185.6	191.7	222.2	229.5	227.00			
765	946.4	164.1	182.7	191.9	226.6	232.7	290.6			
766	950.7	252.1	270.7	277.4	306.6	315.8	363.3	•		
767	959.2	277.1	294.4	299.9	329.5	337.7	377.6			
768	941.5	153.6	172.2	178.6	216.1	223.7	278.0			
769	943.4	143.6	162.8	168.9	208.8	214.6	271.0			
770	1011.6	282.3	297.0	301.8	331.7	340.6	386.6			
771	1011.6	292.3	310.6	316.7	356.9	365.5	411.2	·		
772	1014.7	274.6	294.1	299.3	332.5	341.1	386.5			
773	1007.7	234.6	253.2	259.3	290.1	298.6	343.7			
774	1003.4	237.3	257.1	263.5	302.2	309.8	354.0			
775	1016.5	280.1	300.2	306.6	338.6	345.6	399.0			
776	1015.0	276.5	295.4	301.4	338.9	348.1	393.5			
777	1022.6	239.9	258.2	263.7	294.1	303.9	345.9			
778	1009.5	280.8	299.7	306.1	336.9	345.7	389.3			
779	1002.8	272.5	291.4	298.4	328.9	338.0	383.7			
780	991.8	222.4	243.1	248.9	280.3	288.2	331.8			
781	958.9	206.3	227.7	233.2	267.3	277.4	334.1			
782	990.3	234.1	253.9	261.5	290.8	299.6	344.7			
783	1002.8	266.7	286.2	292.0	323.1	330.7	373.7			
784	1005.5	256.3	274.6	279.5	321.0	326.4	363.0			
785	1019.3	244.1	266.7	274.3	304.8	313.3	356.6			
786	1014.7	253.6	271.9	278.0	310.6	320.0	358.4			
<b>787</b>	995.2	242.9	261.5	268.2	301.1	309.1	350.8			
788	976.3	219.8	239.9	245.4	277.7	285.9	325.2			
789	950.4	197.8	218.2	224.0	263.0	270.1	322.8			
790	943.1	185.6	204.5	210.0	246.6	255.7	312.7			
791	1005.2	292.5	316.8	322.0	366.8	376.3	422.0			
792	1008.3	257.6	276.1	279.5	317.0	326.4	373.4			
793	1016.5	235.9	254.2	259.4	324.0	333.1	353.3			
794	1014.4	240.8	256.3	262.1	290.5	298.7	344.4			
795	1011.3	232.0	251.2	254.8	293.8	302.1	346.3			
			-							

			Depths	(meters) t	o Top of l	Jnits		
FFG	Reference	Forty	Mag-	Tama-	Cul-		Salado	Revisions
No.	Elevation	niner	enta	risk	ebra	ulm	salt	
===:	========	======		====	====	====	=======	===============
796	1027.2	213.4	231.6	237.7	271.0	279.2	322.5	
797	<b>1027.8</b> ·	228.6	246.3	252.4	284.1	293.5	334.7	
<b>798</b>	1027.8	231.0	250.2	256.6	289.5	298.1	337.7	
799	1015.3	194.2	213.4	217.9	256.0	262.7	306.3	
800	987.7	239.3	257.3	261.2	294.4	301.8	349.9	
. 801	979.0	289.4	307.1	311.7	354.3	363.5	408.3	
802	1001.3	249.3	267.0	271.0	309.7	318.8	366.1	
803	929.0	204.8	224.9	228.6	266.7	276.8	322.5	
804	953.4	241.2	261.7	265.0	301.6	311.4	356.5	
805	999.6	310.2	335.0	338.9	382.2	390.8	445.6	
806	963.2	314.2	331.9	335.6	366.1	374.0	417.3	
807	944.3	260.0	280.1	285.6	317.9	326.7	371.9	
808	935.7	266.1	•				378.0	
809	929.0	210.0	230.7	235.0	271.0	280.4	325.8	
810	928.7	222.8	242.9	246.9	287.1	293.5	339.2	
811	909.9	377.2	391.8	396.4	432.0	441.2	488.4	
812	961.0	302.4	334.1	337.1	409.7	423.4	475.2	
813	939.7	287.4	312.4	317.0	375.8	386.2	443.5	
814	905.3	206.5	225.4	229.4	265.0	274.2	316.8	
815	932.0	275.7	301.6	304.6	350.4	359.5	415.0	
	1009.8	327.7	351.4	359.7	399.3	406.9	713.0	
817	1002.0	341.1	JJ1.4	337.1	377.3	400.7		

This table was created by reproducing Table 2 of Richey (1989) with a few additional notations where obvious typographical errors or duplications occurred.

Locations and other data for each borehole can be found in a supplemental table in this appendix. Cross-referencing is through the FFG number assigned to the drillhole by Richey.

## APPENDIX C COMPARISON OF DATA SETS FROM RICHEY (1989) AND HOLT AND POWERS (1988 AND SUPPLEMENT)

#### APPENDIX C

### COMPARISON OF DATA SETS FROM RICHEY (1989) AND HOLT AND POWERS (1988 AND SUPPLEMENT)

To examine systematic differences, if any, between the controlled data set presented in Holt and Powers (1988), and supplemented here, and the data set in Richey (1989), we identified drillholes common to each set (Appendix C-1). The thickness of each Rustler unit or equivalent was computed in English units. For each data set, basic thickness statistics were computed (Appendix C-2). The difference in thickness between data sets for each unit was calculated for each drillhole, and basic statistic were again computed (Appendix C-2).

Given the methods of interpreting geophysical logs (see Holt and Powers, 1988, for a review), differences of 1 or 2 feet are not generally significant, especially for a single drillhole. The Forty-niner, Magenta, Tamarisk, and Culebra fall within this range, while the unnamed lower member differs considerably.

We note that the Richey data indicate an average of about 2 ft more Tamarisk and about 2 ft less Culebra when compared to our data. There is a systematic difference in how we place the Culebra-Tamarisk contact (Holt and Powers, 1988) that fits very well with the statistical analysis here.

Our thickness of unnamed lower member is not comparable to data in the Richey reference. Richey clearly designates this final measurement as depth to Salado salt. We attempted to determine the depth to the stratigraphic contact between the Rustler and the Salado. *These are two very different concepts leading to very different depth data*. Salt has been dissolved from the upper Salado in many drillholes, leading to significant differences. It is also possible that the top of salt may have been interpreted within the Rustler for some drillholes. The relatively small average difference reflects the fact that top of Salado salt coincides with Rustler–Salado contact in drillholes at and east of the Waste Isolation Pilot Plant. If top of salt was interpreted within the Rustler in some drillholes, these values would tend to average out differences when Salado salt was dissolved.

Our data were prepared under IT Corporation quality assurance procedures. The fact that these data sets correspond closely for equivalent units demonstrates that the technical approach was very similar for the Richey data set, although we do not have a reported procedure for their work.

## **APPENDIX C-1**

### TABLE OF IDENTICAL DRILLHOLES IN RICHEY (1989) AND HOLT AND POWERS (1988) SUPPLEMENTED BY DRILLHOLES RECENTLY INTERPRETED BY POWERS

### Table of Identical Boreholes in Richey (1989 and Holt and Powers (1988) Supplemented by Boreholes Recently Interpreted by Powers

ID No.	FFG No.	T. R.		section l	e (in ft) from ines ====================================
1054	526	19 30		1980n	330w
1060	98	19 34		660n	660w
1071	389	20 30		1980n	760e
1072	395	20 31		1650s	660e
1074	39	20 32		330n	990w
1075	40	20 32 20 32		660s	1980w 1980w
1076	41 418	20 32 21 29		1980s 1980n	1980w
1090	418 419	21 29		4620s	1980w
1091 1092	419	21 29		4020s 1980n	660e
1092	424	21 29		3147n	660e
1094	425	21 29		1980s	1980e
1090	428	21 29		1980n	1980e
1098	429	21 29		660n	1980w
1100	107	21 30	26	660s	1980w
1101	432	21 30		1980s	660w
1105	225	21 32	1	3255n	1972e
1106	226	21 32	1	660s	1980w
1107	227	21 32	2	660s	1980e
1108	228	21 32	2	3300n	660w
1109	233	21 32	4	1683n	1650w
1111	238	21 32	10	1980n	1980e
1112	239	21 32	11	660s	660e
1114	240	21 32	11	1980n	1980e
1115	242	21 32	21	660n	660w
1116	243	21 32	26	1980n	660e
1136	685	22 29	6	660s	660e
1139 1186	114 314	22 30 22 32	1 13	990s 660s	1980w
1180	274	22 32	15	660s	660e 1980w
1188	276	22 32 22 32	17	1980s	1980e
1 <b>189</b>	277	22 32	18	660s	660e
1190	278	22 32	19	660s	660e
1191	279	22 32	20	1980n	1980e
1192	280	22 32	22	1980n	660w
1193	281	22 32 22 32	25	660n	1980w
1196	299	22 34	8	660s	1980e
1198	302	22 35	1	660s	660w
11 <b>99</b>	303	22 35	3	660n	660w
1202	304	22 35	9	1980s	1980w
1204	308	22 35	20	1980n	660e
1207	312	22 35	35	660s	660w
1235	166	23 30	24	1980n	660w
1238	453	23 31	2.	660n	660e
1245	455	23 31	11	660s	660e
1246	456	23 31	14	1980s	1980w

. C−3

ID No.	FFG No.		R.	Sec.	Distance section	e (in ft) from ines			
===;	====	===	:==	=====	:=====	======		= = =	
1248	457	23	31	16	1980s	1980w			
1249	458	23	31	21	660s	660e			
1252	459	23	31	25	1980n	1970w			
1253	460	23	31	26	1980n	1650e			
1254	461	23	31	26	1980n	1980e			
1256	462	23	31	27	1980s	660w			
1258	463	23	31	32	660n	660w			
1259	465	23	31	33	1980n	660w			
1260	466	23	31	36	660s	660w		•	
1261	315	23	32	3	<b>1980n</b>	660e			
1262	264	23	32	9	660s	1980e			
1263	316	23	32	11	<b>1980n</b>	1980e			
1264	265	23	32	15	1980n	1980 <del>c</del>			
1265	317	23	32	18	1980n	660e			
1266	318	23	32	20	660s	1980e			
1270	266	23	32	24	660s	660e			
1271	321	23	32	25	<b>990s</b>	330w	•		
1272	320	23	32	25	990n	2310w			
1273	322	23	32	26	330s	330e			
1275	323	23	32	26	660s	1980w			
1277	324	23	32	28	660n	1980w			
1278	325	23	32	31	660s	660w			
1279	326	23	32	33	1980n	660e			
1280	327	23	32	34	1980s	330e			
1282	328	23	32	35	1650n	2310e			
1291	330	23	32	36	1980s	1980e			
1292	329	23	32	36	1980n	660w			
1293	331	23	33	4	660s	660e			
1294	332	23 23	33 33	6 7	330s	330e			
1295	333 334	23 23	33	17	. 660s 660s	660w			
1296 1297	335	23	33	18	660s	660w 660w			
1302	336	23 23	33	19	1980s	1910w			
1302	337	23	33	20	660s	660e			
1304	338	23	33	31	660n	660e			
1305	267	22	33	32	660n	1980e			
1307	268	23 23	33	35	660s	660w			
1308	345	23	34	18	1980s	1980w			
1309	346	23	34	19	1980n	1980w	•		
1310	347	23	34	22	1980n	1980e		,	
1332	178	24	29	27	660s	660w		. •	•
1334	187	24	30	18	460n	660e			
1336	191	24	30	25	660s	660w			
1337	193	24	30	29	660s	660e			
1338	194	24	31	2	1980n	1980w	•		
1339	195	24	31	3	660s	660e			
1341	196	24	31	4	660n	660e			
1343	197	24	31	4	1659n	2310w		.•	
1345	200	24	31	6	1980n	1980w			
1346	201	24	31	7	660s	660e			

C-4

ID No.	FFG No.			Sec.	section l	e (in ft) from ines ====================================
					660n	660 <del>e</del>
1349	205	24	31	17	660s	660e
1350	206	24	31	18	660n	660e
1351	207	24	31	20	660s	1980w
1352	208	24	31	20 21	660n	660e
1353	209	24 24	31 31	24	660s	1980e
1354	212 211	24	31	24 28	660s	660e
1355	211	24	31	35	1980s	660w
1356 1358	474	24	32	1	1980s	660w
1358	475	24	32	2	1980n	660e
1360	476	24	32	6	660n	1980e
1361	477	24	32	10	1980s	1980e
1362	478	24	32	11	1980s	1980e
1300	480	24	32	12	1980n	660w
1371	481	24	32	13	660s	660e
1372	482	24	32	14	660n	1980w
1380	483	24	32	15	660s	1980w
1382	485	24	32	22	1980s	1980e
1383	484	24	32	22	1980n	990e
1389	486	24	32	$\overline{\overline{23}}$	1980n	660w
1392	491	24		30	1980n	1980e
1393	492	24	32	33	660s	660e
1394	493	24	32	34	1 <b>980s</b>	1980w
1395	495	24	32	35	660s	660w
1402	497	24	33	7	660s	660e
1404	498	24	33	8	660n	660w
1405	<b>499</b>	24	33	13	1980n	660e
1407	500	24	33	.17	660n	1980e
1408	<b>50</b> 1	24	33	20	660s	1980w
1409	502	24	33	22	1980n	660w
1410	503	24	33	27	1980s	1980w
1411	504	24	33	29	660s	1980e
1412	505	24	33	30	330n	330w
1413	506	24	33	31	1980s	660e
1414	507	24	33	36	660n	660e
1416	510	24	34	4	660n	1650e
1418	511	24	34	6	660n	3300e
1420	517	24	35	5	1980n	1980w
1425	549	25	29	3	660n	660e
1427	550	25	29	8	660s	660e
1429	552	25	29	15	660s	660w
1432	556	25	29	27	660s	660w 1980w
1436	216	25	30	4	1980n	
1437	572	25	30	4	660s 1980n	660w 660e
1438	580	25	30	8	1980n 1980s	660w
1443	577	25	30	8	1980s 660s	645w
1444	583	25	30	10	2030n	2180e
1445	584	25	30	10 17	203011 660s	660w
1447	589	25	30	17	1980s	660w
1456	593	25	30	20	13002	JUUW

C-5

D	FFG	Т.	R.	Sec.	Distance section li	(in ft) from
No.	No.					
===:		===			=====:	
1460	010	25	21	2	1000-	1000-
1460	218	25	31	2	1980n	1980e
1460	602	25	31	2	1980n	1980e
1461	222	. 25	31	28	660n	660w
1463	223	25	31	35	660s	660w
1464	689 600	25	32	3	1650s	1980e
1466	690	25	32	9	1650s	330e
1472	691	25	32	10	2145n	2310e
1478	692	25	32	11	660s	1980e
1482	693	25	32	14	2310n	330w
1486	695 697	25	32	15	660n	1980w
1502	697	25	32	16	1980n	1980e
1506	<b>698</b>	25	32	18	660n	1650w
1508	<b>699</b>	25	32	20	1650s	330e
1509	701	25	32	21	990s	990e
1528	702	25	32	22	2310s	330w
1531	703	25	32	23	660n	1980e
1533	704	25	32	27	330n	330w
1536	706	25	32	28	2310s	1650w
1542	705	25	32	28	2310s	990w
1543	707	25	32	29	1980n	330e
1545	709	25	32	31	1980n	660w
1546	710	25	32	32	1980n	1980w
1547	712	25	32	33	1980s	560e
1548	711	25	32	33	660s	660w
1550	716	25	33	1	660n	660w
1551	717	25	33	5	660n	660e
155 <b>2</b>	718	25	33	8	1 <b>980s</b>	660e
1553	719	25	33	11	660n	660w
1554	722	25	33	18	660n	660w
1555	724	25	33	20	660n	1980e
1556	725	25	33	21	660n	660e
1558	726	25	33	23	660s	660w
155 <b>9</b>	727	25	33	24	660s	660w
1561	728	25	33	25	660s	660e
1562	729	25	33	27	660s	660e
1563	730	25	33	28	660s	660e
1564	731	25	33	28	660n	660e
1565	732	25	33	29	1980n	660w
15 <b>66</b>	733	25	33	31	660s	660w
1568	734	25	33	32	1 <b>980s</b>	660e
1570	735	25	33	36	660n	660w
1572	743	25	34	27	1980n	660e
1578	618	26	29	11	660s	660e
1582	621	26	29	13	1980s	660w
1583	620	26	29	13	1980s	1980w
1587	629	26	29	23	660s	660w
1588	631	26	29	24	660n	660w
1591	638	26	30	2	660s	660w
1592	639 ·	26	30	23	660s	660w
1592 1593	640	26	30	4	660n	660w
1373	UTU	20	50	<b>-</b>	UUUI	UUUW .

ID No.	FFG No.	Т.	R.	Sec.	section li	
====	:===:	===	===		======	
1594	642	26	30	6	660s	660w
1596	643	26	30	12	660s	660e
1597	645	26	30	18	660s	660w
1600	562	26	31	9	660s	660w
1601	564	$\overline{26}$	31	15	660s	660w
1602	565	26	31	17	1980s	660e
1604	566	26	31	20	660s	660w
1605	751	26	32	5	660n	1980w
1606	756	26	32	15	1980s	660e
1608	763	26	32	25	990n	990w
1619	780	26	33	17	660s	660w
1620	789	26	33	30	1980s	660w
1620	792	26	34	3	660n	1980w
1623	799	26	34	20	660n	660e
1628	249	21	33	15	1980s	1980e
1629	252	21	33	32	1980s	1980w
1631	285	22	33	5	660s	330e
1632	289	22	33	15	1980s	1980e
1632	290	22	33	20	1980n	660w
1637	559	25	29	31	1980s	660e
1639	<b>29</b> 1	22	33	32	660s	660w
1640	624	26	29	14	660n	660w
1040	U2/T	20	47	7-4	00011	

=

The basic data for this report were prepared using Rbase 3.1, a commercial product of Microrim, Inc.

Tables of data from Richey (1989) and the Holt and Powers (1988) set, supplemented by recent data from Powers, were compared to find exact matches between the five columns including township, range, section, and distance from north, south, east, or west lines. APPENDIX C-2 STATISTICAL COMPARISON OF RUSTLER DATA SETS

# APPENDIX C-2 STATISTICAL COMPARISON OF RUSTLER DATA SETS

### **APPENDIX C-2**

# STATISTICAL COMPARISON OF DRILLHOLES COMMON TO RUSTLER DATA SETS

There were 219 drillholes in these two sets of data for which the drillhole locations are identical. Locations were matched exactly for township, range, section, distance from north or south line, and distance from east or west line. There may be other identical drillholes not identified because of minor differences in reported locations from source to source.

All data reported in tables for this appendix are based on English units of length. Data from Richey (1989), as presented in Appendix B-2, have been converted from metric to English units with a conversion factor of 3.28 feet/meter.

The thickness of each Rustler member was calculated for each data set by subtracting the depth to the top of the unit from the depth to the base of the unit, yielding a positive number for thickness. The two data sets were compared by subtracting the thickness value of the unit for any drillhole in the Richey data set from the equivalent thickness value in the Holt and Powers data set. If the Richey data set produces a larger value, this number will be negative.

Because the upper four members of the Rustler are easily interpreted, the differences between the two data sets tend to average near zero (bottom table). There is a slightly different interpretive criterion for the Tamarisk-Culebra contact that should produce a thicker Tamarisk and thinner Culebra in our data compared to Richey. The average thickness differences are consistent with this approach. Our concepts of a stratigraphic base of Rustler differs from "top of salt" in the Richey data, and the larger statistical measures are a consequence.

All data and statistical calculations were produced using Rbase  $3.1^{m}$ , a commercial product of Microrim, Inc. Standard statistical functions were unmodified. Simple variable functions were created to produce tabular data of thickness for each unit in each data set.

The number of values (sample size) for each unit varies because geophysical logs are not always interpretable for each unit in each drillhole. In addition, FFG 722 in the Richey data was eliminated from some calculations because of obvious mistakes in the depth to some units.

# Rustler Data Prepared for This Report (Appendix A-3) for Drillholes in Common^a With Richey (1989)

Unit	Number of Values ^a	Average Thickness ^b	Minimum Thickness ⁶	Maximum Thickness ^b	Standard Deviation	Variance
Forty-niner	178	66	19	120	10	112
Magenta	178	20	10	28	3	11
Tamarisk	177	135	16	270	53	2,845
Culebra	188	24	10	40	4	23
Unnamed lov member	ver 190	136	32	352	29	891

#### Differences Between Common Drillholes in Data Set in Appendix A-3 and Richey (1989) Data Set (Appendix B-2)

Unit	Number of Values*	Average Thickness Difference [°]	Minimum Thickness Difference°	Maximum Thickness Difference ^c	Standard Deviation	Variance
Forty-niner ^d	168	0	-9	10	2	6
Magenta	169	0	-12	11	3	9
Tamarisk ^d	165	2	-45	41	10	103
Culebra	174	-2	-18	23	5	28
Unnamed lowe member	er 166	-8°	-476	77	44	1,955

^aThere were 219 common drillholes identified (Appendix C-1) based on exact match of location data. Basic statistics were computed using Rbase 3.1, a commercial product of Microrim, Inc., without modifying statistical functions. Databases and data tables were established by Powers using Rbase 3.1.

Thickness data are in feet. Richey data were converted from metric units by using a factor of 3.28 feet/meter. Standard Rbase functions were used to convert the data.

"The thickness differences (in feet) were computed by subtracting the value in the Richey data from our data. A negative number indicates that the Richey thickness is greater than our thickness.

^dDrillhole FFG 722 was eliminated from these calculations because of major internal inconsistencies in depth data for the upper three Rustler members.

*The numbers in the Richey data set are not always equivalent to the unnamed lower member, and the difference in average value clearly shows that differing concepts were used in the different data sets.

# Appendix H

Letter Transmitting Oil Company Responses re Brine Occurrences

Matthew Silva (Environmental Evaluation Group)

#### ENVIRONMENTAL EVALUATION GROUP

renne

N EQUAL OPPORTUNITY / AFFIRMATIVE ACTION EMPLOYER

7007 WYOMING BOULEVARD, N.E. SUITE F-2 ALBUQUERQUE, NEW MEXICO 87109 (505) 828-1003 FAX (505) 828-1062

March 20, 1996

Mr. Peter Swift Sandia National Laboratories Organization 6707, MS 1341 P.O. Box 5800 Albuquerque, NM 87185-1341

Dear Mr. Swift:

Per your telephone request this afternoon, please find enclosed the information I have collected on brine encounters during drilling in the WIPP Area. These include letters and/or data from Unocal, Mobil, Texaco, Yates, Phillips, and Strata. In addition to the responses from the oil companies, I have also included from our records the expert witness report of John Pickens which states "It is my opinion that the waterflow encountered at the Bates #2 well, while larger than the other reported waterflows from the Salado, is most likely of natural origin considering how common naturally occurring waterflows are in the region." Please note that one oil companies did not respond to my request. These would include Bass Enterprises, Enron, Mitchell Energy, Conoco, Santa Fe Energy and others. Your organization may wish to request the information from them. If so, kindly forward copies to EEG as you receive them. Also, last week I faxed to Wendell Weart, at his request, oil field incident reports which include at least one brine inflow incident, the Collins and Ware well. He should be able to provide you with that record.

Sincerely,

Matthew Silva Chemical Engineer

MS:js Enclosures

cc: Wendell Weart, SNL L. Shephard, SNL

> Providing an independent technical analysis of the Waste Isolation Pilot Plant (WIPP), a federal transuranic nuclear waste repository.

WPCV 1

Unocal Oll & Gas Division Unocal Corporation 1004.North Big Spring Street. Suite 300 P.O. Box 671 Midland, Texas 79702 Telephone (915) 684-8231

**UNOCAL**53

November 25, 1992

ECEIVE DEC 1 6 1992

ENVIRONMENTAL EVALUATION GROUP

Southwestern Region

Mr. Matthew Silva Environmental Evaluation Group 7007 Wyoming Blvd., N.E. Albuquerque, New Mexico 87109

Dear Mr. Silva:

I am responding to the request for information regarding brine water flows in the Castille Formation in your letter dated November 18, 1992. Our files do not indicate the presence of water flows in the following wells.

Halfway Fed #1S9-T21S-R32EUnion Oil #1 Halfway FedS9-T21S-R32EBarclay Fed #1S1-T23S-R31EBarclay 11 Fed #1S11-T23S-R31EBarclay State #1S2-T23S-R31EMedano State Comm #1S36-T22S-R31E

These are the only wells that I currently have access and are relevant to your indicated study area.

If you find that Union Oil Company of California, dba UNOCAL, operates other wells in an area of interest, please feel free to contact myself at 915-682-9731. If we can be of further assistance, please advise.

Sincerely,

Patrick A. Ryan Advanced Drilling Engineer Union Oil Company of California dba UNOCAL

Mobil Exploration & Producing U.S. Inc.

			P.O. BOX 633
			MIDLAND, TEXAS 79702-0633
			M. FL White
- • •	~~	1000	Producing Manager
February	23,	1993	Midland South
		Π	FOLIUT
logy		Γ	FEB 2 6 1993
		ENVIR	ONMENTAL EVALUATION GROUP

New Mexico Institute of Mining & Technolo Environmental Evaluation Group 7007 Wyoming Blvd, N.E., Suite F-2 Albequerque, New Mexico 87109

Attn: Matthew Silva

#### BRINE RESERVOIRS IN WIPP AREA

Dear Mr. Silva:

In response to your letter of January 4, 1993, requesting information on brine production during drilling, the following is furnished.

Review of our well files for the drilling of three (3) wells in the Township 23S and Range 32E of the Delaware Basin indicate no brine reservoir encounters. The wells Mobil Exploration and Producing US Inc. as agent for Mobil Producing TX & NM Inc. has permitted and drilled in the area of interest are listed below:

Well Name/Number	<u>API #</u>	<u>Drill Date</u>	Current Status
Tristi Draw Federal #1 Tristi Draw Federal #2 Tristi Draw Gulf Federal #1	30-025-26844 30-025-27708 30-025-27655	01-80 03-82 02-82	P & A 05-16-89 P & A 06-26-89 Sold to Gulf: 02-28-85

If we can be of further assistance, please feel free to contact me at 915-688-2013.

Sincerely,

MR avhits

M. R. White Producing Manager Midland South Asset Team

kp

WPCU 14-1



Texaco Exploration and Production Inc. Midland Production 2014 april FDO N Loraine Micland TX 79701

P C Box 3109 Midlund TX 79702

DEC 1 4 1992

ENVIRONMENTAL EVALUATION GROUP

#### .

December 09, 1992

Mr. Matthew Silva Environmental Evaluation Group 7007 Wyoming Boulevard, N.E. Suite F-2 Albuquerque, New Mexico 87109

Dear Mr. Silva:

In reference to your letter dated November 12, 1992, attached is the information you requested. Some of our Getty Oil records were sketchy and could not get the information you needed. The Texaco wells we had drilling records on are included in the attachment. If you have any questions contact Ms. S.D. Harmon at (915) 688-4608.

Sincerely,

John A. Schell Drilling Manager

SDH\wp

File Chrono

Attachment



# CASTILE BRINE RESERVOIR INTERACTIONS IN WIPP AREA

ŧ.,

WELT NAME	DILDDRY HER FEDERAL #1
WELLNAME:	BILBREY "5" FEDERAL #1 GETTY OIL
OPERATOR:	
LOCATION:	
SPUD DATE:	11/26/81
TD:	14,915'
BRINE FLOW:	2965'-3066', WATER FLOW 10#/GAL.
1997 - A.	NO RECORD OF VOLUMES.
WELLNAME:	BILBREY "29" FEDERAL COM #1
<b>OPERATOR:</b>	GETTY OIL
LOCATION:	SEC. 29, T-21-S, R-32-E
SPUD DATE:	04/07/82
TD:	14,720'
BRINE FLOW:	NO RECORDS
WELLNAME:	BILBREY "32" STATE COM #1
<b>OPERATOR:</b>	TEXACO
LOCATION:	SEC. 32, T-21-S, R-32-E
SPUD DATE:	05/23/90
TD:	14,915'
BRINE FLOW:	NO WATER FLOW
WELLNAME:	BILBREY "33" FEDERAL #1
<b>OPERATOR:</b>	TEXACO
LOCATION:	SEC. 33, T-21-S, R-32-E
SPUD DATE:	03/05/90
TD:	14,900′
BRINE FLOW:	NO WATER FLOW
WELLNAME:	BILBREY FEDERAL COM #1
<b>OPERATOR:</b>	GETTY OIL
LOCATION:	SEC. 4, T-22-S, R-32-E
SPUD DATE:	08/02/81
TD:	15,105'
BRINE FLOW:	NO RECORDS
WELLNAME:	FORTY-NINER RIDGE UNIT #3
<b>OPERATOR:</b>	TEXACO
LOCATION:	SEC. 16, T-23-S, R-30-E
	12/31/87
TD:	6400'
BRINE FLOW:	NO WATER FLOW
WELLNAME:	GETTY "24" FEDERAL #5WD
OPERATOR:	TEXACO
LOCATION:	SEC. 24, T-22-S, R-31-E
SPUD DATE:	10/07/91
TD:	5200'
	NO WATER FLOW
<b> · · ·</b>	

#### PAGE 2

WELLNAME: GETTY "24" FEDERAL #2 TEXACO **OPERATOR:** LOCATION: SEC. 24, T-22-S, R-31-E SPUD DATE: 02/24/90 TD: 80001 BRINE FLOW: NO WATER FLOW GETTY "24" FEDERAL #3 WELLNAME: **OPERATOR:** TEXACO LOCATION: SEC, 24, T-22-S, R-31-E SPUD DATE: 03/15/90 TD: 8410' BRINE FLOW: NO WATER FLOW WELLNAME: GETTY "24" FEDERAL #4 **OPERATOR:** TEXACO LOCATION: SEC. 24, T-22-S, R-31-E SPUD DATE: 01/15/91 8400' TD: BRINE FLOW: NO WATER FLOW NEFF "13" FEDERAL #2 WELLNAME: **OPERATOR:** TEXACO LOCATION: SEC. 13, T-22-S, R-31-E SPUD DATE: 09/07/89 TD: 84501 BRINE FLOW: NO WATER FLOW NEFF "13" FEDERAL #3 WELLNAME: **OPERATOR:** TEXACO LOCATION: SEC. 13, T-22-S, R-31-E SPUD DATE: 10/02/89 TD: 8450' BRINE FLOW: NO WATER FLOW NEFF "13" FEDERAL #4 WELLNAME: **OPERATOR:** TEXACO LOCATION: SEC. 13, T-22-S, R-31-E SPUD DATE: 12/27/90 TD: 84501 BRINE FLOW: NO WATER FLOW NEFF "13" FEDERAL #5 WELLNAME: **OPERATOR:** TEXACO LOCATION: SEC. 13, T-22-S, R-31-E SPUD DATE: 02/04/91 TD: 8398' BRINE FLOW: 3340', 480 BBLS/HR. SLOWED TO 150 BBLS/HR IN 12

HRS. NO TOTAL VOLUME RECORDED.

264 4 507200 X685250 216

1

#### PAGE 3

WELLNAME: NEFF "13" FEDERAL #6 **OPERATOR:** TEXACO SEC. 13, T-22-S, R-31-E LOCATION: SPUD DATE: 10/19/91 TD: 8400' BRINE FLOW: NO WATER FLOW NEFF "13" FEDERAL #7 WELLNAME: **OPERATOR:** TEXACO LOCATION: SEC. 13, T-22-S, R-31-E SPUD DATE: 04/10/92 TD: 83861 NO WATER FLOW BRINE FLOW: NEFF "13" FEDERAL #8 WELLNAME: **OPERATOR:** TEXACO LOCATION: SEC. 13, T-22-S, R-31-E SPUD DATE: 04/12/92 TD: 83781 NO WATER FLOW BRINE FLOW: NORTH BILBREY "7" FEDERAL #1 WELLNAME: **OPERATOR:** GETTY OIL LOCATION: SEC. 7, T-21-S, R-32-E SPUD DATE: 03/31/81 TD: 14,320' BRINE FLOW: NO RECORDS WELLNAME: NORTH BILBREY "18" FEDERAL #1 **OPERATOR:** GETTY OIL LOCATION: SEC. 18, T-21-S, R-32-E SPUD DATE: 04/22/81 TD: 14,523' BRINE FLOW: NO RECORDS

MARTIN YATES, III 1912 - 1985 FRANK W. YATES 1936 - 1986



105 SOUTH FOURTH STREET ARTESIA, NEW MEXICO 88210 TELEPHONE (505) 748-1471 S. P. YATES CHAIRMAN OF THE BOARD JOHN A. YATES PRESIDENT PEYTON YATES EXECUTIVE VICE PRESIDENT RANDY G. PATTERSON SECRETARY DENNIS G. KINSEY TREASURER

October 19, 1992

Environmental Evaluation Group 7007 Wyoming Boulevard, N.E. Suite F-2 Albuquerque, NM 87109

Attention: Matthew Silva

<u>ecenve</u> OCT 2 3 1992

ENVIRONMENTAL EVALUATION GROUP

Dear Mr. Silva,

Yates Petroleum Corporation has drilled 56 wells in the review area that you outlined in your letter. Our drilling reports indicate that only five encountered water flowing Attrached

your letter. Our drilling reports indicate that only five encountered water flows. Attached is a list detailing these 5 wells. All water flows were stopped and isolated by cementing of the casing strings. If you have any questions, feel free to give me a call at (505)748-1471.

Sincerely,

chuch Mr

Chuck Morgan

Enclosure

CM/sj

# YATES PETROLEUM CORPORATION LIVINGSTON RIDGE REPORTED WATER FLOWS

Flow on connections, 3360'-water flow, 3757'-no flow, 3791'-on wireline Kiwi AKX State #1 survey-26 bbls/hr P 16-22S-32E -330FS & 330FE

x 68775 Lost Tank AIS State #1 Water flow @ 2970', 150 gpm, SICP 25#, no flow after 3 hrs I 36-21S-31E 1980FS & 660FE

Water flow @ 3280', SIDPP 475 psi, SICP 500 psi, 60-80 gpm Lost Tank AIS State #4 K 36-21S-31E 1980FS & 1980'FW

¥ 685200 Y 521 900 752

Y 5219

Martha AIK Federal #3 O 11-22S-31E 660FS & 1650FE

Well flowing @ 3311', displace hole with 11# mud; well flowing @ 3577', casing 40 psi

And the second second

Martha AIK Federal #4 J 11-22S-31E 1980FS & 1650FE

Well flowing @ 3745', SICP 0, 10 gpm; shut well in @ 3950', SICP 110 psi, 9 gpm; well flowing @ 4302', SICP 110 psi, 10 gpm



# PHILLIPS PETROLEUM COMPANY

4001 PENBROOK



615056191062

WPCV

F.01

14-1

ODESSA, TEXAS 79762

# FACSIMILE COVER SHEET DATE: $\frac{4}{1/93}$

. TO: Matthew Silva LOCATION: EEG

FROM: Alan Sewett-LOCATION: Oclessa

ίυ.

NUMBER OF PAGES TRANSMITTED (INCLUDING THIS COVER SHEET)

the first start	3
PLEASE CA	LL (915) 368-1431, IF TRANSMISSION PROBLEM
COMMEN	rs: please give me a call
	if you have any guestions.
•	· · · · · · · · · · · · · · · · · · ·
prod/mbeja/face	

# Virp Petroleum Company Wipp Rena Brine Flow Revew

•

:

1 							
		I					
baroqai enok				1280	1561/61/21	840 11' 1960 181' 1000 LET	James E #6
bytoural enon				DISL	1681/93/60	300 2, 1250 FSL, 1150 FEL	SIIW& A semal
bshogeR encN				0932	0815011881	300 15' 880 ENT' 880 EMF	ft%3 eemet
bajiogeA ench				LERI	1661/22/11	300 15' 1880 ENT' 1890 EMI	>t#∃eemer
benogen ench				0191	1681/20/11	300 15' 1800 ENT' 660 EMT	Er#3 comeL
Mone Heponed	[			0522	1661/11/60	800 13' 880 ENF' 1080 EMF	St#3eemal
Nono Reported				2672	0661/10/11	300 2' 860 ENT' 1880 EET	It & A comol
betrogen enov				91 <i>LL</i>	11/20/1880	8** 1' 1420 ENL 880 EML	Limingston Ridge Fed #3
betrogen enov				8947	12/11/1900	840 1' 3540 EBL, 1200 FWL	Liningeten Mdge Fed #2
betrogefi enoli				929L	1061/121/10	800 1' 430 ENT' 860 EMT	At bei etbifi netegninij
betredefield				5692	1661/1/01	340 1, 1980 F9L, 1980 FWL	84 bal echifi netegniri.
behoden enov				2022	10/12/1880	244 1' 000 EST' 100 EMF	14 bel egbill notagnML
None Reported				7625	2661/06/60	Sec 11, 1810 FUL, 330 FEL	<b>₹</b> \$ 3 somet
bonogen anol				7820	061/81/90	800 11' 160 ENF' 330 EEF	A43 comet
None Reported		·		99#2	0661/20/50	800 2 860 281, 2810 FML	Ot 🐂 A de mal
Flowed 1/2' stream while logging at @ TD. Incr MW from 6.6 to 9.1 pg.				6297	06(31/12/90	6-4 2, 860 FNL, E00 FEL	24 A eamel
None Reported				0052	0661/91/1-0	390 \$ 182C ENT' 880 EET	84 A.comel
behodsR enoN				96¥1	0661/90/10	800 11' 200 ENL, 1800 FEL	24 3 come
behore Reported				1291	6861/11/51	200 5' 200 18F' 000 1EF	Tå A esmul
behoteA				0097	8861/21/21	3** 5' 1380 £8 <b>1' 8</b> 80 £EF	8% A semal
bottogafi anav				8258	9961/12/99	30¢ 5' 660 FSL, 1000 FEL	2% A contat
None Reported				1967	2861/80/20	340 S, 1980 FNL, 1980 FEL	P# A semal
Nene Repotted				0672	2061/02/80	800 5' 1880 EBF' 1880 EMF	et A comat
None Reportad				0847	7891/20/90	300 11' 232 ENC' 2080 EMC	S# 3 semet
None Reported				0008	15/50/1880	8.0 2 1852 F9L, 1980 FEL	S# A eemel
		· · · · · · · · · · · · · · · · · · ·				T-22-8, R-30-E	
Nene Reported				1210	1661/50/50	8** 32' 680 EEL, 330 FEL	Peak View #1
			· · ·			T-21-8, II-30-E	· · · · ·
· · · · · · · · · · · · · · · · · · ·	198	Hdf	IJ				···
ម្ភាយពាទអ៊	Fied, Vol.	initial Est.	Brine Flew weFlemiß	<b>u</b> 01	ered bude	noÜeso,J	emeN lieW
	1 1-10-1 1-3	1	1 10 11001	I	T and burge	aoilean I	adia M IIaW

5150562%1041 - 00

j.

3) L L

1

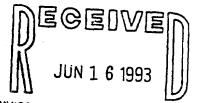
ţ

 $\dot{\mathcal{O}}$ 

pan	
Cor	Review
leum	e Flow F
^b etro	Vrea Brin
lips F	W.PP A
<b>Phill</b>	

Well Namo	Location	Spud Date	e	Depth of Initial Est.	Initial Est.	Est. Total	Remarks
		<b>1</b> 997 .	£	Brine Flew	Flow Rato	Prod. Vel.	
				t	BPH	BBL	
	T-22-8, II-31-E						
McIty State #1	840 1, 860 FNL, 1980 FWL	08/25,1991	8420	3080	35	630	H2S 70 ppm at shaker. SIDPP 73 psl. No flow while circulating.
Melly Stato #2	Sec 1, 1980 FNL, 1980 FWL	09/28/1991	8425				None Reported
Molly State #3	Sec 1, 600 FNL, 660 FWL	10/20/1991	8393	8023	300	4000	4000 H2S 200 ppm [ambient atij. SIDPP 60 pet. Doct to < 10 3pm in 84 hrs.
Molly State #4	344 1, 1980 FNL, 535 FIVL	10/16/1991	8409				Ncne Reported
	1-218, A-SP-E						
Luke Fed #2	3ec 31, 660 FNL, 360 FWL	11/06/1891	8585				Nona Reported
Luke Fed #1	Sec 31, 1980 FNL, 660 FWL	11/12/1991	8364	3057	540	19000	19000 [H2S 99 ppm at flowline, SiDPP 30 psi. Decr & stab at 3 BPM after 25 hrs.
Bibrey 31 Fed Com #1	Sec 31, 860 FSL, 1980 FWL	12/05/1991	14985				None Reported
			• •	•			
Lust Switchen !	1 (1,005-	<u>``</u>	121				

MS 1


SIG ZOO IIL N2 20

SIDPP SHUT IN DRILL PIPE PRESSURE

= 11

HFR-01-1993 FROM FROD DRUG U FROD 12:55





ENVIRONMENTAL EVALUATION GROUP

Environmental Evaluation Group 7007 Wyoming Boulevard, N.E. Suite F-2 Albuquerque, New Mexico 87109 Attention: Matthew Silva

> Re: Neff Prospect NM-503 <u>Eddy County, New Mexico</u> WIPP Site Request for Brine Flow Information

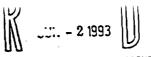
Gentlemen:

June 14, 1993

Reference is made to your November 12, 1992 letter to Pogo requesting information on water flows encountered while drilling oil and/or gas wells in nine townships in the WIPP Site Area.

Regrettably, please be advised that Pogo does not wish to provide such information.

If you have any questions, please contact the undersigned.


Very truly yours,

POGO PRODUCING COMPANY

Terry Gant Senior Landman

TG:lf/c:Wipp

cc: Richard L. Wright



STRATA PRODUCTION COMPANY

ENVIRONMENTAL EVALUATION GROUP Page (1)

154

×706250

4504-

LECHUZA FEDERAL 44 Section 15-225-32E Lea County, New Mexico

660'FSL & 1650'FWL

Elevation = 3703' KB = 3719' Red Tank Prospect

GRACE RIG 4405

- 12/30/92: Spud 17 1/2* hole at 2:00 PM on 12/29/92. Drlg at 600', formation Redbed, ftg made 600'. Ran Totco at 200' 1 deg. Hud wt 8.7, Vis 31, PH 7.5. Bit wt 55, RPM 100, Bit #1, Serial #500754, Type S33, Jets (3) 16, Depth in D', 14 1/4 hrs, ftg 600'. Pump type DC700, SPM 62, Liner 5 1/2", Press 1400#, DC# 16, 8", 75,000#. Water loads (14) fresh. MI & RU 9 1/2 hrs, Rot 14 1/4 hrs, Totco 1/4 hr. DC \$23,700. CC \$23,700.
- 12/31/92: Drlg cmt at 610', formation Redbed, ftg made 10' Ran Totco at 610' 3/4 deg. Hud wt 10, Vis 10, PH 10. Bit wt 15 to 20, RPM 60+. Bit 41, Serial 0500754, Type 533, Jets (3) 16, Depth out 610', Depth in -0-, 14 3/4 hrs, ftg 610'. Bit #2, Serial #KV739A, Type F27, Jets (3) 12, Depth in 610'. Pump type DC 700, SPM 62, Liner 5 1/2", Press 1200*. DC #18, 8*, 548.84', 75,000*. Water loads (2) brine and (7) fresh. WO Halliburton. Ran 15 jts 13 3/8" 48# H40 csg. Cmtd at 610' w/300 sx Hal Lite w/1/4# Flocele per sx. Tail in w/200 sx Class "C" w/2% CaCL. Circ 114 sx to pit. PD at 1:00 PM on 12/31/92. Tagged cmt at 565'. Drld 45' cmt. Rot 1 hr, Trip 3 hrs, Totco 1/4 hr, Circ 2 1/4 hrs, Run csg 2 1/2 hrs, Cmt csg 1 hr, WOC 3 hrs, Cut off wellhead and NU 11 hrs. DC \$2,623. CC \$26,323.
- 01/01/93: Drlg at 2115', formation Salt and Anhydrite, ftg made 1505'. Ran Totco at 1084' l 1/4 deg and 1585' l deg. Mud wt 10, Vis 29, PH 9, CL 103,000. Bit wt 60, RPM 60+, Bit #2, 20 hrs, ftg 1505'. Water loads -0-. Rot 22 1/2 hrs, Totco 1/2 hr, Repair rotating head 1 hr. DC \$17,300. CC \$43,623.
- 01/02/93: Drlg at 3150', formation Salt and Anhydrite, ftg made 1035'. Ran Totco at 2085' 1 deg, 2308' 1 1/2 deg, 2600' 1 3/4 deg and 2900' 2 1/4 deg. Mud wt 10, Vis 29, PH 10, CL 103,000. Bit wt 20 to 60, RPM 90, Bit #2, 41 1/4 hrs, ftg 2540'. Pump type DB550, SPM 62, Liner 5 1/2", Press 1500#. Water loads (2) brine. Centrifical pump broke down. Hooked up pump #2 to reserve and changed swab. Rot 21 1/4 hrs, Totco 1 1/4 hr, Change swab 1 1/4 hr, Hook up #2 pump 1/4 hr. DC #12,487. CC #56,110.
- 01/03/93: Drig 35'/hr at 3530', formation Salt and Anhydrite, ftg made 380'. Ran Totco at 3120' 2 1/4 deg and 3310' 1 deg. Mud wt 10.1, Vis 29, PH 9, CL 103,000. Bit wt 20 to 50, Bit #2, 57 3/4 hrs, ftg 2920'. Pump Type DC 700, SPM 62, Liner 5 1/2", Press 1400#. Water loads -0-. Drld into water flow w/600 PPM H2S. SD. WO H2S equipment. Rot 16 1/2 hrs, Totco 1 hr, WO H2S equipment 6 1/2 hrs. DC \$12,860. CC \$68,970.
- 01/04/93: Drlg at 4210', formation Salt and Anhydrite, ftg made 680'. Ran Totco at 3500' 1 1/4 deg, 3685' 1 3/4 deg, 3884' 2 deg and 4065' 1 1/2 deg. Mud wt 10.1, Vis 29, PH 8 to 11. Bit wt 15 to 50, RPM 90, Bit 42, 79 i/v nrs, ftg 3600'. Lost circ at 3830' and 3840'. Pumped 30 sx paper and 20 sx Maxiseal. Regained circ. Flowing back 800 bbls/hr. Rot 21 1/2 hrs, Totco 2 hrs, Mix LCM 1/2 hr. DC \$18,117. DC \$87,087.

Ir. Silva,

The Lechoza #4 was the only well drilled by Strata to encountry significant water them. Strate encountered a 600 berrel per how then it too feet. It took a day to got the hydrostatic raturn in belance with sie w. We did see 600 spon H2 5 and successfully handled it. We now have -5 esu:pmont on all wells in this area. I hope this date is of use the well a set of the set of this date is of use

#### FIRST JUDICIAL DISTRICT

COUNTY OF SANTA FE

### 34 BEC 5 AG: 53

STATE OF NEW MEXICO

#### DOYLE HARTMAN and MARGARET HARTMAN d/b/a DOYLE HARTMAN, OIL OPERATOR,

Plaintiffs,

VS.

NO. SF 93-2387(C)

TEXACO INC. a Delaware Corporation, and TEXACO EXPLORATION AND PRODUCTION INC. a Delaware Corporation.

#### Defendants.

#### MOTION TO EXCLUDE TRIAL TESTIMONY OF JOHN F. PICKENS

Plaintiffs ("Hartman") respectfully request that the Court preclude Texaco from offering at trial testimony of one of its designated expert witnesses, John F. Pickens, on the issue of whether Hartman's saltwater blowout was caused by natural water. As grounds for this Motion, Hartman states as follows:

1. The Pre-Trial Order was entered in this case November 23, 1994. Texaco advances two affirmative defenses in the case, Hartman's negligence in drilling the Bates #2 well, and Hartman's failure to mitigate damages. Texaco expressly and affirmatively deleted the affirmative defenses of "Act of God" and "Unavoidable Accident" in the Pre-Trial Order.

2. Dr. Pickens was retained in this case in order to provide opinions for Texaco that the cause for Hartman's saltwater blowout was natural Salado water. <u>See</u> Expert Witness Report By John F. Pickens, copy attached hereto as Exhibit "A" ("It is my

0753

opinion that the waterflow encountered at the Bates #2 well, while larger than the other reported waterflows from the Salado, is most likely of natural origin considering how common naturally occurring waterflows in the Salado are in the region.")

3. Any contention by Texaco that the waterflow encountered by Hartman at the Bates #2 well was of natural origin goes beyond a mere denial of the claims in this case. Such a contention requires affirmative proof by Texaco as to the source of the water. Any such proof would be in the nature of an affirmative defense. <u>Beyale v.</u> <u>Arizona Public Service Company</u>, 105 N.M. 112, 729 P.2d 1366 (Ct. App. 1986) (an affirmative defense refers to a state of facts provable by defendant that will bar plaintiff's recovery once a right to recover is established); <u>McCasland v. Prather</u>, 92 N.M. 192, 585 P.2d 336 (Ct.App. 1978) (burden is on the defendant to raise any matter constituting avoidance or affirmative defense to plaintiff's complaint).

4. Proof that the water encountered by Hartman at the Bates #2 well was natural in origin does not relate to either of the affirmative defenses which Texaco has decided to advance at trial.

5. Texaco's natural source theory falls precisely within the parameters of an Act of God affirmative defense. SCRA 1986 13-1618 provides as follows:

The defendant contends that the accident and the claimed damages resulted from an Act of God. An Act of God is an unusual, extraordinary, sudden and unexpected manifestation of the forces of nature for which no human is responsible.

The defendant is not liable if you

000754

find that an Act of God was the sole proximate cause, and would have caused the accident and claimed damages regardless of whether the defendant was negligent. Defendant is liable, on the other hand, if you find that the accident and damages could have been avoided by defendant in the exercise of ordinary care under the circumstances of the act of nature.

6. Where Texaco has affirmatively deleted any affirmative defense which might encompass a natural waterflow theory, Texaco is precluded from pursuing that theory at trial. <u>Ortega. Snead. Dixon & Hanna v. Gennitti</u>, 93 N.M. 135, 597 P.2d 745 (1979) (a pre-trial order made and entered without objection, and to which no motion to modify has been made, controls the subsequent course of this action).

WHEREFORE, on the basis of the foregoing points and authorities, Hartman respectfully requests that the Court preclude Texaco from offering trial testimony of John F. Pickens on the issue of natural occurring Salado water as the cause of the salt water blowout at the Bates #2 lease.

Respectfully submitted,

GALLEGOS LAW FIRM, P.C.

ſ

J.E. GALLEGOS MICHAEL J. OONDON 141 East Palace Avenue Santa Fe, New Mexico 87501 (505) 983-6686

Attorneys for Plaintiffs

000 1

#### CERTIFICATE OF SERVICE

I hereby certify that a true and correct copy of Plaintiffs' Motion to Exclude Trial Testimony of John F. Pickens was hand delivered this <u>475</u> day of December, 1994, to the following parties:

Eric Lanphere Hinkle, Cox, Eaton, Coffield & Hensley c/o Eldorado Hotel W. San Francisco Street Santa Fe, New Mexico 87501

Carlo Contien Michae

#### NO. SF 93-2387(C)

DOYLE HARTMAN and	ş	IN THE FIRST JUDICIAL DISTRICT
MARGARET HARTMAN d/b/a	§	COUNTY OF SANTA FE,
DOYLE HARTMAN, OIL OPERATOR,	§	STATE OF NEW MEXICO
Plaintiffs,	ş	
··· · · ·	§	
V5.	§	•
	§	
TEXACO INC. a Delaware Corporation,	ş	
and TEXACO EXPLORATION AND	ş	
PRODUCTION INC., a Delaware	Ş	· · · · · · · · · · · · · · · · · · ·
Corporation,	ş	
Defendants.	Ş	

#### EXPERT WITNESS REPORT BY JOHN F. PICKENS

#### Opinions

Opinions in this report may be supplemented or subject to change based on additional information obtained prior to trial.

1. U.S. Department of Energy (1983) documents 13 naturally occurring brine reservoirs that have been encountered during the drilling of 60 boreholes in the vicinity of the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The location of these boreholes are shown on Exhibit A. These brine reservoirs are encountered in anhydrite units that are located between overlying and underlying halite (salt) units. The brine reservoirs have high permeabilities, high pressures (Exhibits B and C), and high brine fluid outflow rates to ground surface (Exhibits B and D). The high permeabilities are associated with naturally occurring fracture zones in the anhydrites. These fractures were formed over geologic time scales of millions of years in response to deformation and breaking of the more brittle anhydrites as the more plastic halite creeped or deformed. The high pressures are characteristic of deep anhydrite/halite formations. The high outflow rates occur because of the combination of the high permeabilities and high pressures. These brine reservoirs are typically of limited areal extent. Thus,

Exhibit A"00050

Picken

Exhibit No.

91,

boreholes located short distances apart may or may not encounter the same reservoir (see _ Exhibit A).

Multiple layers of halite and anhydrite exist in the Salado at the Bates No. 2 well location. The high flow rates encountered at the Bates No. 2 well indicate that high permeabilities occur at the well similar to those encountered at the natural brine reservoirs that have been identified in the vicinity of the WIPP site. It is my opinion that the pressures and flow rates observed at the Bates No. 2 well are consistent with the expected conditions for a naturally occurring brine reservoir in an anhydrite unit.

2. Texaco has installed a number of wells within their waterflood area over time. Several fluid outflows have been encountered in the Salado during drilling these wells. All of these fluid outflows have been very minor in comparison to the fluid outflow rate observed at the Bates No. 2 well. It is not physically possible to have higher fluid outflow rates in the Salado at the Bates No. 2 well located at about 2 miles distance from the Texaco field than in the Salado at the Texaco field itself. It is my opinion that the high outflow rates at the Bates No. 2 well cannot be the result of Texaco operations located at 2 miles distance but rather are the result of the well penetrating a naturally occurring high pressure, high outflow rate reservoir.

3. The similarity of the pressure gradient at the Bates No. 2 well to the pressure gradient in the Salado at the WIPP underground facility and for brine reservoirs in the vicinity of the WIPP site provides direct evidence that the pressures observed at the Bates No. 2 well are natural. The basis of this statement is as follows.

The maximum downhole pressure for the Bates No. 2 well can be calculated to be 1,838 psi at a depth of 2,275 feet corresponding to depth of water inflow. This calculation is based on the measured annulus pressure of 655 psi after the well was shut in from 11:00 a.m. to 4:10 p.m. on January 16, 1994 (Reference: Handwritten driller's notes listed as Exhibit 21 of Hartman deposition) and saturated brine fluid with a brine pressure gradient of 0.52 psi/ft depth in the annular water column in the borehole. This

MA 758

7

calculation yields a maximum pressure because it utilizes a maximum borehole fluid_ density. The pressure gradient for the Bates No. 2 well can be calculated as 1,838 psi  $\div$  2,275 feet or 0.81 psi/ft.

j

-G

į !

An evaluation of whether this pressure gradient is the result of natural or man-made causes can be determined by comparison of the Bates No. 2 pressure gradient with the pressure gradient calculated from measurements at the underground facility at the WIPP site. An estimated natural pressure of 1,820 psi (12.55 MPa) was determined from testing in a borehole in the WIPP facility at a depth of 2,163 feet (659.3 m) below ground surface (Sandia National Laboratories, 1993). This pressure and depth is very similar to conditions for the Bates No. 2 well and yields a pressure gradient of 0.84 psi/ft which is even higher than for the Bates No. 2 well. Assuming a pressure gradient for a vertical column of brine of 0.52 psi/ft depth, the equivalent shut-in pressure at ground surface at the WIPP site location is 695 psi. Thus, the pressure and the pressure gradient for the Bates No. 2 well are consistent with those measured for natural occurring conditions at the WIPP underground facility. In addition, pressure gradients calculated for two of the naturally occurring brine reservoirs where pressure data are available are almost as large as the pressure gradient for the Bates No. 2 well (Exhibits B and C). It is my opinion that the pressure and pressure gradient in the Salado at the Bates No. 2 well are consistent with those expected under natural conditions.

4. Naturally occurring water flows are common in the Salado. Water or gas flow pockets have been hit on a routine basis during drilling in portions of the Salado in the vicinity of the WIPP site with the largest pocket reported containing an estimated 100,000 gallons of brine (Sandia National Laboratories, 1977). High pressures are expected to occur naturally and are well documented in studies of the Salado at the WIPP site. Brine outflow to surface is a direct indication that localized naturally-occurring high permeability exists around the borehole. Without this naturally occurring high permeability zone, brine would not flow freely to the borehole and then to ground surface.

It is my opinion that the water flow encountered at the Bates No. 2 well, while larger than the other reported water flows from the Salado, is most likely of natural origin considering how common naturally occurring water flows in the Salado are in the region.

#### References

Doyle Hartman deposition taken on August 25, 1994.

- Driller's Handwritten Notes for Bates No. 2 well from January 16-17, 1991. Attached as Exhibit 21 to Doyle Hartman deposition taken on August 25, 1994.
- Sandia National Laboratories, 1977. Site Selection and Evaluation Studies of the Waste Isolation Pilot Plant (WIPP), Los Medaños, Eddy County, NM. Report SAND77-0946. Albuquerque, NM.
- Sandia National Laboratories, 1993. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Second Interpretative Report. Report SAND92-0533. Albuquerque, NM.

Texaco well files.

- U.S. Department of Energy, 1983. Brine Reservoirs in the Castile Formation, Waste Isolation Pilot Plant (WIPP) Project, Southeastern New Mexico. Report TME-3153. Albuquerque, NM.
- Van Kirk Report concerning Salt Water Blow-Out January 1991 on the "Bates Lease", dated September 16, 1994.

#### List of Exhibits

The exhibits that will be used in conjunction with my opinions are listed below and are attached.

- Exhibit A Location Map Showing Boreholes that have Encountered Naturally Occurring Brine Reservoirs in the Vicinity of the WIPP Site in South-Eastern New Mexico
- Exhibit B Flow Rates and Pressure Gradients from Naturally Occurring Brine Reservoirs in Halite/Anhydrite Formations

Exhibit C Comparison of Pressure Gradients in Halite/Anhydrite Formations

ARA ALG

Exhibit D Flow Rates from Naturally Occurring Brine Reservoirs in Halite/Anhydrite Formations

Exhibit E Schematic of Brine Reservoir Development

#### Other Attachments

Attachment 1 Resume

#### Qualifications

I am a hydrogeologist with a Ph.D. in Earth Sciences and Bachelors and Masters Degrees in Civil Engineering from the University of Waterloo. I am the Vice President of the Hydrogeology Division of INTERA Inc., based in Austin, Texas. I am a member of the American Geophysical Union and the Association of Ground-Water Scientists and Engineers. For the past 20 years, I have actively conducted research and investigated site-specific applications of ground-- water flow and contaminant transport in hydrogeologic systems. I have managed a multiyear contract with a Swiss agency to provide field hydrogeologic consulting services, coordinate and supervise hydraulic testing and geochemical sampling of deep boreholes in sedimentary and crystalline formations, and perform and supervise interpretations of the hydraulic tests to determine formation pressures and permeabilities. Since 1985, I have managed a large multidisciplinary hydrogeologic project involving site characterization and ground-water flow and contaminant transport modeling for the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico for the deep disposal and isolation of defense wastes, and have made a series of presentations on these site characterization and modeling activities to Sandia National Laboratories and the National Academy of Sciences WIPP Review Panel and at scientific conferences. Some of the activities I have conducted or supervised with respect to the WIPP site include: hydraulic-test interpretations to determine pressures and permeabilities in the various geologic units, detailed data-base development and evaluation for regional groundwater modeling, evaluating the important contaminant-transport mechanisms and assessing parameter sensitivity/importance for off-site transport, implementation and interpretation of hydraulic tests in boreholes drilled into the halite and anhydrite units of the Salado Formation surrounding the WIPP underground facility, interpretation of hydraulic tests performed in a borehole penetrating a high-pressure, high outflow rate reservoir in a naturally-fractured

 $\Omega \Omega \Omega [\alpha]$ 

5

anhydrite unit in the Castile formation, and multi-phase flow simulations to evaluate gas generation and migration from the WIPP underground facility. I have provided expert testimony on ground-water flow and transport modeling of deepwell liquid injection in sedimentary formations. I have published numerous articles regarding geology and hydrogeology in journals or in conference proceedings. A copy of my resume is attached as Attachment 1.

)

#### Compensation

The compensation to be paid to INTERA for this study is \$140/hour for myself and \$80/hour to \$90/hour for other staff consultants. The compensation to be paid for my expert testimony for deposition and trial has a standard multiplicative factor of 1.75 on the base rate. INTERA will also be reimbursed for direct costs such as any travel in the performance of this study.

#### Other Expert Witness Cases

I have testified as an expert by deposition and at trial for one other case during the preceding four years. This case, *Rose M. Chance, et al. vs BP Chemicals Inc.*, was heard in the Court of Common Pleas, Cuyahoga County, Ohio. I testified on behalf of BP Chemicals Inc. with regards to the underground location of the plume generated by their deepwell liquid injection activities in Lima, Ohio. My oral deposition for this case was taken on September 28, 1993 and I testified at trial during the week of November 14, 1993.

6

Respectfully Submitted.

Dr. John F. Pickens September 22, 1994

#### **APPENDIX I**

## Comparison of Brine Intercept/No-Intercept Sample Semi-Variogram Calculations

Table I-A: Results from UNCERT's VARIO Module

- Table I-B: Results from GSLIB's GAM2V Module
- Table I-C: Results from VARIOWIN

÷

į.

to stores

#### TABLE I-A SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM UNCERT'S VARIO MODULE

MIN. LAG	opic MAX. LAG	AVG SPACE	GAMMA H	# DAIDS
MIN. LAG	MAX. LAG 750	AVG SPACE 575	0.0312	# PAIRS
. 750	2250	1560	0.0312	3
2250	3750	2990	0.0715	124 194
3750		4440	0.0699	
5250	<u> </u>	5980	0.0899	
6750	8250	7530	0.0748	<u>244</u> 249
8250	9750		0.0737	249
9750	11200	10500	0.0782	
11200	12800	12000	0.0743	<u> </u>
12800	14200	13500	0.0777	234
12800	14200	15000	0.077	247
14200	17200	16500	0.0756	268
17200	17200	18000	0.0721	208
17200	20200	19500	0.0726	330
20200	20200	21000	0.0728	323
21800	23200	22500		
23200	23200	22500	0.0805	<u>341</u> 334
23200	26200	25500	0.0748	<u>336</u>
24800	27800	23500	0.0655	
27800	27800	28500		338
27800		30000	0.0651	370
30800	30800	31500		405
32200	33800	33000	0.0863	4280
33800	35200	34500	0.0894	412
35200	36800	36000	0.0787	4102
36800	38200	37500	0.0843	3854
38200	39800	39000	0.0782	3280
39800	41200	40500	0.0797	2860
41200	41200	42000	0.07858	<u>2482</u> 2284
41200	42000	43500	0.087	2160
44200	45800	45000	0.087	2038
45800	47200	46500	0.0868	
47200	48800	48000	0.086	<u>1648</u> 1698
48800	50200	49500	0.0688	1556
50200	51800	51000	0.0471	1550
51800	53200	52500	0.0471	1592
53200	54800	54000	0.0477	1950
54800	56200	55500	0.0368	1738
56200	57800	57000	0.0448	1630
57800	59200	58500	0.035	1516
59200	60800	60000	0.0299	1472
60800	62200	61500	0.0277	1632
62200	63800	63000	0.0438	1528
63800	65200	64500	0.0319	
65200	66800	66000	0.0525	1224
66800		67500		990
68200	68200	69000	0.0484	910 908

## SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM UNCERT'S VARIO MODULE

	······································			
69800	71200	70400	0.0593	910
71200	72800	72000	0.0592	692
72800	74200	73500	0.0671	656
74200	75800	75000	0,0915	612
75800	77200	76500	0.0816	588
77200	78800	78000	0.0874	572
78800	80200	79500	0.0934	482
80200	81800	80900	0.0991	434
81800	83200	82500	0.0628	398
83200	84800	84000	0.067	358
84800	86200	85500	0.0641	390
86200	87800	87000	0.0707	410
87800	89200	88500	0.0689	392
89200	90800	90000	0.0575	400
90800	92200	91500	0.0632	364
92200	93800	93000	0.0469	320
93800	95200	94400	0.081	284
95200	96800	95900	0.0634	284
96800	98200	97400	0.0734	286
98200	99800	99000	0.0511	274
99800	101000	100000	0.05	274
101000	103000	102000	0.075	240
103000	104000	104000	0.0799	288
104000	104000	105000	0.0522	364
104000	107000	106000	0.0633	316
107000	109000	108000	0.0308	292
109000	110000	108000	0.0308	292
110000	112000	111000	0.041	<u>208</u> 268
112000	113000	112000	0.0567	208
112000	115000	112000	0.0431	232
115000	116000	114000	0.0451	232 214
116000	118000	117000	0.0353	
118000	119000	118000	0.0326	170 184
119000		120000	0.0529	104
121000		120000	0.0556	144
121000	122000	123000	0.0000	100
122000	124000	123000	0.0476	84
124000	123000	124000	0.0470	72
123000	12/000	128000	0.104	
12/000		128000	0.104	<u>48</u> 44
128000	131000	129000		
			0.0312	32
131000		132000	0.0588	34
133000	134000	133000	0.0588	34
134000	136000	135000	0.167	18
136000	137000	136000	0.143	14
137000	139000	138000	0.167	6
139000	140000	139000	0.25	4
140000		141000	0	2
BRSM5: Azin	huth = 0 deg	·		

---

# PAIRS	GAMMAH	AVG SPACE	MAX IAG	MIN. LAG
3	0.167	565	750	0
148	0.0608	1380	2250	750
204	0.0637	2910	3750	2250
236	0.0657	4380	5250	. 3750
350	0.0757	5950	·····6750	5250
284	0.0687	7560	8250	6750
261	0.0805	9130	9750	8250
274	0.0931	10600	11200	9750
268	0.0728	12000	12800	11200
248	0.0907	13400	14200	12800
275	0.0655	14800	15800	14200
317	0.0757	16400	17200	15800
323	0.0666	18000	18800	17200
313	0.0703	19500	20200	18800
293	0.0734	21100	21800	20200
282	0.0762	22600	23200	21800
258	0.064	24000	24800	23200
268	0.0672	25400	26200	24800
241	0.0581	26900	27800	26200
250	0.06	28400	29200	27800
229	0.0764	30000	30800	29200
182	0.0687	31500	32200	30800
153	0.0588	33000	33800	32200
135	0.0815	34500	35200	33800
118	0.072	35900	36800	35200
80	0.0813	37300	38200	36800
63	0.143	38900	39800	38200
68	0.0882	40400	41200	39800
39	0.0513	42000	42800	41200
34	0.118	43700	44200	42800
16	0.0625	45100	45800	44200
10	0	46500	47200	45800
10	0.1	47900	48800	47200
				BRSM5: Azim
# PAIRS	GAMMA H	AVG SPACE	MAX. LAG	MIN. LAG
1	0	669	750	0
69	0.0362	1580	2250	750
179	0.0642	2960	3750	2250
248	0.0726	4460	5250	3750
282	0.0745	5980	6750	5250
289	0.0865	7510	8250	6750
292	0.0736	9080	9750	8250
267	0.0899	10500	11200	9750
254	0.0846	12000	12800	11200
238	0.084	13500	14200	12800
211	0.0687	15000	15800	14200
202	0.0817	16500	17200	15800
218	0.0619	18000	18800	17200

1000

.

18800	20200	19500	0.0742	229
20200	21800	21000	0.0682	220
21800	23200	22500	0.0777	206
23200	24800	24000	0.0632	. 190
24800	26200	25500	D.0736	163
26200	27800	26900	0.0397	126
27800	29200		D.0265	132
29200	30800		0.0364	110
30800	_32200	31500	0.0913	104
32200	33800	33000	0.0526	95
33800	35200	34600	0.0345	87
35200	36800	36000	0.0402	87
36800	38200	37400	0.0676	74
38200	39800	39000	0.0643	70
39800	41200	40400	0.0476	84
41200	42800	42000	0.121	62
42800	44200	43500	0.138	69
44200	45800	45000	0.148	
45800	47200	46400	0.125	32
47200	48800	47900	0.093	43
48800	50200	49400	0.158	19
50200	51800	50700	0	- 8
E1000	53200	52300	D	7
51800	JJ200	02000	U	
53200	54800	53800	0	3
53200	54800	53800		
53200	54800	53800		
53200 BRSM5: Azim	54800 1uth = 45 deg	53800	0	3
53200 BRSM5: Azim MIN. LAG	54800 nuth = 45 deg MAX. LAG	53800 AVG SPACE	0 GAMMA H	3 # PAIRS
53200 RSM5: Azim MIN. LAG D	54800 nuth = 45 deg MAX. LAG 750	53800 AVG SPACE 480	0 GAMMA H 0	3 # PAIRS 2
53200 BRSM5: Azim MIN. LAG D 750	54800 auth = 45 deg MAX. LAG 750 2250	53800 AVG SPACE 480 1760	0 GAMMA H 0 0.0775	3 # PAIRS 2 129
53200 BRSM5: Azim MIN. LAG D 750 2250	54800 nuth = 45 deg MAX. LAG 750 2250 3750	53800 AVG SPACE 480 1760 3150	0 GAMMA H 0 0.0775 0.0705	3 # PAIRS 2 129 149
53200 BRSM5: Azim MIN. LAG D 750 2250 3750	54800 10th = 45 deg MAX. LAG 750 2250 3750 5250	53800 AVG SPACE 480 1760 3150 4570	0 GAMMA H 0 0.0775 0.0705 0.0657	3 # PAIRS 2 129 149 198
53200 BRSM5: Azim MIN. LAG D 750 2250 3750 5250	54800 10th = 45 deg MAX. LAG 750 2250 3750 5250 6750	53800 AVG SPACE 480 1760 3150 4570 6080	0 GAMMA H 0 0.0775 0.0705 0.0657 0.0757	3 # PAIRS 2 129 149 198 185
53200 BRSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750	54800 auth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250	53800 AVG SPACE 480 1760 3150 4570 6080 7580	0 GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0759	3 # PAIRS 2 129 149 198 185 169
53200 BRSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750 8250	54800 nuth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080	0 GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0769 0.0686	3 # PAIRS 2 129 149 198 185 169 153
53200 BRSM5: Azim MIN. LAG D 750 2250 3750 5250 6750 8250 9750	54800 10th = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500	0 GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0759 0.0769 0.0686 0.0864	3 # PAIRS 2 129 149 198 185 169 153 162
53200 BRSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750 8250 9750 11200	54800 auth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200 12800	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500 12000	0 GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0769 0.0686 0.0864 0.0863	3 # PAIRS 2 129 149 149 198 185 169 153 162 176
53200 3RSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750 8250 9750 11200 12800	54800 juth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200 12800 14200	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500 12000 13500	0 GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0769 0.0686 0.0864 0.0864 0.0653	3 # PAIRS 2 129 149 198 185 169 153 162 176 138
53200 BRSM5: Azim MIN. LAG D 750 2250 3750 5250 6750 8250 9750 11200 12800 14200	54800 10th = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 15800	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500 12000 13500 15000	0 GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0759 0.0769 0.0686 0.0864 0.0864 0.0653 0.058 0.0449	3 # PAIRS 2 129 149 198 185 169 153 162 176 138 167 166
53200 BRSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 15800	54800 auth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 15800 17200	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500 12000 13500 15000 16500	0 GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0769 0.0686 0.0864 0.0653 0.0588 0.0449 0.0572	3 # PAIRS 2 129 149 198 185 169 153 162 176 138 167
53200 BRSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 15800 17200 18800	54800 auth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 15800 17200 18800	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500 12000 13500 15000 16500 18000	0 GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0769 0.0686 0.0864 0.0653 0.0588 0.0449 0.0572 0.0594 0.0594	3 # PAIRS 2 129 149 198 185 169 153 162 176 138 167 166 160 174
53200 BRSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 15800 17200	54800 uth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 15800 17200 18800 20200	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500 12000 13500 15000 16500 18000 19500	0 GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0769 0.0686 0.0864 0.0864 0.0653 0.058 0.0449 0.0572 0.0594	3 # PAIRS 2 129 149 149 198 185 169 153 162 176 138 167 166 138 167 166 138
53200 3RSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 15800 17200 18800 20200 21800	54800 auth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 15800 17200 18800 20200 21800 23200	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500 10500 12000 13500 15000 16500 18000 18000 21000 22500	0 GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0769 0.0686 0.0864 0.0864 0.0653 0.058 0.0449 0.0572 0.0594 0.0594 0.0632 0.0669 0.0495	3 # PAIRS 2 129 149 198 185 169 153 162 176 138 167 166 138 167 166 138 167 174 172 182
53200 BRSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 15800 17200 18800 20200 21800 23200	54800 uth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 14200 15800 17200 18800 20200 21800 23200 24800	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500 10500 12000 13500 15000 16500 18000 19500 21000 22500 24000	GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0757 0.0769 0.0686 0.0864 0.0686 0.0864 0.0653 0.058 0.0449 0.0572 0.0594 0.0594 0.0632 0.0669 0.0495 0.0604	3 # PAIRS 2 129 149 198 185 169 153 162 176 138 167 166 138 167 166 138 167 166 174 172 182 207
53200 3RSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 14200 15800 17200 18800 20200 21800 23200 24800	54800 auth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 14200 15800 17200 18800 20200 21800 23200 24800 26200	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500 12000 13500 15000 16500 16500 18000 19500 21000 22500 24000 25500	GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0757 0.0769 0.0686 0.0864 0.0663 0.058 0.0449 0.0572 0.0594 0.0594 0.0632 0.0669 0.0495 0.0604	3 # PAIRS 2 129 149 149 198 185 169 153 162 176 138 167 166 138 167 166 138 167 166 138 167 174 172 182 207 192
53200 3RSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 12800 14200 15800 17200 18800 20200 21800 23200 24800 26200	54800 auth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 14200 15800 14200 15800 20200 21800 23200 24800 26200 27800	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500 10500 12000 13500 15000 16500 18000 18000 21000 22500 24000 25500 27000	GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0769 0.0686 0.0864 0.0864 0.0653 0.058 0.0449 0.0572 0.0594 0.0594 0.0632 0.0669 0.0495 0.0645 0.0604	3 # PAIRS 2 129 149 198 185 169 153 162 176 138 167 166 138 167 174 172 182 207 192 172
53200 3RSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 14200 15800 17200 18800 20200 21800 23200 24800 26200 27800	54800 uth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 14200 15800 17200 18800 20200 21800 23200 24800 26200 27800 29200	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500 10500 12000 13500 15000 16500 16500 16500 21000 22500 24000 25500 27000 28500	GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0769 0.0686 0.0864 0.0686 0.0864 0.0653 0.058 0.0449 0.0572 0.0594 0.0594 0.0632 0.0669 0.0495 0.0669 0.0495 0.0604 0.0625 0.0378 0.0505	3 # PAIRS 2 129 149 198 185 169 153 162 176 138 167 166 138 167 166 138 167 166 138 167 182 207 172 182 207 192 172
53200 3RSM5: Azim MIN. LAG 0 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 12800 14200 15800 17200 18800 20200 21800 23200 24800 26200	54800 auth = 45 deg MAX. LAG 750 2250 3750 5250 6750 8250 9750 11200 12800 14200 14200 15800 14200 15800 20200 21800 23200 24800 26200 27800	53800 AVG SPACE 480 1760 3150 4570 6080 7580 9080 10500 10500 12000 13500 15000 16500 18000 18000 21000 22500 24000 25500 27000	GAMMA H 0 0.0775 0.0705 0.0657 0.0757 0.0769 0.0686 0.0864 0.0864 0.0653 0.058 0.0449 0.0572 0.0594 0.0594 0.0632 0.0669 0.0495 0.0645 0.0604	3 # PAIRS 2 129 149 198 185 169 153 162 176 138 167 166 138 167 174 172 182 207 192 172

. 1

a status status and status					
	33800	) 35200	34500	0.0502	219
	35200	36800	36000	0.062	250
	36800	38200	37500	0.0422	225
	38200	39800	39000	0.0718	209
	39800	) 41200	40500	0.0812	191
an a	41200	42800	42000	0.108	190
	42800	44200	43500	0.123	163
	44200	45800	45000	0.0909	
107 <b>9</b> .	45800	47200	46500	0.108	111
1	47200	48800	47900	0.112	103
	48800	50200	49500	0.0688	80
	50200	51800	51000	0.0592	76
	51800	53200	52400	0.0887	62
	53200	54800	54000	0.0439	57
	54800		55600	0.0341	- 44
	56200	57800	57100	0.0465	43
	57800		58600	0.0233	43
	59200		60000	0.0536	28
	60800		61500	0.0278	36
	62200		63000	0.0192	26
	63800		64400	0	23
	65200		66000	0.0833	12
	66800		67600	0.0714	7
	68200		69300	0	3
	71200	72800	71900	0	1
	72800	74200	73500	0	1
	75800		76400	· 0	1
	77200	78800	78500	0	1
	BRSM5: Azim	huth = 70 dec			
ĺ	MIN. LAG	MAX. LAG	AVG SPACE	GAMMA H	# PAIRS
	0	750	590	0	2
	750	2250	1470	0.05	70
F	2250	3750	2940	0.078	141
. 1	3750	5250	4450	0.0822	146
ľ	5250	6750	5920	0.0522	115
ľ	6750	8250	7530	0.0906	160
F	8250	9750	9020	0.0727	172
ſ	9750	11200	10500	0.06	150
· [	11200	12800	12000	0.0669	157
F	12800	14200	13500	0.0544	147
· [	14200	15800	15000	0.0707	198
ſ	15800	17200	16500	0.0538	195
F	17200	18800	18000	0.0723	242
Г	18800	20200	19500	0.0751	313
F	20200	21800	21000	0.0646	271
F	21800	23200	22600	0.0603	307
F	23200	24800	24000	0.0544	285
	24800	26200	25500	0.0689	305
F	26200	27800	27000	0.054	324
					524

, ł.

1.1161

. .

ریکی د و منطق در دو رشماری				
3	0.066	28500	29200	27800
	0.0691	30000	30800	29200
4	0.0854	31500	32200	30800
3	Q.0778	33000	33800	32200
3	0.0903	34500	35200	33800
3	0.081	36000	36800	35200
	0.0685	37500	38200	36800
2	0.0641	39000	39800	38200
2	0.052	40500	41200	39800
2	0.0541	42000	42800	41200
	0.0544	43500	44200	42800
	0.0485	45000	45800	44200
	0.0479	46500	47200	45800
2	0.0488	48100	48800	47200
	0.0556	49500	50200	48800
	0.0432	51000	51800	50200
2	0.0452	52500	53200	51800
	0.04/4	54000	54800	53200
2	0.0373	55500	56200	54800
2	0.0373			
		57000	57800	56200
	0.0398	58500	59200	57800
	0.0385	59900	60800	59200
1	0.0631	61500	62200	60800
<u>                                     </u>	0.101	62900	63800	62200
	0.0714	64600	65200	63800
. 	0.0317	66000	66800	65200
	0.0333	67500	68200	66800
	0.0446	69000	69800	68200
	0.049	70400	71200	69800
	0.0732	71900	72800	71200
	0.0185	73500	74200	72800
	0.111	74900	75800	74200
	0.0417	76400	77200	75800
	0.0882	78100	78800	77200
	.0.0417	79400	80200	78800
	0.0667	81000	81800	80200
	0.0588	82600	83200	81800
	0.0972	84000	84800	83200
	0.0714	85600	86200	84800
	0.0595	87000	87800	86200
	0.134	88400	89200	87800
	0.0769	89900	90800	89200
	0.125	91400	92200	90800
	0.0429	93000	93800	92200
	0.167	94500	95200	93800
	0.0833	95800	96800	95200
	0.0667	97500	98200	96800
	0.0333	99000	99800	98200
	0.15	101000	101000	99800

. -

101000	103000	102000	0.0455	11
103000	104000	103000	0	9
104000	106000	105000	0	9
106000	107000	107000	- 0	10
107000	109000	108000	0.05	10
109000	<u> </u>	109000	0	6
110000	112000	111000	0	13
112000	113000	113000	0	6
113000	115000	114000	0	5
115000	116000	116000	<b>D</b>	3
116000	118000	117000	0	5
118000		118000	0	3
119000		121000	0	1
122000	124000	123000	0	2
BRSM5: Azim	nuth = 90 deg			
MIN. LAG	MAX. LAG	AVG SPACE		# PAIRS
0	750	502	0	5
750	2250	1400	0.0748	127
2250	3750	2870	0.0782	147
3750	<u>52</u> 50	4470	0.0721	111
5250	6750	5980	0.0576	165
6750	8250	7570	0.11	178
8250	9750	9080	0.0669	172
9750	11200	10600	0.0656	183
11200	12800	12000	0.0533	150
12800	14200	13400	0.0595	168
14200	15800	15000	0.0607	206
15800	17200	16500	0.0588	255
17200	18800	18000	0.0807	316
18800	20200	19500	0.0809	377
20200	21800	21100	0.071	352
21800	23200	22500	0.0725	338
23200	24800	24000	0.0812	308
24800	26200	25500	0.066	341
26200	27800	27000	0.0652	422
27800	29200	28500	0.0586	469
29200	30800	30000	0.0651	584
30800	32200	31500	0.0869	633
32200	33800	33000	0.0962	608
33800	35200	34500	0.0788	641
35200	36800	36000	0.0807	607
36800	38200	37400	0.0798	545
38200	39800	39000	0.0645	442
39800	41200	40500	0.0659	364
41200	42800	42000	0.0733	300
42800	44200	43600	0.0828	296
44200	45800	45000	0.115	243
45800	47200	46500	0.113	200
47200	47200	48000	0.0782	211
4/200	40000	40000	0.0702	

1.1.4

. . .

## SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM UNCERT'S VARIO MODULE

.

. ---

......

48800	50200	49500	0.0537	205
50200	51800	51000	0.0237	232
51800	53200	52500	0.0338	340
53200	54800	54000	0,0275	400
54800	56200	55500	0.0279	340
56200	57800	57000	0.0443	271
57800	59200	58500	D.0356	225
59200	60800	60000	0.0409	171
60800	62200	61400	D.0703	192
62200	63800	62900	0.0583	163
63800	65200	64500	D.0294	119
65200	66800	66000	0.0375	120
66800	68200	67500	0.0223	112
68200	69800	69000	0.0472	106
69800	71200	70400	0.0233	129
71200	72800	71900	0.0575	113
72800	74200	73400	0.0966	119
74200	75800	74900	0.17	97
75800	77200	76500	0.117	
77200	78800	78000	0.121	
78800	80200	79400	0.0948	58
80200	81800	81000	0.0862	58
81800	83200	82500	0.0294	51
83200	84800	84000	0.111	45
84800	86200	85400	0.0703	
86200	87800	87100	0.0959	73
87800	89200	88600	0.0522	67
89200	90800	90000	0.0526	76
90800	92200	91500	0.0738	61
92200	93800	92900	0.0543	46
93800	95200	94400	0.115	
95200	96800	95900	0.113	39 40
96800	98200	97500	0.157	
98200	99800	99100	0.137	<u>35</u> 34
9800	101000	100000	0.0735	39
101000	103000	102000		
103000	103000	102000	0.0952	21
103000		104000	D.188	24
104000	106000		0.107	28
	107000	106000	0.1	40
107000	109000	108000	0.00909	55
109000	110000	109000	0.05	50
110000	112000	111000	0.0857	35
112000	113000	112000	0.0909	22
113000	115000	114000	0.0625	16
115000	116000	116000	0.138	29
116000	118000	117000	0.0185	27
118000	119000	118000	0.0395	38
119000	121000	120000	0.0526	19
121000	122000	122000	0	14

۰.

·		·	·		•.
122000	124000	123000	0.15	- 10 <b>- 10</b>	
124000	125000	124000	0.0625	· 16	
125000	127000	126000	0.0417	12	
127000	128000	128000	0	. 5	
128000	130000	129000	· O	<b>. 7</b>	
130000	131000	131000		3	
131000	133000	132000	0	6	
133000	134000	133000	0	4	
134000	136000	135000	0.333	3	
136000	137000	137000	0.5	2	11.
BRSM5: Azim	uth = 110 de	eg 🛛			
MIN. LAG	MAX. LAG	AVG SPACE	GAMMA H	<b># PAIRS</b>	
0	750	733	0	2	
750	2250	1460	0.102	59	
2250	3750	2910	0.0696	115	
3750	5250	4440	0.0599	142	
5250	6750	5980	0.0625	144	
6750	8250	7490	0.0942	191	
8250	9750	9070	0.0644	225	
9750	11200	10500	0.0588	221	
11200	12800	12000	0.061	205	
12800	14200	13500	0.0753	186	
14200	15800	15000	0.0803	193	
15800	17200	16500	0.0858	233	
17200	18800	18000	0.0739	284	
18800	20200	19500	0.0697	373	
20200	21800	21000	0.0806	397	
21800	23200	22500	0.0966	440	
23200	24800	24000	0.0893	431	
24800	26200	25500	0.0937	411	
26200	27800	27000	0.0982	448	
27800	29200	28500	0.0725	524	
29200	30800	30000	0.0687	648	
30800	32200	31500	0.101	695	
32200	33800	33000	0.0951	652	
33800	35200	34500	0.0645	667	
35200	36800	36000	0.0842	594	
36800	38200	37500	0.0778	527	
38200	39800	39000	0.0713	449	
39800	41200	40500	0.071	352	
41200	42800	42000	0.0682	308	
42800	44200	43500	0.0681		
44200	45800	45000	0.0825	285	
45800	47200	46500	0.0911	225	
47200	48800	48000	0.115	205	
48800	50200	49500	0.11	155	
50200	51800	51000	0.0575	174	
51800	53200	52500	0.0476	189	
53200	54800	54000	0.0381	236	

# SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM UNCERT'S VARIO MODULE

TABLE I-A

¥. . . 2. . م الرمية

		- San -		¢	
	54800	56200	55500	0.0405	222
	56200	57800	57000	0.0536	224
	57800	59200	58500	0.0285	228
·	59200	60800	60000	0.0196	280
	60800	62200	61500	0.0343	379
	-62200	63800	63000	0.0345	406
	63800	65200	64400	0.0297	320
	65200	66800	65900	0.0721	215
a and a second	66800	68200	67500	0.0802	187
	<u>68200</u>	69800	69000	0.0777	206
· · · ·	69800	71200	70400	0.107	168
	71200	72800	72000	0.0798	94
	72800	74200	73500	0.0408	98
	74200	75800	75000	0.027	111
	75800	77200	76500	0.0463	108
	77200	78800	78000	0.0471	85
	78800	80200	79500	0.06	100
[	80200	81800	80900	0.0652	92
ĺ	81800	83200	82500	0.0345	58
	83200	84800	84000	0.0244	41
	84800	86200	85500	0.05	40
ſ	86200	87800	87000	0.0488	41
	87800	89200	88500	0.0128	39
	89200	90800	89900	0.0303	33
[	90800	92200	91400	0.0303	33
	92200	93800	93000	0.04	25
	93800	95200	94500	0.02	25
	95200	96800	96000	0.075	20
Ĩ	96800	98200	97500	0.0345	29
	98200	99800	98900	0.0172	29
ſ	99800	101000	100000	0.0294	17
·	101000	103000	102000	0.0385	26
	103000	104000	104000	0.0303	33
[	104000	106000	105000	0.0455	33
	106000	107000	106000	0.147	17
	107000	109000	108000	0.1	10
	109000	110000	110000	0.0357	14
	110000	112000	111000	0.0833	18
	112000	113000	113000	0.208	12
-	113000	115000	114000	0	
· [	115000	116000	115000	0	6 8
ſ	116000	118000	117000	0	4
	118000	119000	118000	0	10
ľ	119000	121000	120000	0.0385	13
F	121000	122000	121000	0	7
ſ	122000	124000	123000	0	
F	124000	125000	125000	0	5
· · [	125000	127000	126000	0	8
· F	127000	128000	128000	0	
L		.2000			

and the

.

۰.

			-	
128000	130000	129000	0	<u> </u>
131000	133000	132000	0	<u> </u>
133000	134000	133000	0	1
134000	.136000	135000	<u> </u>	<u> </u>
136000	137000	136000	. 0	1
137000	139000	138000	0	2
139000	140000	140000	0	1
140000	142000	141000	0	1
BRSM5: Azim				
MIN. LAG	MAX. LAG	AVG SPACE	GAMMA H	# PAIRS
0	750	468	0	1
750	2250	1720	0.082	122
2250	3750	3110	0.0776	116
3750	5250	4550	0.0579	164
5250	6750	6110	0.0762	164
6750	8250	7550	0.0888	197
8250	9750	9060	0.083	229
9750	11200	10500	0.0657	251
11200	12800	12000	0.0574	235
12800	14200	13500	0.0801	206
14200	15800	15000	0.0963	187
15800	17200	16600	0.0778	212
17200	18800	18000	0.0884	215
18800	20200	19500	0.0745	255
20200	21800	21000	0.1	285
21800	23200	22500	0.125	332
23200	24800	24000	0.104	317
24800	26200	25500	0.107	338
26200	27800	27000	0.0895	313
27800	29200	28500	0.0841	315
29200	30800	30100	0.084	405
30800	32200	31500	0.0947	470
32200	33800	33000	0.119	519
33800	35200	34500	0.114	444
35200	36800	36000	0.125	409
36800	38200	37500	0.0971	314
38200	39800	38900	0.143	251
	41200	40500	0.145	202
39800 41200		40500	0.138	194
41200	42800	42000	0.142	194
		45000	0.113	
44200	45800	45000		162
45800	47200	48000	0.0661	121
47200	48800			114
48800	50200	49500	0.051	<u>98</u>
50200	51800	51000	0.0844	77
51800	53200	52400	0.0592	76
53200	54800	54000	0.0663	83
54800	56200	55500	0.0758	66
56200	57800	57000	0.0851	47

. . . ÷.

ŧ.

## SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM UNCERT'S VARIO MODULE

:				
57800	59200	58300	0.0854	41
59200	60800	59900	0.0909	22
60800	62200	61400	0.0682	22
62200	63800	62900	- 0	12
63800	65200	64200	0.125	8
65200	66800	65800	0.143	7
66800	68200	67300	0.0833	6
68200	69800	68900	0	3
69800	71200	70600	0	5
71200	72800	71700	0	3
72800	74200	73400	0	3
74200	75800	75000	0	4
BRSM5: Azimu	uth = 160 de	g		
MIN. LAG	MAX. LAG	AVG SPACE	GAMMA H	# PAIRS
0	750	739	0	1
750	2250	1520	0.0259	58
2250	3750	2960	0.0671	164
3750	5250	4420	0.0851	188
5250	6750	5940	0.0714	224
6750	8250	7490	0.0826	230
8250	9750	9070	0.0792	240
9750	11200	10600	0.0959	245
11200	12800	12000	0.0977	266
12800	14200	13500	0.0981	265
14200	15800	14900	0.0742	236
15800	17200	16400	0.0636	236
17200	18800	18000	0.0617	227
18800	20200	19600	0.0656	244
20200	21800	21000	0.0683	205
21800	23200	22500	0.0611	229
23200	24800	24000	0.0681	235
24800	26200	25500	0.0508	266
26200	27800	27000	0.0488	256
27800	29200	28500	0.0667	255
29200	30800	30000	0.0612	245
30800	32200	31500	0.047	202
32200	33800	33000	0.0625	176
33800	35200	34500	0.0724	152
35200	36800	36000	0.0541	157
36800	38200	37500	0.063	127
38200	39800	39000	0.0577	104
39800	41200	40500	0.0915	82
41200	42800	41900	0.0493	71
42800	44200	43500	0.0116	43
44200	45800	44900	0.0233	43
45800	47200	46400	0.06	25
47200	48800	48100	0.0862	29
48800	50200	49400	0	20
50200	51800	50900	0.0625	8

de O

al der ze

SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM UNCERTS VARIO MODULE

. مىغە ھارقى تەر

S. Anger

				· · ·
51800	53200	57511	0	9
53200	54800	53500	0	1

### TABLE I-B SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM GSLIB'S GAM2V MODULE

otrop	ic (Omnidired	<u>tional)</u>				
				Non-Ergodic	Gen. Rel.	
Lag	Avg. Space	# Pairs	Semivariogram	Covariance	Semi-Variogram	Semi-Rodogran
1	0.0	708	0.0000	0.0705	0.0	0.000
2	574.7	32	0.0313	-0.0010	64.0	0.031
. 3	1556.0	1244	0.0699	0.0047	21.2	0.069
4	2986.4	1944	0.0715	0.0053	20.3	0.071
5	4440.2	2204	0.0699	0.0089	18.8	0.069
6	5979.8	2448	0.0748	0.0006	22.2	0.074
7	7526.3	2490	0.0839	-0.0004	19.8	0.083
8	9043.4	2620	0.0737	0.0036	20.7	0.073
9	10540.1	2622	0.0782	0.0028	19.8	0.078
10	11996.8	2544	0.0743	0.0050	19.7	0.074
11	13493.0	2472	0.0777	0.0007	21.1	0.07
12	14957.5	2444	0.0720	0.0024	21.9	0.07
13	16491.2	2686	0.0756	0.0012	21.5	0.07
14	18004.0	2914	0.0721	-0.0023	25.3	0.07
15	19520.7	3308	0.0726	-0.0027	25.4	0.07
16	21028.3	3230	0.0749	-0.0035	25.0	0.074
17	22511.0	3416	0.0805	-0.0036	22.8	0.08
18	23977.9	3344	0.0748	0.0005	22.3	0.074
19	25477.0	3362	0.0759	-0.0007	22.7	0.07
20	26984.9	3388	0.0655	-0.0007	27.0	0.06
21	28504.1	3700	0.0651	-0.0024	28.8	0.06
22	30032.4	4054	0.0688	-0.0039	28.2	0.06
23	31512.0	4286	0.0863	-0.0063	22.4	0.08
24	33010.5	4126	0.0894	-0.0056	21.0	0.08
25	34481.7	4102	0.0787	-0.0021	22.5	0.07
26	35972.3	3854	0.0843	-0.0024	20.8	0.08
27	37459.3	3280	0.0762	0.0009	21.5	0.07
28	38972.0	2860	0.0797	0.0012	20.2	0.07
29	40500.2	2482	0.0766	-0.0004	22.2	0.07
30	42012.0	2284	0.0858	-0.0016	19.9	0.08
31	43522.8	2160	0.0870	-0.0045	21.1	0.08
32	44980.7	2038	0.0864	-0.0010	19.5	0.08

TABLE I-B

,

.

**5** -

## SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM GSLIB'S GAM2V MODULE

.....

<b>Inisotr</b>	opic: Azimut	<u>h = 160 deg</u>	].	·		
	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1			Non-Ergodic	Gen. Rel.	
Lag	Avg. Space	# Pairs	Semivariogram	Covariance	Semi-Variogram	Semi-Rodogram
1	0.0	354	0.0000	0.0705	0.0	0.000
2	739.3		0.0000	0.0000	0.0	0.000
. 3	1520.0	-58	0.0259	-0.0006	77.3	0.025
4	2958.1	164	0.0671	0.0063	21.3	0.067
5	4423.0	188	0.0851	0.0015	18.6	0.085
6	5940.0	224	0.0714	-0.0051	28.0	0.071
7	7492.4	.230	0.0826	0.0005	19.8	0.082
8	9072.9	240	0.0792	-0.0022	22.8	0.079
9	10577.8	245	0.0959	0.0015	16.4	0.095
10	12046.8	266	0.0977	0.0064	14.4	0.097
11	13498.8	265	0.0981	-0.0046	18.9	0.098
12	14911.2	236	0.0742	0.0059	19.7	0.074
13	16431.0	236	0.0636	0.0091	21.9	0.063
14	17969.4	227	0.0617	0.0045	24.8	0.061
15	19552.1	244	0.0656	-0.0026	30.5	0.065
16	21041.7	205	0.0683	0.0001	25.5	0.068
17	22506.5	229	0.0611	-0.0028	32.7	0.061
18	24005.7	235	0.0681	-0.0032	29.4	0.068
19	25460.1	266	0.0508	-0.0020	39.4	. 0.050
20	26959.1	256	0.0488	-0.0015	41.0	0.048
21	28496.8	255	0.0667	-0.0007	26.8	0.066
22	29986.2	245	0.0612	-0.0038	32.7	0.061
23	31474.5	202	0.0470	-0.0021	42.5	0.047
24	32984.7	176	0.0625	-0.0036	32.0	0.062
25	34481.2	152	0.0724	-0.0052	27.6	0.072
26	35974.3	157	0.0541	0.0028	29.6	0.054
27	37488.8	127	0.0630	-0.0039	31.8	0.063
28	38950.1	104	0.0577	-0.0032	34.7	0.057
29	40452.3	82	0.0915	-0.0054	21.9	0.091
30	41898.0	71	0.0493	0.0000	40.6	0.049
31	43481.5	43	0.0116	0.0000	172.0	0.011
32	44924.6	43	0.0233	0.0000	86.0	0.023

TABLE I-C

12

÷

4

SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM VARIOWIN

ANISOTROPIC		Direction: 110	) <b>*</b>	· •						
		Angular Tolera		Maximum BW	: 10000					
Data Vari	ance .: 7.045	539e-02	Code for missin							
ag	NPairs	Mean  h	Semivariogram			Semimadogran				
1	100 S 58		2.5862E-02		-2.5031E-02	2.5862E-02				
2	164	2958.05	6.7073E-02	6.2463E-03	8.7975E-02	6.7073E-0				
3	188	4422.96	8.5106E-02		1.7347E-02	8.5106E-0				
4	224	5939.99	7.1429E-02	-5.0821E-03	-7.6774E-02	7.1429E-0				
5	230	7492.42	8.2609E-02	5.2930E-04	6.4464E-03	8.2609E-0				
6		9072.90	7.9167E-02	-2.1528E-03	-2.9554E-02	7.9167E-0				
7	245	10577.80	9.5918E-02	1.4827E-03	1.6035E-02	9.5918E-0				
8	266	12046.80	9.7744E-02	6.3599E-03	6.4598E-02	9.7744E-0				
ç			9.8113E-02	-4.5568E-03	-5.5661E-02	9.8113E-0				
10	236	14911.10	7.4153E-02	5.9250E-03	7.8799E-02	7.4153E-0				
			6.3559E-02	9.0671E-03	1.6280E-01	6.3559E-0				
12			6.1674E-02	4.5411E-03	7.4799E-02	6.1674E-0				
13	·		6.5574E-02	-2.6203E-03	-5.4834E-02	6.5574E-C				
]4			6.8293E-02	1.1898E-04	1.8615E-03	6.8293E-0				
15			6.1135E-02	-2.8032E-03	-5.6422E-02	6.1135E-C				
16			6.8085E-02	-3.1689E-03	-6.0456E-02	6.8085E-0				
17			5.0752E-02	-1.9786E-03	-4.6876E-02	5.0752E-0				
18		26959.10	4.8828E-02	-1.5259E-03	-4.1087E-02	4.8828E-0				
19			) 6.6667E-02	-6.7666E-04	-1.0739E-02	6.6667E-0				
20			6.1225E-02	-3.7484E-03	-6.5217E-02	6.1225E-0				
2				2 -2.0586E-03	-4.7615E-02	4.7030E-0				
2				2 · -3.6157E-03	-6.4150E-02	2 6.2500E-0				
2				2 -5.1939E-03	-7.7693E-02	2 7.2368E-0				
2				2 2.7993E-03	4.9870E-02	2 5.4140E-0				
2				2 -3.9060E-03	-6.6702E-02	2 6.2992E-I				
20					-6.0371E-02					
2										
2										
2										
3					-9.9990E+03					
* Variow	in measures	direction cloc	kwise from X axi	s which differs	from both UNC	ERT and				
				* Variowin measures direction clockwise from X axis which differs from both UNCERT and GSLIB. An UNCERT azimuth of 160 deg. equals a VARIOWIN angle of 110 deg.						

TABLE I-C

#### SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM VARIOWIN

ISOTROF	PIC							
Direction	:0	Angular Toler		·	Maximum BW : NA			
Lag	NPairs	Mean Ihl	Semivariogram		N.E. Corr.	Semimadogra		
Ō		574.72	3.1250E-02		-3.2258E-02	3.1250E-02		
1	. 1244	1556.01	6.9936E-02	4.6623E-03	6.2498E-02	6.9936E-02		
2	1944	2986.36	7.1502E-02	5.3152E-03	<u>6.9193E-02</u>	7.1502E-02		
3	2204	4440.21	6.9873E-02	8.9023E-03	<u>1.1301E-01</u>	6.9873E-02		
4	2448	5979.77	7.4755E-02	6.1124 <u>E</u> -04	8.11D3E-03			
5	2490	7526.26	8.3936E-02	-4.2596E-04	-5.1007E-03	8.3936E-02		
6	2620	9043.41	7.3664E-02	3.5719E-03	4.6247E-02	7.3664E-02		
7	2622	10540.10	7.8185E-02	2.7822E-03	3.4362E-02	7.8185E-02		
8	2544	11996.70	7.4293E-02	5.0320E-03	6.3436E-02	7.4293E-02		
9		13492.90	7.7670E-02	7.3575E-04	9.3839E-03	7.7670E-02		
10	2444	14957.40	7.2013E-02	2.4383E-03	3.2750E-02	7.2013E-02		
11	2686	16491.20	7.5577E-02	1.1736E-03	1.5291E-02	7.5577E-02		
12		18004.00	7.2066E-02	-2.2682E-03	-3.2497E-02	7.2066E-02		
13		19520.70	7.2551E-02	-2.6885E-03	-3.8483E-02	7.2551E-02		
14		21028.30	7.4923E-02	-3.5139E-03	-4.9208E-02	7.4923E-02		
15		22511.00	8.0504E-02	-3.5459E-03	-4.6076E-02	8.0504E-02		
16			7.4761E-02	4.6323E-04	6.1580E-03			
17		25477.00	7.5848E-02	-7.4184E-04	-9.8772E-03	7.5848E-02		
18		26984.90	6.5525E-02	-7.1995E-04	-1.1109E-02	6.5525E-02		
19		28504.10	6.5135E-02	-2.3668E-03	-3.7706E-02	6.5135E-02		
20		30032.40	6.8821E-02	-3.8864E-03	-5.9851E-02	6.8821E-02		
21	4286	31512.00	8.6328E-02	-6.2962E-03	-7.8672E-02	8.6328E-02		
22	4126	33010.50	8.9433E-02	-5.6185E-03	-6.7035E-02			
23		34481.70	7.8742E-02	-2.1163E-03	-2.7618E-02	7.8742E-02		
24		35972.30	8.4328E-02	-2.3982E-03	-2.9271E-02	8.4328E-02		
25		37459.30	7.6220E-02	8.4622E-04	1.0981E-02	7.6220E-02		
26		38972.00	7.9720E-02	1.2035E-03	1.4872E-02	7.9720E-02		
27	2482	40500.20	7.6551E-02	-4.4219E-04	-5.8099E-03	7.6551E-02		
28		42012.00	8.5814E-02	-1.6102E-03	-1.9123E-02	8.5814E-02		
29	2160				-5.4907E-02			
30			8.6359E-02		-1.2008E-02	8.6359E-02		
0								
			<u> </u>					
* Variowin	Variowin measures direction clockwise from X axis which differs from both UNCERT and							
			deg. equals a V					

#### **APPENDIX J**

#### Cowden Isopach Sample Semi-Variogram Calculations

Table J-A: Results from UNCERT's VARIO Module

Experimental S	Semivariogram	Solution from V	ARIO	
icowr3: Isotropi	ic			
MIN. LAG	MAX. LAG	AVG SPACE	GAMMA H	# PAIRS
0	750	488	1.81E+03	- 42
750	2.25E+03	1.55E+03	4.35E+03	1194
2.25E+03	3.75E+03	2.99E+03	8.35E+03	1874
3.75E+03	5.25E+03	4.45E+03	1.33E+04	2060
5.25E+03	6.75E+03	5.98E+03	1.69E+04	2290
6.75E+03	8.25E+03	7.53E+03	2.31E+04	2428
8.25E+03	9.75E+03	9.04E+03	2.54E+04	2628
9.75E+03	1.12E+04	1.05E+04	2.55E+04	2612
1.12E+04	1.28E+04	1.20E+04	2.69E+04	2492
1.28E+04	1.42E+04	1.35E+04	2.78E+04	2454
1.42E+04	1.58E+04	1.50E+04	2.83E+04	2506
1.58E+04	1.72E+04	1.65E+04	2.89E+04	2770
1.72E+04	1.88E+04	1.80E+04	2.91E+04	2976
1.88E+04	2.02E+04	1.95E+04	3.17E+04	3422
2.02E+04	2.18E+04	2.10E+04	3.53E+04	3390
2.18E+04	2.32E+04	2.25E+04	3.56E+04	3488
2.32E+04	2.48E+04	2.40E+04	3.65E+04	3536
2.48E+04	2.62E+04	2.55E+04	3.65E+04	3484
2.62E+04	2.78E+04	2.70E+04	3.29E+04	3658
2.78E+04	2.92E+04	2.85E+04	3.25E+04	3982
2.92E+04	3.08E+04	3.00E+04	3.13E+04	4098
3.08E+04	3.22E+04	3.15E+04	3.14E+04	4338
3.22E+04	3.38E+04	3.30E+04	3.25E+04	4090
3.38E+04	3.52E+04	3.45E+04	3.29E+04	4030
3.52E+04	3.68E+04	3.60E+04	3.29E+04	3804
3.68E+04	3.82E+04	3.75E+04	3.80E+04	3404
3.82E+04	3.98E+04	3.90E+04	3.69E+04	3180
3.98E+04	4.12E+04	4.05E+04	4.02E+04	2940
4.12E+04	4.28E+04	4.20E+04	3.81E+04	2712
4.28E+04	4.42E+04	4.35E+04	4.26E+04	2638
4.42E+04	4.58E+04	4.50E+04	4.90E+04	2434
4.58E+04	4.72E+04	4.65E+04	5.33E+04	2146
4.72E+04	4.88E+04	4.80E+04	5.54E+04	2096
4.88E+04	5.02E+04	4.95E+04	5.30E+04	2000
5.02E+04	5.18E+04	5.10E+04	5.84E+04	1996
5.18E+04	5.32E+04	5.25E+04	5.64E+04	2090
5.32E+04	5.48E+04	5.40E+04	5.08E+04	2090
5.48E+04	5.62E+04	5.55E+04	4.66E+04	1914
5.62E+04	5.78E+04	5.70E+04	3.70E+04	1698
5.78E+04	5.92E+04	<u> </u>		
		5.85E+04	3.44E+04	1516
5.92E+04	6.08E+04	6.00E+04	2.92E+04	1512
6.08E+04	6.22E+04	6.15E+04	2.70E+04	1710
6.22E+04	6.38E+04	6.30E+04	2.48E+04	1594
6.38E+04	6.52E+04	6.45E+04	2.51E+04	1164
6.52E+04	6.68E+04	6.60E+04	3.25E+04	872
6.68E+04	6.82E+04	6.75E+04	3.39E+04	736

6.82E+04	6.98E+04	6.90E+04	3.13E+04	762
6.98E+04	7.12E+04	7.05E+04	3.18E+04	850
7.12E+04	7.28E+04	7.19E+04	3.19E+04	672
7.28E+04	7.42E+04	7.35E+04	3.34E+04	586
7.42E+04	7.58E+04	7.50E+04	4.14E+04	488
7.58E+04	7.72E+04	7.65E+04	3.71E+04	528
7.72E+04	7.88E+04	7.80E+04	3.38E+04	418
7.88E+04	8.02E+04	7.95E+04	3.28E+04	378
- 8.02E+04	8.18E+04	8.09E+04	2.83E+04	322
8.18E+04	8.32E+04	8.24E+04	2.75E+04	276
8.32E+04	8.48E+04	8.39E+04	4.04E+04	224
8.48E+04	8.62E+04	8.56E+04	2.70E+04	226
8.62E+04	8.78E+04	8.71E+04	4.45E+04	216
8.78E+04	8.92E+04	8.85E+04	4.01E+04	188
8.92E+04	9.08E+04	9.00E+04	4.61E+04	134
9.08E+04	9.22E+04	9.14E+04	3.70E+04	136
9.22E+04	9.38E+04	9.30E+04	6.91E+04	106
9.38E+04	9.52E+04	9.44E+04	6.33E+04	84
9.52E+04	9.68E+04	9.59E+04	7.83E+04	76
9.68E+04	9.82E+04	9.75E+04	5.59E+04	54
9.82E+04	9.98E+04	9.90E+04	4.51E+04	68
9.98E+04	1.01E+05	1.00E+05	4.85E+04	46
1.01E+05	1.03E+05	1.02E+05	4.45E+04	20
1.03E+05	1.04E+05	1.04E+05	4.59E+04	28
1.04E+05	1.06E+05	1.05E+05	2.11E+04	42
1.06E+05	1.07E+05		4.48E+04	68
1.07E+05	1.09E+05		3.13E+04	56
1.09E+05	1.10E+05		1.20E+04	26
1.10E+05	1.12E+05	-	3.68E+04	20
1.12E+05	1.13E+05		1.59E+04	26
1.13E+05	1.15E+05	1.14E+05	3.17E+04	48
1.15E+05	1.16E+05		1.67E+04	36
1.16E+05	1.18E+05		2.22E+04	26
1.18E+05	1.19E+05	1.18E+05	2.07E+04	14
1.19E+05	1.21E+05	1.20E+05	1.07E+04	14
1.21E+05	1.22E+05	1.22E+05	2.15E+04	18
1.22E+05	1.24E+05	1.23E+05	3.52E+04	16
1.24E+05	1.25E+05	1.24E+05	1.27E+04	10
1.25E+05	1.27E+05	1.26E+05	~3.19E+04	12
1.27E+05	1.28E+05	1.28E+05	2.96E+03	2
1.28E+05	1.30E+05	1.29E+05	1.61E+04	14
1.30E+05	1.31E+05	1.31E+05	3.84E+04	8
1.31E+05	1.33E+05	1.32E+05	2.10E+04	8
1.33E+05	1.34E+05	1.34E+05	8.53E+03	8
1.36E+05	1.37E+05	1.36E+05	5.44E+03	6
1.39E+05	1.40E+05	1.40E+05	4.75E+04	4
1.40E+05	1.42E+05	1.41E+05	1.71E+04	4
1.40E+05	1.43E+05	1.41E+05	7.81E+03	2
1.43E+05	1.45E+05		9.47E+03	2
		1.446+03	3.4/E+03	4

### COWDEN ISOPACH SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM UNCERT'S VARIO MODULE

	<u> </u>			
1.46E+05		<u>1.47E+05</u>	1.04E+05	2
icowr3: $Az = 0$			· · · · · · · · · · · · · · · · · · ·	
MIN. LAG	MAX. LAG	AVG SPACE		
0		593		
750				
2.25E+03				
3.75E+03		4.41E+03	1.79E+04	223
5.25E+03	6.75E+03	<u>5.95E+03</u>	1.70E+04	333
6.75E+03	8.25E+03	7.57E+03	2.13E+04	271
8.25E+03	9.75E+03	9.12E+03	2.27E+04	252
9.75E+03	<u>1.12E+04</u>	1.06E+04	2. <u>45E+04</u>	261
1.12E+04	1.28E+04	1.20E+04	2.96E+04	252
1.28E+04	1.42E+04	1.34E+04	2.98E+04	249
1.42E+04	1.58E+04	1.48E+04	3.45E+04	295
1.58E+04	1.72E+04	1.64E+04	3.84E+04	315
1.72E+04	1.88E+04	1.80E+04	3.30E+04	312
1.88E+04	2.02E+04	1.96E+04	3.79E+04	322
2.02E+04	2.18E+04	2.11E+04	3.90E+04	301
2.18E+04	2.32E+04	2.26E+04	4.08E+04	260
2.32E+04	2.48E+04	2.40E+04	4.36E+04	267
2.48E+04	2.62E+04	2.55E+04	4.12E+04	265
2.62E+04	2.78E+04	2.69E+04	3.63E+04	256
2.78E+04	2.92E+04	2.85E+04	3.55E+04	246
2.92E+04	3.08E+04	3.00E+04	4.55E+04	204
3.08E+04	3.22E+04	3.16E+04	4.99E+04	181
3.22E+04	3.38E+04	3.30E+04	5.01E+04	137
3.38E+04	3.52E+04	3.45E+04	5.21E+04	118
3.52E+04	3.68E+04	3.59E+04	4.67E+04	106
3.68E+04	3.82E+04	3.74E+04	6.34E+04	71
3.82E+04	3.98E+04	3.89E+04	7.37E+04	74
3.98E+04	4.12E+04	4.05E+04	6.66E+04	75
4.12E+04	4.28E+04	4.22E+04	6.00E+04	41
4.28E+04	4.42E+04	4.37E+04	5.61E+04	41
4.42E+04	4.58E+04	4.50E+04	5.71E+04	. 35
4.58E+04	4.72E+04	4.64E+04	4.93E+04	32
4.72E+04	4.88E+04	4.78E+04	6.38E+04	27
4.88E+04	5.02E+04	4.94E+04	3.86E+04	21
5.02E+04	5.18E+04	5.10E+04	5.96E+04	13
5.18E+04	5.32E+04	5.27E+04	4.48E+04	• 4
5.32E+04	5.48E+04	5.36E+04	1.39E+04	3
5.48E+04	5.62E+04	5.53E+04	3.38E+04	5
5.78E+04	5.92E+04	5.80E+04	2.63E+03	2
6.22E+04	6.38E+04	6.37E+04	4.29E+04	1
icowr3: Az = 20	deg			
MIN. LAG	MAX. LAG	AVG SPACE	GAMMA H	# PAIRS
0	750	699	3.60E+03	2
750	2.25E+03	1.54E+03	3.76E+03	69
2.25E+03	3.75E+03	2.96E+03	1.04E+04	171
3.75E+03	5.25E+03	4.45E+03	1.75E+04	236
,				

•

5.25E+03	6.75E+03	5.98E+03	1.85E+04	260
6.75E+03	8.25E+03	7.50E+03	2.21E+04	275
8.25E+03	9.75E+03	9.08E+03	2.73E+04	280
9.75E+03	1.12E+04	1.06E+04	2.69E+04	- 243
1.12E+04	1.28E+04	1.20E+04	2.65E+04	252
1.28E+04	1.42E+04	1.35E+04	3.20E+04	243
1.42E+04	1.58E+04	1.49E+04	3.29E+04	230
1.58E+04	1.72E+04	1.65E+04	3.36E+04	227
1.72E+04	1.88E+04	1.80E+04	3.57E+04	216
1.88E+04	2.02E+04	1.95E+04	3.73E+04	231
2.02E+04	2.18E+04	2.10E+04	4.04E+04	238
2.18E+04	2.32E+04	2.25E+04	4.67E+04	218
2.32E+04	2.48E+04	2.40E+04	5.00E+04	214
2.48E+04	2.62E+04	2.55E+04	5.91E+04	173
2.62E+04	2.78E+04	2.69E+04	5.44E+04	147
2.78E+04	2.92E+04	2.84E+04	5.41E+04	149
2.92E+04	3.08E+04	3.00E+04	5.32E+04	126
3.08E+04	3.22E+04	3.15E+04	4.82E+04	125
3.22E+04	3.38E+04	3.30E+04	4.40E+04	124
3.38E+04	3.52E+04		4.79E+04	129
3.52E+04	3.68E+04			125
3.68E+04	3.82E+04		5.14E+04	134
3.82E+04	3.98E+04	3.90E+04	5.86E+04	131
3.98E+04	4.12E+04		6.79E+04	129
4.12E+04	4.12E+04 4.28E+04		6.69E+04	
			8.26E+04	118
4.28E+04	4.42E+04	4.35E+04		127
4.42E+04	4.58E+04		9.36E+04	100
4.58E+04	4.72E+04		1.17E+05	92
4.72E+04	4.88E+04		1.12E+05	69
4.88E+04	5.02E+04		1.15E+05	45
5.02E+04	5.18E+04	5.09E+04	8.84E+04	44
5.18E+04	5.32E+04		5.90E+04	28
5.32E+04	5.48E+04		2.99E+04	21
5.48E+04	5.62E+04		1.90E+04	15
5.62E+04	5.78E+04	5.68E+04	6.42E+03	12
5.78E+04	5.92E+04	5.86E+04	3.48E+03	3
5.92E+04	6.08E+04		7.57E+04	1
6.38E+04	6.52E+04	6.42E+04	3.41E+04	1
icowr3: Az = 45			<u>~</u>	
MIN. LAG	MAX. LAG	AVG SPACE	GAMMA H	# PAIRS
0	750	494	. 2	1
750	2.25E+03	1.78E+03	6.24E+03	123
2.25E+03	3.75E+03		9.45E+03	141
3.75E+03	5.25E+03		1.47E+04	185
5.25E+03	6.75E+03		1.33E+04	171
6.75E+03	8.25E+03		1.99E+04	150
8.25E+03	9.75E+03	9.10E+03	2.53E+04	148
9.75E+03	1.12E+04	1.05E+04	2.45E+04	151
1.12E+04	1.28E+04	1.20E+04	2.81E+04	169

1.28E+04	4 1.42E+04	1.35E+04	2.93E+04	128
1.42E+04	1.58E+04			
1.58E+04	4 1.72E+04	1.65E+04	2.55 <u>E+04</u>	156
1.72E+04	1.88E+04	<u>1.80E+04</u>		
1.88E+04	2.02E+04	1.95E+04	3.45E+04	189
2.02E+04	2.18E+04	2.10E+04	4.58E+04	210
2.18E+04	4 2.32E+04	2.25E+04	4.30E+04	215
2. <u>32E+04</u>	4 2.48E+04	2.40E+04	4.66E+04	244
2 <u>.48E+04</u>	<u>2.62E+04</u>	2.55E+04	5.54E+04	222
2.62E+04	1 2.78E+04	2.70E+04	4.58E+04	202
2.78E+04	2.92E+04	2.85E+04	5.47E+04	236
2.92E+04	4 3.08E+04	3.00E+04	4.54E+04	205
3.08E+04	4 3.22E+04	3.15E+04	4.43E+04	206
3.22E+04	1 3.38E+04	3.31E+04	4.36E+04	203
3.38E+04	3.52E+04	3.45E+04	4.02E+04	238
3.52E+04	3.68E+04	3.60E+04	4.14E+04	245
3.68E+04	3.82E+04	3.75E+04	4.82E+04	237
3.82E+04	3.98E+04	3.90E+04	4.50E+04	238
3.98E+04	4.12E+04	4.05E+04	5.21E+04	
4.12E+04	4.28E+04	4.20E+04	6.09E+04	207
4.28E+04	4.42E+04	4.35E+04	7.15E+04	180
4.42E+04	4.58E+04	4.50E+04	9.88E+04	195
4.58E+04	4.72E+04	4.65E+04	1.07E+05	165
4.72E+04				
4.88E+04				
5.02E+04				
5.18E+04	-			·
5.32E+04				· · · · · · · · · · · · · · · · · · ·
5.48E+04	<u> </u>			
5.62E+04			5.96E+04	
5.78E+04	<u> </u>			
5.92E+04		6.00E+04		
6.08E+04				
6.22E+04		6.29E+04	2.73E+04	
6.38E+04		6.45E+04	5.61E+04	25
6.52E+04		6.61E+04	1.35E+05	19
6.68E+04		6.75E+04	1.26E+05	9
6.82E+04		6.88E+04	1.46E+05	6
6.98E+04		7.08E+04	1.86E+05	7
7.12E+04		7.22E+04	9.41E+04	4
7.28E+04	7.42E+04	7.34E+04	7.04E+04	3
7.42E+04	7.58E+04	7.52E+04	6.23E+04	4
7.58E+04	7.72E+04	7.65E+04	1.17E+05	2
7.72E+04	7.88E+04	7.77E+04	2.21E+04	4
7.88E+04	8.02E+04	7.96E+04	1.53E+04	
8.18E+04	8.32E+04	8.20E+04	5.88E+04	<u> </u>
8.48E+04	8.62E+04	8.49E+04	1.62E+03	<u>-</u>
6.46⊑+04 icowr3: Az = 70		0.495+04	1.020+03	<b>_</b>
		AVG SPACE	GAMMA H	# DAIDO
MIN. LAG	IVIAA. LAG	AVG SPACE		# PAIRS

	750	407		
0 750	750	437	119	
2.25E+03	2.25E+03	1.46E+03	1.88E+03	59
	<u>3.75E+03</u>	2.95E+03		127
3.75E+03	5.25E+03	4.48E+03	1.05E+04	
5.25E+03	6.75E+03	5.96E+03	2.33E+04	116
6.75E+03	8.25E+03	7.52E+03	2.31E+04	167
8.25E+03	9.75E+03	9.05E+03	2.39E+04	184
9.75E+03	1.12E+04	1.05E+04	2.70E+04	154
1.12E+04	1.28E+04	1.20E+04	2.86E+04	155
1.28E+04	1.42E+04	1.35E+04	2.91E+04	149
1.42E+04	1.58E+04	1.50E+04	2.80E+04	179
1.58E+04	1.72E+04	1.65E+04	3.07E+04	188
1.72E+04	1.88E+04	1.80E+04	3.47E+04	242
1.88E+04	2.02E+04	<u>1.95E+04</u>	4.10E+04	324
2.02E+04	2.18E+04	2.10E+04	5.65E+04	285
2.18E+04	2.32E+04	2.25E+04	5.11E+04	313
2.32E+04	<u>2.48E+04</u>	2.40E+04	5.83E+04	310
2.48E+04	2.62E+04	2.55E+04	5.22E+04	329
2.62E+04	2.78E+04	2.70E+04	3.70E+04	337
2.78E+04	2.92E+04	2.85E+04	3.41E+04	374
2.92E+04	3.08E+04	3.00E+04	3.00E+04	383
3.08E+04	3.22E+04	<u>3.15E+04</u>	3.05E+04	381
3.22E+04	3.38E+04	3.30E+04	3.81E+04	371
3.38E+04	3.52E+04	3.45E+04	4.47 <u>E+</u> 04	359
3.52E+04	3.68E+04	3.60E+04	5.39E+04	316
3.68E+04	3.82E+04	3.75E+04	5.54E+04	329
3.82E+04	3.98E+04	3.90E+04	4.99E+04	287
3.98E+04	4.12E+04	4.05E+04	4.62E+04	263
4.12E+04	4.28E+04	4.20E+04	3.77E+04	263
4.28E+04	4.42E+04	4.35E+04	4.06E+04	240
4.42E+04	4.58E+04	4.50E+04	4.01E+04	224
4.58E+04	4.72E+04	4.65E+04	4.37E+04	228
4.72E+04	4.88E+04	4.80E+04	4.78E+04	248
4.88E+04	5.02E+04	4.95E+04	5.17E+04	296
5.02E+04	5.18E+04	5.10E+04	5.35E+04	330
5.18E+04	5.32E+04	5.25E+04	6.11E+04	294
5.32E+04	5.48E+04	5.40E+04	6.13E+04	218
5.48E+04	5.62E+04	5.55E+04	5.94E+04	203
5.62E+04	5.78E+04	5.70E+04	4.06E+04	176
5.78E+04	5.92E+04	5.85E+04	3.37E+04	167
5.92E+04	6.08E+04	5.99E+04	3.89E+04	154
6.08E+04	6.22E+04	6.15E+04	4.95E+04	119
6.22E+04	6.38E+04	6.30E+04	5.88E+04	82
6.38E+04	6.52E+04		8.54E+04	43
6.52E+04	6.68E+04	6.61E+04	7.70E+04	47
6.68E+04	6.82E+04	6.75E+04	6.75E+04	47
6.82E+04	6.98E+04	6.90E+04	6.59E+04	47
6.98E+04	7.12E+04	7.05E+04	5.98E+04	38
7.12E+04	7.28E+04	7.19E+04	6.81E+04	32
<u>/.12LTV4</u>	1.202404	1.134704	0.012404	<u> </u>

#### COWDEN ISOPACH SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM UNCERT'S VARIO MODULE

7.28E+04	7.42E+04	7.35E+04	4.83E+04	38
7.42E+04	7.58E+04	<u>7.50E+04</u>	6.09E+04	43
7.58E+04	7.72E+04	7.64E+04	4.19E+04	34
7.72E+04	7.88E+04	7.79 <u>E+04</u>	3.77E+04	- 23
7.88E+04	8.02E+04	7.94E+04	4.33E+04	24
8.02E+04	8.18E+04	8.10E+04	4.27E+04	15
8.18E+04	8.32E+04	8.23E+04	5.46E+04	16
8.32E+04	8.48E+04	8.36E+04	4.85E+04	4
8.48E+04	8.62E+04	8.56E+04	2.73E+04	4 7
8.62E+04	8.78E+04	8.69E+04	7.8 <u>1E</u> +04	
8.78E+04	8.92E+04	8.81E+04	1.65E+05	2
8.92E+04	9.08E+04	9.03E+04	8.42E+04	3
9.08E+04	9.22E+04	9.12E+04	1.82E+05	2 3 2 2
9.22E+04	9.38E+04	9.29E+04	1.26E+05	2
9.38E+04	9.52E+04	9.41E+04	8.55E+04	4
9.52E+04		9.57E+04	1.15E+05	1
9.68E+04		9.79E+04	2.44E+04	1
9.82E+04		9.92E+04	2.33E+03	2
1.06E+05		1.06E+05	7.88E+04	2
icowr3: Az = 90				
MIN. LAG	MAX. LAG	AVG SPACE	GAMMA H	# PAIRS
0	750	368	984	11
750	2.25E+03	1.41E+03	3.26E+03	124
2.25E+03	3.75E+03	2.88E+03	6.46E+03	132
3.75E+03	5.25E+03	4.45E+03	1.05E+04	
5.25E+03	6.75E+03	5.97E+03	2.67E+04	150
6.75E+03	8.25E+03	7.56E+03	3.84E+04	192
8.25E+03	9.75E+03	9.09E+03	2.94E+04	183
9.75E+03	1.12E+04	1.05E+04	2.82E+04	186
1.12E+04	1.28E+04	1.20E+04	2.64E+04	151
1.28E+04	1.42E+04	1.34E+04	2.04E+04	146
1.42E+04	1.58E+04	1.50E+04	2.34E+04	207
1.58E+04	1.72E+04	1.65E+04	2.79E+04	248
1.72E+04	1.88E+04	1.80E+04	2.75E+04	304
1.88E+04	2.02E+04	1.95E+04	2.73E+04	361
2.02E+04	2.18E+04	2.11E+04	3.40E+04	340
2.18E+04	2.32E+04	2.25E+04	3.86E+04	324
2.32E+04	2.48E+04	2.40E+04	3.64E+04	298
2.48E+04	2.62E+04	2.55E+04	3.09E+04	357
2.62E+04	2.78E+04	2.70E+04	2.30E+04	445
2.78E+04	2.92E+04	2.85E+04	1.84E+04	503
2.92E+04	3.08E+04	3.00E+04	1.97E+04	549
3.08E+04	3.22E+04	3.15E+04	2.15E+04	610
3.22E+04	3.38E+04	3.30E+04	2.87E+04	562
3.38E+04	3.52E+04	3.45E+04	3.33E+04	575
3.52E+04	3.68E+04	3.60E+04	3.55E+04	570
3.68E+04	3.82E+04	3.74E+04	4.40E+04	522
3.82E+04	3.98E+04	3.90E+04	4.15E+04	410
3.98E+04	4.12E+04	4.05E+04	4.85E+04	375
J.30L7V4			7.002704	3/3

Page 7 of 13

À

-----

			<u> </u>	
4.12E+04	4.28E+04	4.21E+04	3.60E+04	319
4.28E+04	4.42E+04	4.36E+04	4.10E+04	305
4.42E+04	4.58E+04	4.50E+04	3.86E+04	270
4.58E+04	4.72E+04	4.64E+04	4.31E+04	- 244
4.72E+04	4.88E+04	4.80E+04	4.98E+04	224
4.88E+04	5.02E+04	4.95E+04	5.22E+04	201
5.02E+04	5.18E+04	5.10E+04	6.34E+04	234
5.18E+04	5.32E+04	5.26E+04	6.36E+04	327
5.32E+04	5.48E+04	5.40E+04	5.62E+04	386
5.48E+04	5.62E+04	5.55E+04	5.05E+04	331
5.62E+04	5.78E+04	5.70E+04	4.09E+04	264
5.78E+04	5.92E+04	5.85E+04	3.80E+04	193
5.92E+04	6.08E+04	6.00E+04	3.16E+04	176
6.08E+04	6.22E+04	6.15E+04	3.11E+04	193
6.22E+04	6.38E+04	6.29E+04	2.74E+04	168
6.38E+04	6.52E+04	6.45E+04	1.97E+04	115
6.52E+04	6.68E+04	6.60E+04	2.88E+04	89
6.68E+04	6.82E+04	6.76E+04	4.53E+04	61
6.82E+04	6.98E+04	6.90E+04		80
6.98E+04	7.12E+04			104
7.12E+04	7.28E+04	7.19E+04		96
7.28E+04	7.42E+04	7.35E+04		84
7.42E+04	7.58E+04	7.51E+04		60
7.58E+04	7.72E+04			71
7.72E+04	7.88E+04		·	52
7.88E+04	8.02E+04			
8.02E+04	8.18E+04		3.47E+04	
8.18E+04	8.32E+04			
8.32E+04	8.48E+04			
8.48E+04	8.62E+04			
8.62E+04	8.78E+04		6.91E+04	
8.78E+04	8.92E+04		4.43E+04	
8.92E+04	9.08E+04	9.00E+04	5.20E+04	
9.08E+04	9.22E+04	9.13E+04	4.73E+04	and the second se
9.38E+04	9.52E+04	9.46E+04	5.96E+03	4
9.52E+04	9.68E+04	9.58E+04	2.48E+04	10
9.68E+04	9.82E+04	9.77E+04	3.03E+04	4
9.82E+04	9.98E+04		5.24E+04	
9.98E+04	1.01E+05		~3.26E+04	6
1.03E+05	1.04E+05			5
1.04E+05	1.06E+05			4
1.06E+05	1.07E+05		4.64E+04	9
1.07E+05	1.09E+05		3.29E+04	11
1.09E+05	1.10E+05		9.81E+03	
1.10E+05	1.12E+05		1.05E+04	
1.12E+05	1.13E+05		3.67E+04	
1.13E+05	1.15E+05		4.04E+04	
1.15E+05	1.16E+05			
1.16E+05	1.18E+05			5
				J

1.18E+05	1.19E+05	1.18E+05	0.5	1
1.21E+05	1.22E+05	1.22E+05	2.41E+04	2
1.22E+05	1.24E+05	1.23E+05	6.44E+04	3
1.24E+05	1.25E+05	1.25E+05	7.56E+03	<u> </u>
1.25E+05	1.27E+05	1.26E+05	4.95E+04	3
1.28E+05	1.30E+05	1.29E+05	1.35E+04	2
1.30E+05	1.31E+05	1.31E+05	7.23E+04	2
1.31E+05	1.33E+05	1.32E+05	4.99E+04	1
1.40E+05	1.42E+05	1.40E+05	3.41E+04	1
1.42E+05	1.43E+05	1.42E+05	7.81E+03	1
icowr3: Az = 11	10 deg			
MIN. LAG	MAX. LAG	AVG SPACE	GAMMA H	# PAIRS
0	750	733	242	1
750	2.25E+03	1.46E+03	1.26E+03	59
2.25E+03	3.75E+03	2.92E+03	5.36E+03	116
3.75E+03	5.25E+03	4.46E+03	7.97E+03	123
5.25E+03	6.75E+03	5.97E+03	1.94E+04	133
6.75E+03	8.25E+03	7.52E+03	3.49E+04	201
8.25E+03	9.75E+03	9.08E+03	3.19E+04	232
9.75E+03	1.12E+04	1.05E+04	2.90E+04	236
1.12E+04	1.28E+04	1.20E+04	1.86E+04	187
1.28E+04	1.42E+04	1.35E+04	1.31E+04	181
1.42E+04	1.58E+04	1.50E+04	1.56E+04	201
1.58E+04	1.72E+04	1.65E+04	1.58E+04	237
1.72E+04	1.88E+04	1.80E+04	1.75E+04	276
1.88E+04	2.02E+04	1.95E+04	1.75E+04	370
2.02E+04	2.18E+04	2.10E+04	1.84E+04	387
2.18E+04	2.32E+04	2.25E+04	1.86E+04	429
2.32E+04	2.48E+04	2.40E+04	1.55E+04	420
2.48E+04	2.62E+04		1.50E+04	
2.62E+04	2.78E+04	2.55E+04 2.70E+04	1.95E+04	392
2.78E+04	2.92E+04	2.70E+04 2.85E+04	2.18E+04	463 550
2.92E+04	3.08E+04	3.00E+04	2.37E+04	652
3.08E+04	3.22E+04	3.15E+04	2.40E+04	698
3.22E+04	3.38E+04	3.30E+04	2.19E+04	653
3.38E+04	3.52E+04	3.45E+04	1.78E+04	613
3.52E+04	3.68E+04	3.60E+04	1.17E+04	542
3.68E+04	3.82E+04	3.75E+04	1.70E+04	491
3.82E+04	3.98E+04	3.89E+04	1.83E+04	428
3.98E+04	4.12E+04	4.05E+04	2.27E+04	363
4.12E+04	4.28E+04	4.20E+04	1.70E+04	298
4.28E+04	4.42E+04	4.35E+04	2.07E+04	305
4.42E+04	4.58E+04	4.50E+04	1.39E+04	277
4.58E+04	4.72E+04	4.65E+04	1.35E+04	226
4.72E+04	4.88E+04	4.80E+04	1.61E+04	214
4.88E+04	5.02E+04	4.94E+04	1.61E+04	181
5.02E+04	5.18E+04	5.10E+04	2.37E+04	162
5.18E+04	5.32E+04	5.25E+04	2.63E+04	190
5.32E+04	5.48E+04	5.40E+04	2.86E+04	258

5.48E+04         5.62E+04         5.55E+04         2.23E+04           5.62E+04         5.78E+04         5.78E+04         2.82E+04           5.78E+04         6.08E+04         6.00E+04         1.98E+04           6.08E+04         6.02E+04         6.15E+04         1.76E+04           6.22E+04         6.38E+04         6.30E+04         1.50E+04           6.38E+04         6.52E+04         6.45E+04         1.49E+04           6.52E+04         6.68E+04         6.60E+04         1.40E+04           6.68E+04         6.99E+04         1.50E+04         1.60E+04           6.82E+04         6.98E+04         7.05E+04         1.76E+04           7.12E+04         7.12E+04         7.05E+04         1.70E+04           7.28E+04         7.28E+04         7.20E+04         9.31E+03           7.28E+04         7.28E+04         7.34E+04         1.68E+04           7.72E+04         7.88E+04         7.80E+04         1.02E+04           7.88E+04         7.88E+04         7.88E+04         1.02E+04           8.02E+04         8.02E+04         1.02E+04         1.33E+04           8.02E+04         8.24E+04         1.02E+04         8.32E+04           8.32E+04         8.24E+04         3.2						
5.78E+04         5.92E+04         5.85E+04         2.82E+04           5.92E+04         6.08E+04         6.00E+04         1.98E+04         -           6.08E+04         6.22E+04         6.30E+04         1.50E+04         -           6.38E+04         6.52E+04         6.45E+04         1.49E+04         -           6.68E+04         6.68E+04         6.60E+04         1.40E+04         -           6.68E+04         6.82E+04         6.75E+04         1.76E+04         -           6.88E+04         6.90E+04         1.50E+04         1.70E+04         -           7.12E+04         7.28E+04         7.20E+04         9.31E+03         -           7.28E+04         7.58E+04         7.50E+04         1.83E+04         -           7.58E+04         7.72E+04         7.65E+04         2.02E+04         -           7.72E+04         7.88E+04         7.80E+04         1.33E+04         8.02E+04         8.02E+04         1.63E+04         8.02E+04         8.25E+04         2.57E+04         8.32E+04         8.26E+04         8.26E+04         3.20E+04         8.32E+04         8.20E+04         3.32E+04         8.32E+04         8.20E+04         3.20E+04         9.38E+04         9.0E+04         9.32E+04         9.0E+04	247		2.23E+04	5.55E+04	5.62E+04	5.48E+04
5.92E+04         6.08E+04         6.00E+04         1.98E+04         -           6.08E+04         6.22E+04         6.15E+04         1.76E+04         -           6.22E+04         6.38E+04         6.30E+04         1.50E+04         -           6.38E+04         6.52E+04         6.45E+04         1.49E+04         -           6.68E+04         6.98E+04         6.00E+04         1.50E+04         -           6.68E+04         6.98E+04         6.90E+04         1.50E+04         -           6.82E+04         6.98E+04         7.05E+04         1.70E+04         -           7.12E+04         7.28E+04         7.20E+04         9.31E+03         -           7.28E+04         7.28E+04         7.50E+04         1.83E+04         -           7.28E+04         7.28E+04         7.80E+04         2.02E+04         -           7.88E+04         8.02E+04         7.95E+04         1.33E+04         8.02E+04         8.92E+04         1.63E+04           8.02E+04         8.32E+04         8.24E+04         1.02E+04         8.32E+04         8.24E+04         1.02E+04           8.32E+04         8.62E+04         8.55E+04         2.14E+04         9.32E+04         9.32E+04         9.32E+04         9.42E+04	232					5.62E+04
6.08E+04         6.22E+04         6.15E+04         1.76E+04           6.22E+04         6.38E+04         6.30E+04         1.50E+04           6.38E+04         6.52E+04         6.45E+04         1.49E+04           6.52E+04         6.68E+04         6.60E+04         1.40E+04           6.68E+04         6.98E+04         6.75E+04         1.76E+04           6.82E+04         6.98E+04         7.05E+04         1.70E+04           7.12E+04         7.28E+04         7.20E+04         9.31E+03           7.28E+04         7.42E+04         7.34E+04         1.68E+04           7.42E+04         7.58E+04         7.50E+04         1.83E+04           7.72E+04         7.65E+04         1.33E+04         1.63E+04           7.88E+04         8.02E+04         7.80E+04         1.02E+04           7.88E+04         8.02E+04         8.55E+04         1.02E+04           8.32E+04         8.48E+04         8.20E+04         8.32E+04           8.48E+04         8.62E+04         8.55E+04         3.20E+04           8.62E+04         8.71E+04         3.33E+04           9.08E+04         9.02E+04         9.39E+04         9.02E+04           9.38E+04         9.22E+04         9.15E+04         3.3	219		2.82E+04	5.85E+04	5.92E+04	5.78E+04
6.22E+04         6.38E+04         6.30E+04         1.50E+04           6.38E+04         6.52E+04         6.45E+04         1.49E+04           6.52E+04         6.60E+04         1.40E+04           6.68E+04         6.82E+04         6.00E+04         1.76E+04           6.88E+04         6.98E+04         6.90E+04         1.70E+04           7.12E+04         7.12E+04         7.20E+04         9.31E+03           7.28E+04         7.28E+04         7.50E+04         1.68E+04           7.42E+04         7.34E+04         1.68E+04           7.58E+04         7.72E+04         7.65E+04         2.02E+04           7.72E+04         7.88E+04         7.95E+04         1.33E+04           8.02E+04         7.95E+04         1.33E+04         8.02E+04           8.02E+04         8.08E+04         8.09E+04         1.63E+04           8.02E+04         8.28E+04         8.02E+04         8.24E+04           8.02E+04         8.26E+04         8.26E+04         8.26E+04           8.62E+04         8.71E+04         2.11E+04           8.48E+04         8.02E+04         9.01E+04         9.33E+04           9.08E+04         9.22E+04         9.30E+04         9.22E+04           9.38E+04 </td <td>255</td> <td>-</td> <td>1.98E+04</td> <td>6.00E+04</td> <td>6.08E+04</td> <td>5.92E+04</td>	255	-	1.98E+04	6.00E+04	6.08E+04	5.92E+04
6.38E+04         6.52E+04         6.45E+04         1.49E+04           6.52E+04         6.68E+04         6.60E+04         1.40E+04           6.68E+04         6.82E+04         6.75E+04         1.76E+04           6.82E+04         6.90E+04         6.90E+04         1.50E+04           6.82E+04         7.12E+04         7.05E+04         1.70E+04           7.12E+04         7.28E+04         7.20E+04         9.31E+03           7.28E+04         7.42E+04         7.34E+04         1.68E+04           7.42E+04         7.38E+04         7.50E+04         1.83E+04           7.58E+04         7.72E+04         7.65E+04         2.02E+04           7.72E+04         7.86E+04         7.95E+04         1.33E+04           8.02E+04         8.02E+04         7.95E+04         1.33E+04           8.02E+04         8.18E+04         8.09E+04         1.63E+04           8.32E+04         8.24E+04         1.02E+04         8.32E+04           8.48E+04         8.62E+04         8.71E+04         2.14E+04           8.62E+04         8.71E+04         3.33E+04         9.02E+04           9.08E+04         9.01E+04         3.33E+04         9.22E+04         9.15E+04         3.33E+04           9.2	365		1.76E+04	6.15E+04	6.22E+04	6.08E+04
6.52E+04         6.68E+04         6.60E+04         1.40E+04           6.68E+04         6.82E+04         6.75E+04         1.76E+04           6.82E+04         6.98E+04         6.90E+04         1.50E+04           6.98E+04         7.12E+04         7.05E+04         1.70E+04           7.12E+04         7.28E+04         7.20E+04         9.31E+03           7.28E+04         7.42E+04         7.34E+04         1.68E+04           7.42E+04         7.50E+04         1.83E+04         7.58E+04           7.58E+04         7.72E+04         7.65E+04         2.02E+04           7.72E+04         7.86E+04         7.95E+04         1.33E+04           8.02E+04         8.02E+04         7.95E+04         1.33E+04           8.02E+04         8.18E+04         8.09E+04         1.63E+04           8.02E+04         8.18E+04         8.24E+04         1.02E+04           8.32E+04         8.48E+04         8.20E+04         8.32E+04           8.62E+04         8.71E+04         2.14E+04           8.62E+04         8.71E+04         3.33E+04           9.02E+04         9.15E+04         3.33E+04           9.22E+04         9.15E+04         3.33E+04           9.22E+04         9.36E+04 </td <td>361</td> <td></td> <td>1.50E+04</td> <td>6.30E+04</td> <td>6.38E+04</td> <td>6.22E+04</td>	361		1.50E+04	6.30E+04	6.38E+04	6.22E+04
6.68E+04         6.82E+04         6.75E+04         1.76E+04           6.82E+04         6.98E+04         6.90E+04         1.50E+04           6.98E+04         7.12E+04         7.05E+04         1.70E+04           7.12E+04         7.28E+04         7.20E+04         9.31E+03           7.28E+04         7.42E+04         7.34E+04         1.68E+04           7.42E+04         7.58E+04         7.50E+04         1.83E+04           7.58E+04         7.72E+04         7.65E+04         2.02E+04           7.72E+04         7.88E+04         7.80E+04         2.49E+04           7.88E+04         8.02E+04         7.95E+04         1.33E+04           8.02E+04         8.18E+04         8.09E+04         1.63E+04           8.18E+04         8.22E+04         8.25E+04         1.02E+04           8.32E+04         8.48E+04         8.25E+04         2.14E+04           8.62E+04         8.7E+04         8.32E+04         3.20E+04           8.78E+04         8.92E+04         9.01E+04         3.94E+04           9.08E+04         9.22E+04         9.30E+04         4.41E+04           9.32E+04         9.32E+04         9.52E+04         9.52E+04           9.52E+04         9.58E+04         9.59	263		1.49E+04	6.45E+04	6.52E+04	6.38E+04
6.82E+04         6.98E+04         7.12E+04         7.05E+04         1.70E+04           7.12E+04         7.28E+04         7.20E+04         9.31E+03           7.28E+04         7.42E+04         7.34E+04         1.68E+04           7.42E+04         7.58E+04         7.50E+04         1.83E+04           7.58E+04         7.72E+04         7.65E+04         2.02E+04           7.72E+04         7.65E+04         2.02E+04         7.72E+04           7.88E+04         7.29E+04         7.65E+04         2.02E+04           7.72E+04         7.88E+04         7.95E+04         1.33E+04           8.02E+04         8.02E+04         8.09E+04         1.63E+04           8.18E+04         8.02E+04         8.22E+04         1.02E+04           8.32E+04         8.48E+04         8.25E+04         2.14E+04           8.48E+04         8.62E+04         8.55E+04         2.14E+04           8.62E+04         8.78E+04         8.71E+04         3.32E+04           9.08E+04         9.01E+04         3.94E+04           9.08E+04         9.22E+04         9.30E+04         4.41E+04           9.38E+04         9.22E+04         9.30E+04         8.31E+04           9.82E+04         9.68E+04         9.9	170		1.40E+04	6.60E+04	6.68E+04	6.52E+04
6.98E+04         7.12E+04         7.05E+04         1.70E+04           7.12E+04         7.28E+04         7.20E+04         9.31E+03           7.28E+04         7.42E+04         7.34E+04         1.68E+04           7.42E+04         7.58E+04         7.50E+04         1.83E+04           7.58E+04         7.72E+04         7.65E+04         2.02E+04           7.72E+04         7.88E+04         7.80E+04         2.49E+04           7.88E+04         8.02E+04         8.09E+04         1.63E+04           8.02E+04         8.18E+04         8.09E+04         1.63E+04           8.02E+04         8.32E+04         8.24E+04         1.02E+04           8.32E+04         8.40E+04         2.57E+04         8.32E+04           8.32E+04         8.62E+04         8.55E+04         2.14E+04           8.62E+04         8.78E+04         8.20E+04         3.32E+04           9.08E+04         9.01E+04         3.33E+04           9.22E+04         9.30E+04         9.45E+04         9.32E+04           9.38E+04         9.52E+04         9.45E+04         5.52E+04           9.38E+04         9.32E+04         9.45E+05         7.91E+04           9.38E+04         9.32E+04         9.30E+04         8.3	156		1.76E+04	6.75E+04	6.82E+04	6.68E+04
7.12E+04       7.28E+04       7.20E+04       9.31E+03         7.28E+04       7.42E+04       7.34E+04       1.68E+04         7.42E+04       7.58E+04       7.50E+04       1.83E+04         7.58E+04       7.72E+04       7.65E+04       2.02E+04         7.72E+04       7.88E+04       7.80E+04       2.49E+04         7.88E+04       8.02E+04       7.95E+04       1.33E+04         8.02E+04       8.18E+04       8.09E+04       1.63E+04         8.02E+04       8.32E+04       8.24E+04       1.02E+04         8.32E+04       8.48E+04       8.24E+04       1.02E+04         8.32E+04       8.48E+04       8.25E+04       2.14E+04         8.32E+04       8.71E+04       2.11E+04         8.62E+04       8.78E+04       8.71E+04       3.32E+04         9.08E+04       9.08E+04       9.01E+04       3.33E+04         9.08E+04       9.02E+04       9.30E+04       9.45E+04         9.38E+04       9.22E+04       9.45E+04       5.52E+04         9.52E+04       9.68E+04       9.59E+04       1.12E+05         9.68E+04       9.90E+04       8.31E+04       9.90E+04         9.98E+04       1.01E+05       1.01E+05       1.01E+05 <td>158</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>1.50E+04</td> <td>6.90E+04</td> <td>6.98E+04</td> <td>6.82E+04</td>	158	· · · · · · · · · · · · · · · · · · ·	1.50E+04	6.90E+04	6.98E+04	6.82E+04
7.28E+04       7.42E+04       7.34E+04       1.68E+04         7.42E+04       7.58E+04       7.50E+04       1.83E+04         7.58E+04       7.72E+04       7.65E+04       2.02E+04         7.72E+04       7.88E+04       7.80E+04       2.49E+04         7.88E+04       8.02E+04       7.95E+04       1.33E+04         8.02E+04       8.18E+04       8.09E+04       1.63E+04         8.02E+04       8.18E+04       8.09E+04       1.63E+04         8.32E+04       8.32E+04       8.24E+04       1.02E+04         8.32E+04       8.48E+04       8.40E+04       2.57E+04         8.48E+04       8.62E+04       8.55E+04       2.14E+04         8.62E+04       8.78E+04       8.71E+04       3.20E+04         8.92E+04       9.01E+04       3.94E+04       9.04E+04         9.08E+04       9.01E+04       3.33E+04       9.22E+04         9.38E+04       9.33E+04       9.33E+04       9.33E+04         9.22E+04       9.38E+04       9.52E+04       9.52E+04         9.52E+04       9.68E+04       9.59E+04       1.12E+05         9.68E+04       9.90E+04       8.31E+04         9.98E+04       9.00E+04       8.31E+04	156		1.70E+04	7.05E+04	7.12E+04	6.98E+04
7.42E+04       7.58E+04       7.50E+04       1.83E+04         7.58E+04       7.72E+04       7.65E+04       2.02E+04         7.72E+04       7.88E+04       7.80E+04       2.49E+04         7.88E+04       8.02E+04       7.95E+04       1.33E+04         8.02E+04       8.18E+04       8.09E+04       1.63E+04         8.02E+04       8.18E+04       8.09E+04       1.63E+04         8.18E+04       8.32E+04       8.24E+04       1.02E+04         8.32E+04       8.48E+04       8.40E+04       2.57E+04         8.48E+04       8.62E+04       8.55E+04       2.14E+04         8.62E+04       8.78E+04       8.71E+04       3.20E+04         8.78E+04       8.92E+04       9.01E+04       3.94E+04         9.08E+04       9.01E+04       3.94E+04       9.04         9.08E+04       9.33E+04       9.33E+04       9.33E+04         9.22E+04       9.38E+04       9.30E+04       4.41E+04         9.38E+04       9.39E+04       9.52E+04       9.52E+04         9.68E+04       9.59E+04       1.12E+05       9.68E+04         9.38E+04       9.90E+04       8.31E+04         9.98E+04       9.90E+04       8.31E+04         <	107	×	9.31E+03	7.20E+04	7.28E+04	7.12E+04
7.58E+04       7.72E+04       7.65E+04       2.02E+04         7.72E+04       7.88E+04       7.80E+04       2.49E+04         7.88E+04       8.02E+04       7.95E+04       1.33E+04         8.02E+04       8.18E+04       8.09E+04       1.63E+04         8.02E+04       8.32E+04       8.24E+04       1.02E+04         8.32E+04       8.48E+04       8.40E+04       2.57E+04         8.48E+04       8.62E+04       8.55E+04       2.14E+04         8.62E+04       8.78E+04       8.71E+04       2.11E+04         8.62E+04       8.78E+04       8.71E+04       3.20E+04         8.78E+04       9.02E+04       9.01E+04       3.94E+04         9.08E+04       9.02E+04       9.15E+04       3.33E+04         9.22E+04       9.38E+04       9.30E+04       4.41E+04         9.38E+04       9.52E+04       9.52E+04       9.52E+04         9.52E+04       9.68E+04       9.90E+04       8.31E+04         9.82E+04       9.98E+04       9.02E+04       8.31E+04         9.98E+04       1.01E+05       1.01E+05       1.01E+05         1.01E+05       1.02E+05       7.91E+04       1.03E+05         1.04E+05       1.05E+05       2.42E+04 <td>89</td> <td></td> <td>1.68E+04</td> <td>7.34E+04</td> <td>7.42E+04</td> <td>7.28E+04</td>	89		1.68E+04	7.34E+04	7.42E+04	7.28E+04
7.72E+04       7.88E+04       7.80E+04       2.49E+04         7.88E+04       8.02E+04       7.95E+04       1.33E+04         8.02E+04       8.18E+04       8.09E+04       1.63E+04         8.18E+04       8.32E+04       8.24E+04       1.02E+04         8.32E+04       8.48E+04       8.40E+04       2.57E+04         8.48E+04       8.62E+04       8.55E+04       2.14E+04         8.62E+04       8.78E+04       8.71E+04       2.11E+04         8.78E+04       8.92E+04       9.01E+04       3.20E+04         8.92E+04       9.08E+04       9.01E+04       3.33E+04         9.08E+04       9.22E+04       9.15E+04       3.33E+04         9.22E+04       9.38E+04       9.30E+04       4.41E+04         9.38E+04       9.52E+04       9.45E+04       5.52E+04         9.52E+04       9.68E+04       9.59E+04       1.12E+05         9.68E+04       9.82E+04       9.76E+04       6.24E+04         9.82E+04       9.82E+04       9.90E+04       8.31E+04         9.98E+04       1.01E+05       1.01E+05       1.01E+05         1.01E+05       1.02E+05       7.91E+04       1.03E+05         1.04E+05       1.04E+05       1.05E+05 <td>71</td> <td></td> <td>1.83E+04</td> <td>7.50E+04</td> <td>7.58E+04</td> <td>7.42E+04</td>	71		1.83E+04	7.50E+04	7.58E+04	7.42E+04
7.88E+04       8.02E+04       7.95E+04       1.33E+04         8.02E+04       8.18E+04       8.09E+04       1.63E+04         8.18E+04       8.32E+04       8.24E+04       1.02E+04         8.32E+04       8.48E+04       8.40E+04       2.57E+04         8.48E+04       8.62E+04       8.55E+04       2.14E+04         8.62E+04       8.78E+04       8.71E+04       2.11E+04         8.62E+04       8.78E+04       8.71E+04       3.20E+04         8.78E+04       9.92E+04       9.01E+04       3.94E+04         9.08E+04       9.22E+04       9.15E+04       3.33E+04         9.22E+04       9.38E+04       9.30E+04       4.41E+04         9.38E+04       9.52E+04       9.45E+04       5.52E+04         9.52E+04       9.45E+04       9.52E+04       9.52E+04         9.52E+04       9.45E+04       9.52E+04       9.52E+04         9.82E+04       9.98E+04       9.90E+04       8.31E+04         9.98E+04       1.01E+05       1.01E+05       1.01E+05         1.01E+05       1.02E+05       7.91E+04       1.03E+05         1.02E+05       1.04E+05       1.05E+05       2.42E+04         1.04E+05       1.06E+05       1.05E+05 <td>79</td> <td></td> <td>2.02E+04</td> <td>7.65E+04</td> <td>7.72E+04</td> <td>7.58E+04</td>	79		2.02E+04	7.65E+04	7.72E+04	7.58E+04
7.88E+04       8.02E+04       7.95E+04       1.33E+04         8.02E+04       8.18E+04       8.09E+04       1.63E+04         8.18E+04       8.32E+04       8.24E+04       1.02E+04         8.32E+04       8.48E+04       8.40E+04       2.57E+04         8.48E+04       8.62E+04       8.55E+04       2.14E+04         8.62E+04       8.78E+04       8.71E+04       2.11E+04         8.62E+04       8.78E+04       8.71E+04       3.20E+04         8.78E+04       9.92E+04       9.01E+04       3.94E+04         9.08E+04       9.22E+04       9.15E+04       3.33E+04         9.22E+04       9.38E+04       9.30E+04       4.41E+04         9.38E+04       9.52E+04       9.45E+04       5.52E+04         9.52E+04       9.45E+04       9.52E+04       9.52E+04         9.52E+04       9.45E+04       9.52E+04       9.52E+04         9.82E+04       9.98E+04       9.90E+04       8.31E+04         9.98E+04       1.01E+05       1.01E+05       1.01E+05         1.01E+05       1.02E+05       7.91E+04       1.03E+05         1.02E+05       1.04E+05       1.05E+05       2.42E+04         1.04E+05       1.06E+05       1.05E+05 <td>66</td> <td>i_</td> <td>2.49E+04</td> <td>7.80E+04</td> <td></td> <td></td>	66	i_	2.49E+04	7.80E+04		
8.18E+04         8.32E+04         8.24E+04         1.02E+04           8.32E+04         8.48E+04         8.40E+04         2.57E+04           8.48E+04         8.62E+04         8.55E+04         2.14E+04           8.62E+04         8.78E+04         8.71E+04         2.11E+04           8.62E+04         8.78E+04         8.71E+04         2.11E+04           8.78E+04         8.92E+04         8.84E+04         3.20E+04           9.02E+04         9.08E+04         9.01E+04         3.94E+04           9.08E+04         9.22E+04         9.15E+04         3.33E+04           9.22E+04         9.38E+04         9.30E+04         4.41E+04           9.38E+04         9.30E+04         9.52E+04         9.52E+04           9.52E+04         9.45E+04         5.52E+04           9.52E+04         9.68E+04         9.59E+04         1.12E+05           9.68E+04         9.82E+04         9.90E+04         8.31E+04           9.82E+04         9.90E+04         8.31E+04         9.98E+04           1.01E+05         1.01E+05         1.01E+05         1.01E+05           1.01E+05         1.02E+05         1.9E+04         1.02E+05           1.04E+05         1.09E+05         1.09E+05         2.83	69		1.33E+04	7.95E+04	8.02E+04	
8.32E+04         8.48E+04         8.40E+04         2.57E+04           8.48E+04         8.62E+04         8.55E+04         2.14E+04           8.62E+04         8.78E+04         8.71E+04         2.11E+04           8.78E+04         8.92E+04         8.84E+04         3.20E+04           8.92E+04         9.08E+04         9.01E+04         3.94E+04           9.08E+04         9.22E+04         9.15E+04         3.33E+04           9.22E+04         9.38E+04         9.30E+04         4.41E+04           9.38E+04         9.30E+04         9.52E+04         9.45E+04           9.52E+04         9.45E+04         9.52E+04         9.52E+04           9.52E+04         9.68E+04         9.59E+04         1.12E+05           9.68E+04         9.82E+04         9.76E+04         6.24E+04           9.82E+04         9.90E+04         8.31E+04           9.82E+04         1.01E+05         1.01E+05         1.01E+05           1.01E+05         1.02E+05         7.91E+04         1.03E+05           1.04E+05         1.06E+05         1.02E+05         420           1.07E+05         1.09E+05         1.08E+05         6.19E+04           1.09E+05         1.10E+05         1.12E+05         3.92E+04	60		1.63E+04	8.09E+04	8.18E+04	8.02E+04
8.32E+04         8.48E+04         8.40E+04         2.57E+04           8.48E+04         8.62E+04         8.55E+04         2.14E+04           8.62E+04         8.78E+04         8.71E+04         2.11E+04           8.62E+04         8.78E+04         8.71E+04         2.11E+04           8.62E+04         8.78E+04         8.71E+04         3.20E+04           8.92E+04         9.08E+04         9.01E+04         3.94E+04           9.08E+04         9.01E+04         3.94E+04         9.94E+04           9.08E+04         9.22E+04         9.15E+04         3.33E+04           9.22E+04         9.38E+04         9.30E+04         4.41E+04           9.38E+04         9.52E+04         9.45E+04         5.52E+04           9.52E+04         9.68E+04         9.59E+04         1.12E+05           9.68E+04         9.82E+04         9.90E+04         8.31E+04           9.82E+04         9.98E+04         9.90E+04         8.31E+04           9.98E+04         1.01E+05         1.01E+05         1.01E+05           1.01E+05         1.02E+05         1.02E+05         7.91E+04           1.03E+05         1.04E+05         1.05E+05         2.42E+04           1.04E+05         1.05E+05         1.0	38		1.02E+04	8.24E+04	8.32E+04	8.18E+04
8.62E+04         8.78E+04         8.71E+04         2.11E+04           8.78E+04         8.92E+04         8.84E+04         3.20E+04           8.92E+04         9.08E+04         9.01E+04         3.94E+04           9.08E+04         9.22E+04         9.15E+04         3.33E+04           9.22E+04         9.38E+04         9.30E+04         4.41E+04           9.38E+04         9.32E+04         9.45E+04         5.52E+04           9.52E+04         9.68E+04         9.59E+04         1.12E+05           9.68E+04         9.59E+04         1.12E+05           9.68E+04         9.82E+04         9.90E+04         8.31E+04           9.82E+04         9.98E+04         9.90E+04         8.31E+04           9.98E+04         1.01E+05         1.01E+05         1.01E+05           1.01E+05         1.02E+05         7.91E+04         1.03E+05           1.03E+05         1.04E+05         1.05E+05         2.42E+04           1.04E+05         1.07E+05         1.06E+05         420           1.07E+05         1.09E+05         1.08E+05         6.19E+04           1.09E+05         1.12E+05         1.12E+05         3.92E+04           1.10E+05         1.12E+05         1.14E+05         1.68E+05	32		2.57E+04	8.40E+04	8.48E+04	8.32E+04
8.78E+04         8.92E+04         8.84E+04         3.20E+04           8.92E+04         9.08E+04         9.01E+04         3.94E+04           9.08E+04         9.22E+04         9.15E+04         3.33E+04           9.22E+04         9.38E+04         9.30E+04         4.41E+04           9.38E+04         9.32E+04         9.45E+04         5.52E+04           9.52E+04         9.68E+04         9.59E+04         1.12E+05           9.68E+04         9.82E+04         9.76E+04         6.24E+04           9.82E+04         9.90E+04         8.31E+04           9.98E+04         9.90E+04         8.31E+04           9.98E+04         9.90E+04         8.31E+04           9.98E+04         1.01E+05         1.01E+05           1.01E+05         1.02E+05         7.91E+04           1.03E+05         1.04E+05         7.73E+04           1.04E+05         1.04E+05         7.73E+04           1.04E+05         1.05E+05         2.42E+04           1.06E+05         1.09E+05         1.08E+05           1.07E+05         1.09E+05         1.08E+04           1.09E+05         1.10E+05         1.11E+05           1.10E+05         1.12E+05         3.92E+04 <t< td=""><td>38</td><td></td><td>2.14E+04</td><td>8.55E+04</td><td>8.62E+04</td><td>8.48E+04</td></t<>	38		2.14E+04	8.55E+04	8.62E+04	8.48E+04
8.92E+04         9.08E+04         9.01E+04         3.94E+04           9.08E+04         9.22E+04         9.15E+04         3.33E+04           9.22E+04         9.38E+04         9.30E+04         4.41E+04           9.38E+04         9.52E+04         9.45E+04         5.52E+04           9.52E+04         9.68E+04         9.59E+04         1.12E+05           9.68E+04         9.82E+04         9.76E+04         6.24E+04           9.82E+04         9.90E+04         8.31E+04           9.98E+04         1.01E+05         1.01E+05         1.01E+05           1.01E+05         1.02E+05         7.91E+04           1.03E+05         1.02E+05         7.73E+04           1.04E+05         1.04E+05         1.05E+05         2.42E+04           1.04E+05         1.07E+05         1.06E+05         420           1.07E+05         1.09E+05         1.08E+05         6.19E+04           1.09E+05         1.10E+05         1.09E+05         2.83E+04           1.10E+05         1.12E+05         1.11E+05         5.50E+04           1.12E+05         1.13E+05         1.14E+05         3.92E+04           1.13E+05         1.15E+05         1.14E+05         3.80E+04           1.18E+05	33		2.11E+04	8.71E+04	8.78E+04	8.62E+04
9.08E+04         9.22E+04         9.15E+04         3.33E+04           9.22E+04         9.38E+04         9.30E+04         4.41E+04           9.38E+04         9.52E+04         9.45E+04         5.52E+04           9.52E+04         9.68E+04         9.59E+04         1.12E+05           9.68E+04         9.82E+04         9.76E+04         6.24E+04           9.82E+04         9.98E+04         9.90E+04         8.31E+04           9.98E+04         9.90E+04         8.31E+04           9.98E+04         1.01E+05         1.01E+05           1.01E+05         1.02E+05         7.91E+04           1.03E+05         1.04E+05         7.73E+04           1.03E+05         1.06E+05         1.05E+05         2.42E+04           1.06E+05         1.07E+05         1.08E+05         6.19E+04           1.07E+05         1.09E+05         1.828+04         1.12E+05           1.07E+05         1.09E+05         2.83E+04         1.12E+05           1.09E+05         1.12E+05         1.12E+05         3.92E+04           1.12E+05         1.13E+05         1.14E+05         1.68E+05           1.15E+05         1.16E+05         1.14E+05         3.80E+04           1.19E+05         1.21E+05 </td <td>34</td> <td></td> <td>3.20E+04</td> <td>8.84E+04</td> <td>8.92E+04</td> <td>8.78E+04</td>	34		3.20E+04	8.84E+04	8.92E+04	8.78E+04
9.22E+04       9.38E+04       9.30E+04       4.41E+04         9.38E+04       9.52E+04       9.45E+04       5.52E+04         9.52E+04       9.68E+04       9.59E+04       1.12E+05         9.68E+04       9.82E+04       9.76E+04       6.24E+04         9.82E+04       9.98E+04       9.90E+04       8.31E+04         9.82E+04       9.98E+04       9.90E+04       8.31E+04         9.98E+04       1.01E+05       1.01E+05       1.01E+05         1.01E+05       1.03E+05       1.02E+05       7.91E+04         1.03E+05       1.04E+05       1.04E+05       7.73E+04         1.04E+05       1.06E+05       1.05E+05       2.42E+04         1.06E+05       1.07E+05       1.06E+05       420         1.07E+05       1.09E+05       1.08E+05       6.19E+04         1.09E+05       1.10E+05       1.09E+05       2.83E+04         1.10E+05       1.12E+05       1.12E+05       3.92E+04         1.13E+05       1.12E+05       1.14E+05       1.68E+05         1.13E+05       1.16E+05       1.12E+05       3.80E+04         1.13E+05       1.19E+05       1.20E+05       1.80E+04         1.19E+05       1.21E+05       1.21E+05	26		3.94E+04	9.01E+04	9.08E+04	8.92E+04
9.38E+049.52E+049.45E+045.52E+049.52E+049.68E+049.59E+041.12E+059.68E+049.82E+049.76E+046.24E+049.82E+049.98E+049.90E+048.31E+049.98E+041.01E+051.01E+051.01E+051.01E+051.03E+051.02E+057.91E+041.03E+051.04E+051.02E+057.73E+041.04E+051.06E+051.05E+052.42E+041.04E+051.06E+051.06E+054201.07E+051.09E+051.08E+056.19E+041.09E+051.10E+051.09E+052.83E+041.10E+051.12E+051.11E+055.50E+041.12E+051.12E+051.14E+051.68E+051.15E+051.16E+051.15E+053.80E+041.18E+051.19E+051.20E+051.80E+041.21E+051.22E+051.21E+053.92E+04	35		3.33E+04	9.15E+04	9.22E+04	9.08E+04
9.52E+049.68E+049.59E+041.12E+059.68E+049.82E+049.76E+046.24E+049.82E+049.98E+049.90E+048.31E+049.82E+049.98E+041.01E+051.01E+051.01E+051.03E+051.02E+057.91E+041.03E+051.04E+051.02E+057.91E+041.03E+051.04E+051.04E+057.73E+041.04E+051.06E+051.05E+052.42E+041.06E+051.07E+051.06E+054201.07E+051.09E+051.08E+056.19E+041.09E+051.10E+051.09E+052.83E+041.10E+051.12E+051.11E+053.92E+041.13E+051.15E+051.14E+051.68E+051.15E+051.16E+051.15E+053.80E+041.19E+051.21E+051.21E+051.80E+041.21E+051.22E+051.21E+053.92E+04	36		4.41E+04	9.30E+04	9.38E+04	9.22E+04
9.68E+049.82E+049.76E+046.24E+049.82E+049.98E+049.90E+048.31E+049.98E+041.01E+051.01E+051.01E+051.01E+051.03E+051.02E+057.91E+041.03E+051.04E+051.04E+057.73E+041.04E+051.06E+051.05E+052.42E+041.06E+051.07E+051.06E+054201.07E+051.09E+051.08E+056.19E+041.09E+051.10E+051.09E+052.83E+041.10E+051.12E+051.11E+053.92E+041.13E+051.13E+051.14E+051.68E+051.15E+051.16E+051.15E+053.80E+041.19E+051.21E+051.21E+051.80E+041.21E+051.22E+051.21E+053.92E+04	.24		5.52E+04	9.45E+04	9.52E+04	9.38E+04
9.82E+049.98E+049.90E+048.31E+049.98E+041.01E+051.01E+051.01E+051.01E+051.03E+051.02E+057.91E+041.03E+051.04E+051.04E+057.73E+041.04E+051.06E+051.05E+052.42E+041.06E+051.07E+051.06E+054201.07E+051.09E+051.08E+056.19E+041.09E+051.09E+051.09E+052.83E+041.10E+051.12E+051.11E+055.50E+041.12E+051.13E+051.12E+053.92E+041.13E+051.16E+051.15E+055.61E+041.18E+051.19E+051.18E+053.80E+041.19E+051.21E+051.22E+051.22E+04	15		1.12E+05	9.59E+04	9.68E+04	9.52E+04
9.98E+041.01E+051.01E+051.01E+051.01E+051.03E+051.02E+057.91E+041.03E+051.04E+051.04E+057.73E+041.04E+051.06E+051.05E+052.42E+041.06E+051.07E+051.06E+054201.07E+051.09E+051.08E+056.19E+041.09E+051.10E+051.09E+052.83E+041.10E+051.12E+051.11E+055.50E+041.12E+051.13E+051.12E+053.92E+041.13E+051.15E+051.14E+051.68E+051.15E+051.16E+051.15E+053.80E+041.19E+051.21E+051.22E+051.21E+041.22E+051.24E+051.22E+053.92E+04	10		6.24E+04	9.76E+04	9.82E+04	9.68E+04
1.01E+051.03E+051.02E+057.91E+041.03E+051.04E+051.04E+057.73E+041.04E+051.06E+051.05E+052.42E+041.06E+051.07E+051.06E+054201.07E+051.09E+051.08E+056.19E+041.09E+051.10E+051.09E+052.83E+041.10E+051.12E+051.11E+055.50E+041.12E+051.13E+051.12E+053.92E+041.13E+051.15E+051.14E+051.68E+051.15E+051.16E+051.15E+053.80E+041.19E+051.21E+051.21E+051.80E+041.21E+051.22E+051.21E+053.92E+04	7		8.31E+04	9.90E+04	9.98E+04	9.82E+04
1.03E+05       1.04E+05       1.04E+05       7.73E+04         1.04E+05       1.06E+05       1.05E+05       2.42E+04         1.06E+05       1.07E+05       1.06E+05       420         1.07E+05       1.09E+05       1.08E+05       6.19E+04         1.09E+05       1.10E+05       1.09E+05       2.83E+04         1.10E+05       1.12E+05       1.11E+05       5.50E+04         1.12E+05       1.13E+05       1.12E+05       3.92E+04         1.13E+05       1.15E+05       1.14E+05       1.68E+05         1.13E+05       1.16E+05       1.15E+05       5.61E+04         1.18E+05       1.19E+05       1.21E+05       3.80E+04         1.19E+05       1.21E+05       1.21E+05       1.80E+04         1.21E+05       1.22E+05       1.21E+05       3.92E+04	8		1.01E+05	1.01E+05	1.01E+05	9.98E+04
1.04E+051.06E+051.05E+052.42E+041.06E+051.07E+051.06E+054201.07E+051.09E+051.08E+056.19E+041.09E+051.10E+051.09E+052.83E+041.10E+051.12E+051.11E+055.50E+041.12E+051.13E+051.12E+053.92E+041.13E+051.15E+051.14E+051.68E+051.15E+051.16E+051.15E+055.61E+041.18E+051.19E+051.21E+053.80E+041.21E+051.22E+051.21E+053.92E+04	5		7.91E+04	1.02E+05	1.03E+05	1.01E+05
1.06E+051.07E+051.06E+054201.07E+051.09E+051.08E+056.19E+041.09E+051.10E+051.09E+052.83E+041.10E+051.12E+051.11E+055.50E+041.12E+051.13E+051.12E+053.92E+041.13E+051.15E+051.14E+051.68E+051.15E+051.16E+051.15E+055.61E+041.18E+051.19E+051.21E+053.80E+041.21E+051.21E+051.21E+053.92E+04	4		7.73E+04	1.04E+05	1.04E+05	1.03E+05
1.07E+051.09E+051.08E+056.19E+041.09E+051.10E+051.09E+052.83E+041.10E+051.12E+051.11E+055.50E+041.12E+051.13E+051.12E+053.92E+041.13E+051.15E+051.14E+051.68E+051.15E+051.16E+051.15E+055.61E+041.18E+051.19E+051.18E+053.80E+041.19E+051.21E+051.20E+051.80E+041.21E+051.22E+051.21E+053.92E+04	. 2		2.42E+04	1.05E+05	1.06E+05	1.04E+05
1.09E+051.10E+051.09E+052.83E+041.10E+051.12E+051.11E+055.50E+041.12E+051.13E+051.12E+053.92E+041.13E+051.15E+051.14E+051.68E+051.15E+051.16E+051.15E+055.61E+041.18E+051.19E+051.18E+053.80E+041.19E+051.21E+051.20E+051.80E+041.21E+051.22E+051.21E+055.41E+041.22E+051.24E+051.22E+053.92E+04	1		420	1.06E+05	1.07E+05	1.06E+05
1.10E+05         1.12E+05         1.11E+05         5.50E+04           1.12E+05         1.13E+05         1.12E+05         3.92E+04           1.13E+05         1.15E+05         1.14E+05         1.68E+05           1.15E+05         1.16E+05         1.15E+05         5.61E+04           1.18E+05         1.19E+05         1.18E+05         3.80E+04           1.19E+05         1.21E+05         1.20E+05         1.80E+04           1.21E+05         1.22E+05         1.21E+05         3.92E+04	2		6.19E+04	1.08E+05	1.09E+05	1.07E+05
1.12E+05         1.13E+05         1.12E+05         3.92E+04           1.13E+05         1.15E+05         1.14E+05         1.68E+05           1.15E+05         1.16E+05         1.15E+05         5.61E+04           1.18E+05         1.19E+05         1.18E+05         3.80E+04           1.19E+05         1.21E+05         1.20E+05         1.80E+04           1.21E+05         1.22E+05         1.21E+05         3.92E+04	1		2.83E+04	1.09E+05	1.10E+05	1.09E+05
1.13E+05         1.15E+05         1.14E+05         1.68E+05           1.15E+05         1.16E+05         1.15E+05         5.61E+04           1.18E+05         1.19E+05         1.18E+05         3.80E+04           1.19E+05         1.21E+05         1.20E+05         1.80E+04           1.21E+05         1.22E+05         1.21E+05         5.41E+04           1.22E+05         1.24E+05         1.22E+05         3.92E+04	5		5.50E+04	1.11E+05	1.12E+05	1.10E+05
1.15E+05         1.16E+05         1.15E+05         5.61E+04           1.18E+05         1.19E+05         1.18E+05         3.80E+04           1.19E+05         1.21E+05         1.20E+05         1.80E+04           1.21E+05         1.22E+05         1.21E+05         5.41E+04           1.22E+05         1.24E+05         1.22E+05         3.92E+04	2		3.92E+04	1.12E+05	1.13E+05	1.12E+05
1.18E+051.19E+051.18E+053.80E+041.19E+051.21E+051.20E+051.80E+041.21E+051.22E+051.21E+055.41E+041.22E+051.24E+051.22E+053.92E+04	1		1.68E+05	1.14E+05	1.15E+05	1.13E+05
1.19E+05         1.21E+05         1.20E+05         1.80E+04           1.21E+05         1.22E+05         1.21E+05         5.41E+04           1.22E+05         1.24E+05         1.22E+05         3.92E+04	1		5.61E+04	1.15E+05	1.16E+05	1.15E+05
1.21E+05         1.22E+05         1.21E+05         5.41E+04           1.22E+05         1.24E+05         1.22E+05         3.92E+04	3		3.80E+04	1.18E+05	1.19E+05	1.18E+05
1.22E+05 1.24E+05 1.22E+05 3.92E+04	1		1.80E+04	1.20E+05	1.21E+05	1.19E+05
	1		5.41E+04	1.21E+05	1.22E+05	1.21E+05
	1		3.92E+04	1.22E+05	1.24E+05	1.22E+05
1.24E+U5  1.25E+U5  1.24E+U5  3.92E+04	1		3.92E+04		1.25E+05	1.24E+05
1.25E+05 1.27E+05 1.26E+05 4.18E+04	1					
1.28E+05 1.30E+05 1.29E+05 3.75E+04	1					
1.33E+05 1.34E+05 1.33E+05 2.74E+04	1					

#### COWDEN ISOPACH SAMPLE SEMI-VARIOGRAM CALCULATIONS FROM UNCERT'S VARIO MODULE

.

icowr3: Az = 135 deg						
MIN. LAG	MAX. LAG	AVG SPACE	GAMMA H	# PAIRS		
0	750	468	264	1		
750	2.25E+03	1.73E+03	4.67E+03	- 118		
2.25E+03	3.75E+03	3.12E+03	5.94E+03	114		
3.75E+03	5.25E+03	4.55E+03	9.78E+03	155		
5.25E+03	6.75E+03	6.11E+03	7.93E+03	144		
6.75E+03	8.25E+03	7.56E+03	1.44E+04	186		
8.25E+03	9.75E+03	9.05E+03	2.59E+04	239		
9.75E+03	1.12E+04	1.05E+04	3.25E+04	270		
1.12E+04	1.28E+04	1.20E+04	2.98E+04	239		
1.28E+04	1.42E+04	1.35E+04	3.03E+04	216		
1.42E+04	1.58E+04	1.50E+04	2.81E+04	201		
1.58E+04	1.72E+04	1.65E+04	2.05E+04	238		
1.72E+04	1.88E+04	1.80E+04	2.08E+04	255		
1.88E+04	2.02E+04	1.95E+04	2.19E+04			
2.02E+04	2.18E+04	2.10E+04	2.26E+04	306		
2.18E+04	2.32E+04	2.25E+04	2.72E+04	350		
2.32E+04	2.48E+04	2.40E+04	2.87E+04	341		
2.48E+04	2.62E+04	2.55E+04	3.10E+04	346		
2.62E+04	2.78E+04	2.70E+04	3.34E+04	326		
2.78E+04	2.92E+04	2.85E+04	3.62E+04	355		
2.92E+04	3.08E+04	3.00E+04	3.10E+04	417		
3.08E+04	3.22E+04	3.15E+04	3.44E+04	478		
3.22E+04	3.38E+04	3.30E+04	3.10E+04	512		
3.38E+04	3.52E+04	3.45E+04	2.94E+04	445		
3.52E+04	3.68E+04	3.60E+04	2.94E+04	418		
3.68E+04	3.82E+04		3.14E+04	319		
3.82E+04	3.98E+04	3.89E+04	2.93E+04	305		
3.98E+04	4.12E+04	4.05E+04	2.62E+04	267		
4.12E+04	4.28E+04	4.20E+04	2.93E+04	225		
4.28E+04	4.42E+04	4.35E+04	3.29E+04	215		
4.42E+04	4.58E+04	4.50E+04	4.28E+04	173		
4.58E+04	4.72E+04	4.65E+04	2.31E+04	173		
4.72E+04	4.88E+04	4.80E+04	2.49E+04	132		
4.88E+04	5.02E+04	4.95E+04	2.13E+04	113		
5.02E+04	5.18E+04	5.10E+04	3.34E+04	94		
5.18E+04	5.32E+04	5.25E+04	3.97E+04	106		
5.32E+04	5.48E+04	5.40E+04	3.11E+04	85		
5.48E+04	5.62E+04	5.55E+04	4.03E+04	 79		
5.62E+04	5.78E+04	5.69E+04	3.22E+04	56		
5.78E+04	5.92E+04	5.84E+04	3.37E+04	54		
5.92E+04	6.08E+04	6.00E+04	4.27E+04	32		
6.08E+04	6.22E+04	6.14E+04	2.31E+04	32 24		
6.22E+04	6.38E+04	6.28E+04	3.23E+04	24 21		
6.38E+04	6.52E+04	6.44E+04	1.76E+04	19		
6.52E+04	6.68E+04	<u>6.60E+04</u>	3.66E+04	24		
6.68E+04	6.82E+04	6.74E+04	2.26E+04	8		
6.82E+04	6.98E+04	6.95E+04	1.86E+04	6		

09	4.74E+04	4.95E+04	2.02E+04	4.88E+04
29 29	9.04E+04	4.80E+04	4.38E+04	4.72E+04
<u>29</u>	7.31E+04	4.65E+04	4.72E+04	4.58E+04
98	4.98E+04	4.49E+04	4.58E+04	4.42E+04
011	417E+04	4.35E+04	4.42E+04	4.28E+04
971	3.90E+04	4.20E+04	4.28E+04	4.12E+04
		<u> </u>		3.98E+04
191	4.01E+04	4.05E+04	4.12E+04	3.82E+04
<u>961</u>	3.47E+04	3.90E+04	3.98E+04	
221	3.56E+04	3.75E+04	3.82E+04	3.68E+04
503	3.31E+04	3.60E+04	3.68E+04	3.52E+04
10t	3.89E+04	3.45E+04	3.52E+04	3:38E+04
164	3.84E+04	3.30E+04	3.38E+04	3.22E+04
237	4.02E+04	3.15E+04	3.22E+04	3.08E+04
522	3.67E+04	3.00E+04	3.08E+04	2.92E+04
568	3.38E+04	2.85E+04	2.92E+04	2.78E+04
581	3'43E+04	2.70E+04	2.78E+04	2.62E+04
528	3.11E+04	2.55E+04	2.62E+04	2.48E+04
522	3.09E+04	2.40E+04	2.48E+04	2.32E+04
536	3.41E+04	2.25E+04	2.32E+04	2.18E+04
554	3.60E+04	2.10E+04	2.18E+04	2.02E+04
550	3.80E+04	1.95E+04	2.02E+04	1.88E+04
523	3.59E+04	1.80E+04	1.88 <u>E+04</u>	1.72E+04
542	3.99E+04	1.64E+04	1.72E+04	1.58E+04
262	3.50E+04	1.49E+04	1.58E+04	1.42E+04
272	3.13E+04	1.35E+04	1.42E+04	1.28E+04
524	2.61E+04	1.20E+04	1.28E+04	1.12E+04
242	2.03E+04	<b>1.06</b> E+04	1.12E+04	6.75E+03
532	1.59E+04	9.05E+03	9.75E+03	8.25E+03
551	1.69E+04	7.50E+03	8.25E+03	6.75E+03
216	1.46E+04	5.92E+03	6.75E+03	2'52E+03
181	1.48E+04	4.42E+03	2 ⁻ 222E+03	3.75E+03
191	9.60E+03	2.95E+03	3.75E+03	5.25E+03
24	2.66E+03	1.50E+03	2.25E+03	092
L	450	682	052	0
SAIA9 #	H AMMAĐ	<b>AVG SPACE</b>	MAX. LAG	MIN. LAG
			0 qeð	ar = zA :Erwooi
ŀ	1.25E+04	9.75E+04	9.82E+04	<b>₽0+</b> ∃89.6
F	2.31E+03	<b>₽0+</b> ∃6£.6	9.52E+04	9.38E+04
L	1.50E+04	9.30E+04	₽.38E+04	9.22E+04
2	1.03E+04	9.15E+04	9.22E+04	<b>₽0+</b> 380.6
5	5.24E+04	<b>₽0+</b> ∃69.8	8.78E+04	8.62E+04
	6.73E+03	8.34E+04	8.48E+04	8.32E+04
L	2.14E+04	8.28E+04	8.32E+04	8.18E+04
<u>ا</u>	6.96E+03	7.77E+04	7.88E+04	7.72E+04
1	7.20E+03	7.70E+04	7.72E+04	7.58E+04
- 5	E0+367.3	7.47E+04	7.58E+04	7.42E+04
5	1.23E+04	7.39E+04	7.42E+04	7.28E+04
4	7.73E+03	7.17E+04	7.28E+04	7.12E+04
<u> </u>	2.08E+04	7.05E+04	7.12E+04	<b>10+386.0</b>
Ľ	<u></u>	<u></u>		

COWDEN ISOPACH SAMPLE SEMI-VARIOGRAM CONDEN ISOPACH SAMPLE SEMI-VARIO MODULE CALCULATIONS FROM UNCERTS VARIO MODULE

A-II 3J8AT

Page 12 of 13

	•			,	
	5.02E+04	5.18E+04	5.10E+04	6.67E+04	40
	5.18E+04	5.32E+04	5.24E+04	4.42E+04	27
	5.32E+04	5.48E+04	5.42E+04	3.64E+04	15
	5.48E+04	5.62E+04	5.53E+04	3.55E+04	- 16
	5.62E+04	5.78E+04	5. <u>72</u> E+04	2.30E+04	9
	5.78E+04	5.92E+04	5.87E+04	1.29E+04	3
	5.92E+04	6.08E+04	5.95E+04	2.53E+04	1
	6.08E+04	6.22E+04	6.18E+04	213	2
	6.38E+04	6.52E+04	6.46E+04	2.31E+04	9
1. C	6.52E+04	6.68E+04	6.61E+04	1.20E+04	2
	6.68E+04	6.82E+04	6.74E+04	1.84E+04	2
	6.82E+04	6.98E+04	6.84E+04	7.32E+03	1